

Factor of Safety Assessment South Recycle Pond

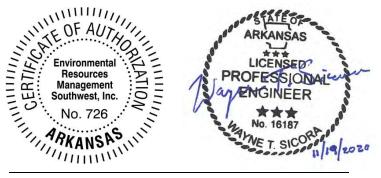
Entergy -White Bluff Steam Electric Station White Bluff, Arkansas

November 19, 2020 ERM Project Number: 0558908

QUALIFIED PROFESSIONAL ENGINEER CERTIFICATION

I hereby certify, as a Professional Engineer in the State of Arkansas, that the information in this document was assembled under my direct supervisory control. This report is not intended or represented to be suitable for reuse by Entergy Arkansas, LLC, White Bluff Steam Electric Station or others without specific verification or adaptation by the Engineer.

This assessment has been prepared for the exclusive use of Entergy Arkansas, LLC, in accordance with the general engineering standards at the time the services were performed. This work has been performed for the sole purpose of assisting Entergy in evaluating the White Bluff South Recycle Pond consistent with the FOS assessment provisions of 40 CFR 257.73(e).


The findings of the assessment, as represented within this report, must be viewed in recognition of certain limiting conditions. The scope of work commissioned for this project represents a reasonable engineering analysis, consistent with good commercial practice and subject to all of the limitations; both stated and unstated in the report as well as identified assumptions. In the course of this assessment, ERM has relied on information provided by Entergy, such as design drawings, regulatory correspondence, site inspection of the facility, interviews, and the project team's experience. ERM has made no independent investigation as to the validity, completeness, or accuracy of such information provided. For the purposes of this assessment, such information is assumed accurate unless contradictory evidence is noted, and ERM does not express or imply any warranty regarding information provided to us.

The findings and conclusions presented herein should reflect conditions as identified during ERM's site visit.

i

Wayne T. Sicosa

Wayne T. Sicora P.E., Arkansas

Seals

Table of Contents

QUALIF	IED PR	OFESSIONAL ENGINEER CERTIFICATION	i
1.0	PURPO	SE AND SCOPE	1
2.0	SLOPE	STABILITY ANALYSES	2
	2.1	General	2
	2.2	Site Data	3
3.0	LIQUEF	ACTION ASSESSMENT	7
		Procedures	
	3.2	Bray and Sancio Method	7
	3.3	SPT-Based Method	8

ii

List of Appendices

- Appendix A Topographic Survey
- Appendix B Recycle Ponds Profiles
- Appendix C Final Report for Geophysical Survey
- Appendix D Geotechnical Boring Locations
- Appendix E Geotechnical Boring Logs
- Appendix F Geotechnical Laboratory Data
- Appendix G Static and Seismic Slope Stability Model Outputs

1.0 PURPOSE AND SCOPE

The South Recycle Pond was used primarily, but not exclusively, for recycling bottom ash sluice water at the White Bluff Steam Electric Station. The South Recycle Pond ceased all waste receipt in October 2018. This sluice water may have contained filtrate deposits of bottom ash, which also present finer-grained particles intermixed with the bottom ash. Altogether, the finer-grained particles intermixed with bottom ash is identified as "infill" herein, and plainly as "ash" throughout Appendix G. For purposes of this assessment, ERM has assumed that the recycle pond is a coal combustion residuals (CCR) surface impoundment as defined by the *Hazardous and Solid Waste Management System, Disposal of Coal Combustion Residuals from Electric Utilities* (the "CCR Rule") in 40 CFR 257.2.

Entergy requested that ERM perform a Factor of Safety (FOS) Assessment for the South Recycle Pond at the White Bluff Steam Electric Station consistent with the FOS requirements described in 40 CFR 257.73(e) (i through iv), which are part of the broader provisions of the 40 CFR 257.73, *Structural Integrity Criteria for existing CCR surface impoundments.*

ERM has conducted these FOS assessments utilizing existing site-specific data, literature research values and information, and field inspection of the South Recycle Pond containment berms to assess compliance. The berms assessed include the Southern Berm, and the inner berm shared between the South Recycle Pond and the separate North Recycle Pond. The results of the stability analyses are summarized in Table 1, below, with a comparison to the regulatory requirements and minimum standards specified under the CCR Rule:

40 CFR 257.73 (e) - Structural Integrity Criteria for Existing CCR Surface Impoundments	Minimum FOS Requirement	South Pond Critical Structures	Minimum Calculated Factor of Safety
i) The calculated static factor of safety under the long- term, maximum storage pool loading condition must	1.50	North-South Ponds Shared Inner Berm	2.34
equal or exceed 1.50.		Southern Berm	2.42
ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal	1.40	North-South Ponds Shared Inner Berm	2.24
or exceed 1.40.		Southern Berm	2.49
iii) The calculated seismic factor of safety must equal or exceed 1.00.	1.00	North-South Ponds Shared Inner Berm	1.24
exceed 1.00.		Southern Berm	1.41
iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20	1.20	N/A	1.49

Table 1.Factor of Safety Summary

2.0 Slope Stability Analyses

2.1 General

The stability of berms containing the South Recycle Pond were assessed under both static and seismic conditions consistent with the CCR Rule. The analyses of the South Recycle Pond were conducted on the inner berm shared by the North and South Recycle Ponds and the southern perimeter berm (separating the South Recycle Pond from the lower lake). Although the shared inner berm is currently an interior structure for which a breach failure would be within the confines of the two-pond footprint and would not result in a release, the analyses assume a primary failure of the southern perimeter berm and a secondary failure of the shared North-South Ponds inner berm. The sections modeled herein incorporated elevation and grade information provided through two surveys and a design profile: a Topographic Survey (Appendix A) and Profile (Appendix B) produced by B&F Engineering, Inc. (B&F Engineering), dated July 5 and 6, 2018 were the principal source, verified with a marine geophysical survey (Appendix C) that mapped pond floor elevation, prepared by GeoView, Inc. (Geoview) of St. Petersburg, FL, dated June 14 and 15, 2018. The slope stability software program GEO 5 Slope Stability (Fine Ltd, version 19) was used to model all critical sections along these berms.

The B&F Engineering topography of the recycle ponds, the design configuration, and the surface of the surveyed infill surface currently in the ponds (Appendices A and B) were initially used to define the geometry for completing the stability analyses. The profile indicates, however, only a section at one location through the center of the ponds, from north to south, and not variable configurations as may be suggested by the topography. This variation was determined from the Geoview geophysical survey (Appendix C) which depicts the elevations of the interpreted surface of the pond floors (Geoview Figures 1 and 2). Furthermore, the geophysical survey depicted areas of the pond floors at elevations lower than the profile; these were used in developing a critical section that maximized the depth of the pond floor and infill relative to the floor (i.e., the western portion of the South Recycle Pond as depicted in Figure 1). Despite these differences, the data sources available were not inconsistent and were used collectively to derive the typical, critical section geometry of the ponds.

The steepest and longest exposed slopes identified were used to create the critical sections for analytical purposes. Elevations of the top of berm, top of infill, and pond floor at those sections were defined for both berms. In developing the critical sections it was observed that the slopes indicated in both surveys were at least as steep as the design grades presented on the profile drawing (Appendix B), and thus, the design profile effectively represented the critical section. Ultimately, two composite sections, utilizing the critical North Recycle Pond and South Recycle Pond berm geometry along the north-south alignment were analyzed for stability.

For each critical section, various stages of pond operations were modeled according to the potential water surface elevations within the North and South Recycle Ponds and the lower lake, including: 1.) the water surface elevation at long-term, maximum storage elevation (i.e., maximum operating pool) defined as elevation +278 feet above mean sea level (msl) for the North and South Recycle Pond and elevation +276 feet msl for the lower lake; 2.) the water surface at the maximum surcharge elevation (i.e., assuming zero freeboard and pending overtopping) in the North and South Ponds; and, 3.) the water surface in the ponds or lake as "empty", defined as the top of infill elevation at elevation +267 feet above msl in the South Recycle Pond or at the lower lake floor elevation at +269 feet above msl. For purposes of these analyses, the lowest elevation of the floor and greatest infill thickness (relative to the lowest floor elevation) in each pond was set as uniform for the corresponding ponds. Likewise, the topographic survey data as presented on the B&F Engineering drawing, designated *Recycle Ponds Profiles* (Appendix B) represents the top of berm elevations for the North and South Recycle Ponds, and represents the water surface elevation in the lower lake, or +276 feet msl. The lower lake floor elevation is assumed to be at elevation of +269 feet msl, derived from this profile.

2.2 Site Data

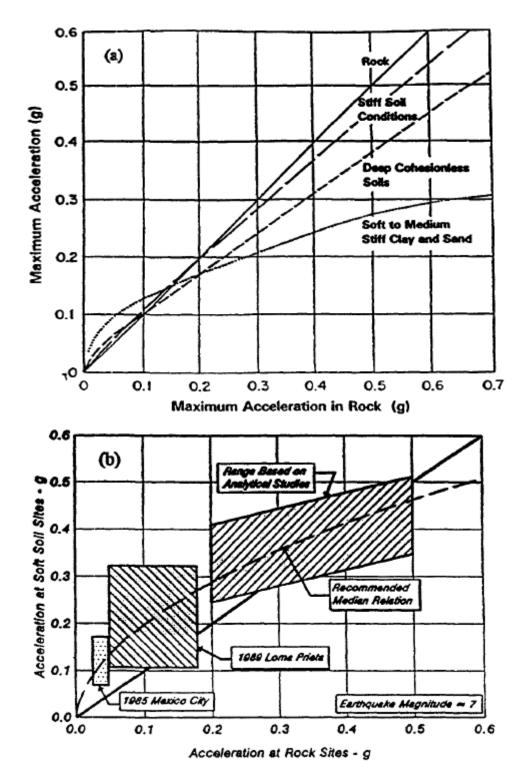
The critical slopes were analyzed for stability under both static and seismic conditions using a combination of site subsurface lithological and laboratory data as well as literature values correlated to the known conditions at the site, as discussed below. Limited field data on the various soil layers beneath the ponds was, however, available to definitively provide input parameters. The available data consisted of soil borings surrounding the recycle ponds as presented in Appendix D, which is entitled *Site Map, Entergy White Bluff Recycle Ponds*. The locations of the borings along the interior and southern berms of the recycle ponds were used to develop a typical vertical profile that is representative of the subsurface lithology at the critical sections. The variability in the boring logs (see Appendix E) is noted and therefore multiple locations were used to assign a most-representative section for the analyses.

In general, three types of soils and infill material, as defined by the Unified Soil Classification System (USCS), were described, specifically including CL/CH, SC, and SM classified soil materials, and the bottom ash deposits. While the thicknesses of the soil units varied, it is projected that they generally consisted of fine-grained (CL, CH and SC) cohesive soils exhibiting a high clay content, with intermediate lenses, pockets and/or thin layers of cohesionless SM material. The uppermost layer consists of silty clays of low to high plasticity, is variable in thickness and composition, and is reported to be fill materials obtained from a neighboring on-site borrow source during construction of the ponds. The SM materials were generally present in thin lenses and pockets throughout the subsurface beneath the surficial cohesive fill soils but were only observed in one layer that uniformly underlies the site at a depth of approximately 20 feet. This layer ranged from less than 1 foot to about 7 feet in thickness. Beneath this SM layer was CL/CH materials similar to those above. For purposes of the analyses, the geometry was configured with an upper clayey soil layer underlain by a uniform SM layer of the maximum thickness observed, and thereafter underlain by clayey soils to the maximum depth of the borings. The bottom ash deposits were sluice-water placed and sorted, and consist basically of coarse granular materials derived from the combustion process. Bottom ash is typically angular and exhibits high interlocking potential between particles. The deposits were configured from the surveys previously referenced. This geometry was used throughout the analyses.

The soils were sampled in six locations at which undisturbed samples were obtained to conduct triaxial, consolidated-undrained shear strength tests with pore pressure measurements (tx/cu/pp tests) in a geotechnical laboratory in addition to classification and correlation tests. This data is summarized in Table 2, and as may be observed, the results of the strength testing indicates very similar results for the CL/CH and SC materials, with some variance for the SM materials. These data were used in the analyses as representative of the soil materials anticipated at the critical sections, and were utilized in the models utilizing the average of the data results. The average data were used given the relatively uniform test data results obtained and their presence within an expected range of industry standards that correlate with that type of soil. The complete laboratory data utilized is presented in Appendix F.

		<u> </u>		Effective Stress			Total Stress			
Location	Depth (ft)	USCS	Angle of Friction (°)	Cohesion (psi)	Cohesion (psf)	Angle of Friction (°)	Cohesion (psi)	Cohesion (psf)	Density (pcf)	
B-1	8 to 10	CL	21.6	1.5	216.0	12.3	2.6	374.4	100.0	
B-3	10 to 12	SC	32.5	0.0	0.0	23.6	0.0	0.0	100.0	
B-3	20 to 22	SM	22.1	3.0	432.0	22.4	4.2	604.8	100.0	
B-5	3 to 5	CL	29.6	2.5	360.0	26.1	1.5	216.0	95.4	

 Table 2.
 Shear Strength Test Results Summary


			Effective Stress						
Location	Depth (ft)	USCS	Angle of Friction (°)	Cohesion (psi)	Cohesion (psf)	Angle of Friction (°)	Cohesion (psi)	Cohesion (psf)	Density (pcf)
B-7	5 to 7	SM	42.5	11.2	1612.8	31.7	12.2	1756.8	90.4
B-7	15 to 17	SC	25.4	0.9	129.6	16.9	0.0	0.0	100.0
RP-4	20 to 22	CL	24.3	0.9	129.6	12.5	2.2	316.8	93.0
		Average CL	25.2		235.2	17.0		302.4	96.1
		Average SC	29.0		64.8	20.3		0.0	100
		Average SM	32.3		1022.4	27.1		1180.8	95.2
		Bottom Ash ¹	38		0	38		0	100

Notes:

1. The infill material, or the finer-grained particles intermixed with bottom ash in the South Pond was not specifically sampled and analyzed. The strength parameters are derived from the typical range of industry-accepted direct shear test values surveyed by the Federal Highway Administration (FHWA) Research and Technology Program (FHWA-RD-97-148) entitled, User Guidelines for Waste and Byproduct Materials in Pavement Construction, 2008). The range of angle of internal friction from this source is 38 to 42 degrees; a conservative assignment of 38 degrees was applied to accommodate the potential for finer-grained particles being entrained in the bottom ash. Though ash can exhibit some apparent cohesion, none was applied as a conservative value.

It is noted, however, that the site data available was of a general nature and not necessarily representative of that at the specific critical sections, or comprehensive for the specific purposes of this analysis. Therefore, the data was supplemented with literature values and data correlations with known parameters that may be indirect measures of the required parameters. The values selected were also deemed by ERM as representative of known site conditions from inspections of the site by qualified individuals. The sensitivity of the critical sections to variations in the soil parameters was evaluated for comparative purposes, but nevertheless, the results may vary if more specific soil data were available.

The peak ground acceleration (PGA) for the bedrock beneath the site was derived from analyses conducted by FTN Environmental. The PGA was determined to be 0.16 g (a percentage factor times the acceleration of gravity) in that document. The seismic coefficient adopted was an amplification of the PGA in the bedrock to reflect conditions at the ground surface. The amplification factor varies by the slope severity; "moderate" slopes were assumed which can be represented by a factor of 25% increase, and yielded a ground surface acceleration at the surface of the slope of 0.20g. In the GEO 5 software program, the PGA of 0.2g is modeled as an additional horizontal force acting at the center of gravity of a respective block with magnitude Kh*Wi, where Wi is the block overall weight including the material component of the slope surcharge. As supporting information, the RCRA Subtitle D (40 CFR 258) figures below indicate the amplified acceleration to be approximately 0.165-0.17g for a PGA of 0.16g. The use of 0.2g as horizontal acceleration is therefore deemed to be conservative.

The results of the static and seismic stability analyses are summarized below. The slope stability model outputs are presented in Appendix G.

	Stage				Static Response ¹				Seismic Response (K _h = 1.25*PGA = 0.2)			
Location	(Arbitrary	Scenario	Critical Slope	Pe	ak	Residual		Peak		Residual		
	ID)			Rotational	Polygonal	Rotational	Polygonal	Rotational	Polygonal	Rotational	Polygonal	
North-South Inner Berm	1	South Pond Water Elev. 267' (top of infill) North Pond Max Storage Water Elev. 278'	Inner Berm -	2.34	2.39	2.46	2.6	1.27	1.34	1.4	1.55	
(Composite Section)		Southern Slope	2.24	2.44	2.32	2.45	1.24	1.42	1.3	1.43		
	3	Lower Pond Water Elev. 276' South Pond Max Storage Water Elev. 278'		3.92*	2.42	3.89*	2.75	1.54*	1.69	1.55*	1.59*	
South Pond	4	Lower Pond Water Elev. 276' South Pond Max Surcharge Water Elev. 281'	South Pond	3.94	3.72	3.96	2.87	1.46	1.56	1.49	1.50	
Composite Section	5	Lower Pond Water Elev.269' (lake floor) South Pond Max Storage Water Elev. 278'		2.86	2.58	2.95	2.56	1.45	1.52	1.53	1.64	
	6	Lower Pond Water Elev.269' (lake floor) South Pond Max Surcharge Water Elev. 281'		2.76	2.54	2.83	2.49	1.36	1.43	1.48	1.49	

Notes:

1. The FOS in the Static Response condition relates to the requirements set by the two separate categories in the 40 CFR 257.73(e): maximum storage pool loading conditions (I,) and maximum surcharge pool loading (ii) conditions.

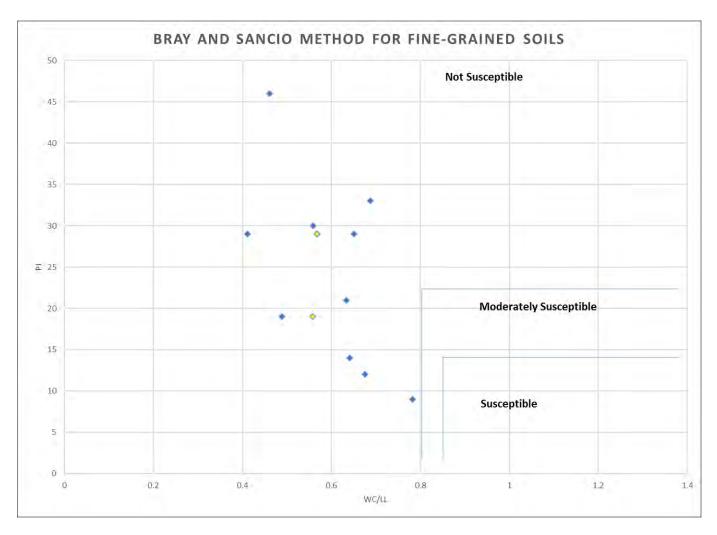
2. An * indicates the factor of safety for the south berm critical slope as the interior of the south berm, whereas an FOS without an asterisk identifies the exterior slope of the south berm as the critical slope. Only the lowest FOS is provided.

3.0 LIQUEFACTION ASSESSMENT

3.1 Procedures

Two methods were used to evaluate the susceptibility of site soils to liquefaction:

- <u>Bray and Sancio Method for Fine-Grained Soils</u>: Low to medium plasticity clays are characteristic of the site, as evident in the boring logs and laboratory results for particle-size distribution and the Atterberg limits (see Appendix E). Although not considered susceptible to liquefaction, these materials may be susceptible to strength loss as a result of a design seismic event. A method proposed by Bray and Sancio (2006) uses the results of laboratory investigations on silts and clays to define a range of soil index parameters for which a silt or clay may be susceptible to strength loss.
- <u>SPT-based Method</u>: No measured SPT N-values are available; however, literature values were used to correlate N-values (blow counts) to the soil types encountered, and along with the laboratory data, Nvalues were extrapolated.


3.2 Bray and Sancio Method

Based on Bray and Sancio, a soil deposit is considered to be susceptible to liquefaction or cyclic mobility if the ratio of the water content to liquid limit is equal to or greater than 0.85 (wc /LL = 0.85), and the soil plasticity index is equal to or less than twelve (PI =< 12). Soils with plasticity index greater than twelve and less than or equal to twenty (12 < PI =< 20) and water content to liquid limit ratio greater to or equal than 0.8 (wc /LL = 0.8) may be moderately susceptible to liquefaction or cyclic mobility, and should be tested in the laboratory to assess the strain potential and liquefaction susceptibility under the loading conditions existing in the field. Soils with PI > 20 are considered too plastic with clays to liquefy.

The results provided in the table below indicate that the clayey soils tested plot outside the window for materials susceptible to liquefaction, according to Bray and Sancio. Based on this evaluation, it may be concluded that all site clayey soils are of sufficiently high plasticity and low moisture content that liquefaction is not a concern. It is noted that Borings B-3 and B-4 represent the locations of critical sections, as highlighted on the table and plot.

Table 4. Soll Data Summary Table Jun-18 – White Bluff Recycle Ponds								
Sample ID	Sample Depth	Classification	ш	Wc	W _c /LL	PI	Susceptible?	
B-1	3-5'	СН	63	29	0.460317	46	NOT	
B-1	8-10'	CL	44	25	0.568182	29	NOT	
B-3	5-7'	CL	37	24.1	0.651351	29	NOT	
B-3	10-12'	SC	32	21.6	0.675	12	NOT	
B-3	15-17'	SC	34	19	0.558824	19	NOT	
B-4	8-10'	СН	59	33.5	0.567797	29	NOT	
B-5	3-5'	CL	42	26.6	0.633333	21	NOT	
B-5	10-12'	CL	35	17.1	0.488571	19	NOT	
B-7	7-9'	CL	34	21.8	0.641176	14	NOT	
B-7	15-17'	SC	28	21.9	0.782143	9	NOT	
RP-4	20-22'	CL	54	22.2	0.411111	29	NOT	
RP-4	30-32'	СН	54	37.1	0.687037	33	NOT	
RP-9	30-32'	СН	54	30.2	0.559259	30	NOT	

 Table 4.
 Soil Data Summary Table Jun-18 – White Bluff Recycle Ponds

3.3 SPT-Based Method

Using the soil boring descriptions, existing soil type correlations and the laboratory shear strength data available, predictions of the range of N-values at the site were developed for the SM materials. (It is noted that the infill material as the contained waste materials, was not assessed as to liquefaction since it will be contained by the pond walls.) N-values were compared to typical ranges for similar materials. The intent was to apply the SPT Method of determining liquefaction potential to this layer of soil. The assumptions and methodology applied are presented below for this analysis:

Initial Data Limitation:

No Standard Penetration Test Results or Cone Penetration Test Results available: Initial Assumption:

(Terzaghi, 1968) Table 45.1 Relative Density of Sands according to Results of SPT

No. of Blows	Relative Density
0-4	Very Loose
4-10	Loose
10- 30	Medium
30- 50	Dense
Over 50	Very Dense

 According to (Terzaghi, 1968) Table 17.1 Relative Density of Sands according to Results of SPT Silty Sand has a range "phi" of 27-33 degrees (loose) and 30-34 degrees (dense)
 The average SM materials exhibit an average effcetive "phi" of 32.3 degrees (see Table 2); therefore, assume an average N- value given the comparion of the actual laboratory data to the typical range, which indicates a high, loose to medium relative density for which an Nvalue of 20 may be representative.

3. A back-calculation of the minimum "phi" that assures a factor of safety above the requirement was perfomed to verify the selection of N-Value. The minimum N-value to meet the requirement was determined to be 17, which is well-within the typical range.

Factor of Safety Against Liquefaction Triggering (FSL) was calculated using the procedure presented in Youd et al. (2001):

$$FS_{L} = \frac{CRR_{7.5} \cdot MSF}{CSR} \cdot K_{\sigma}$$

FS= 1.49

CSR is the Cyclic Stress Ratio as defined by the equa (given) PGA = 0.2

$CSR = \frac{\tau_{ar}}{\sigma'_{v0}} = \frac{0.65 \cdot P}{\sigma'_{v0}}$	$GA \cdot \sigma_{v_0} \cdot r_d$ σ'_{v_0}		tive vertical stress: rang ranges from 0.8 - 1.0 Assumed effective ver	tical stress is 1/2 of total stress, based on IM D4767 compression test report. This is
	CSR =	0.208		

MSF is the magnitude scaling factor, where Mw is moment magnitude (assumed):

$$MSF = \frac{10^{2.24}}{M_{w}^{2.56}}$$

History of magnitude ranges from 2.0-3.5 on average maximum magnitude reach 5.0 within last 30 years

(used magnitude of 6.5)

MSF= 1.441922

 K_{σ} is the overburden correction factor to convert CRR_{7.5} to the confining stress of interest. The equation for K_{σ} is provided below, where P_a is 1 atm (in consistent and f is a function of site conditions (relative density, stress history, aging etc.). In our

$$K_{\sigma} = \left(\frac{\sigma_{v0}^{*}}{p_{a}}\right)^{(f-1)}$$
(4-4)

1 atm = 2116 psf

Assumed as 1, because low relative density, little stress history other than weight of berm

 $CRR_{7.5}$ is the cyclic resistance ratio of the soil normalized to a magnitude 7.5 earthquake and confining stress of 1 atm and is calculated as:

$$CRR_{7.5} = \frac{1}{34 - (N_1)_{60cs}} + \frac{(N_1)_{60cs}}{135} + \frac{50}{\left[10 \cdot (N_1)_{60cs} + 45\right]^2} - \frac{1}{200}$$
(4-5)

where

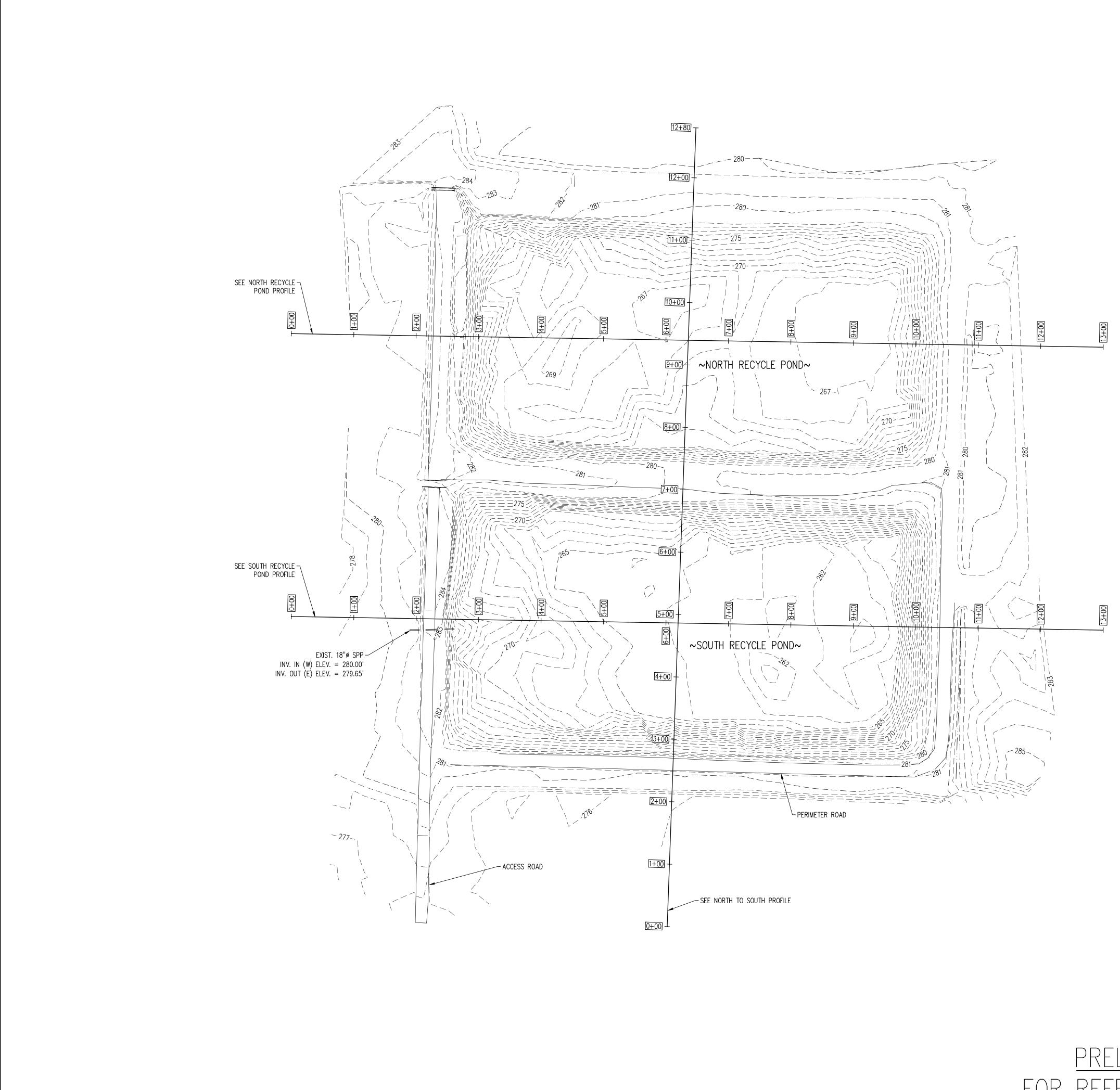
• $(N_1)_{60cs}$ is the clean sand normalized standard penetration test blow count, such that $(N_1)_{60cs} = \alpha + \beta \cdot (N_1)_{60}$ where α and β are a function of the Fines Content (FC) as defined in the table below:

CRR=	0.21541
CKK=	0.21541

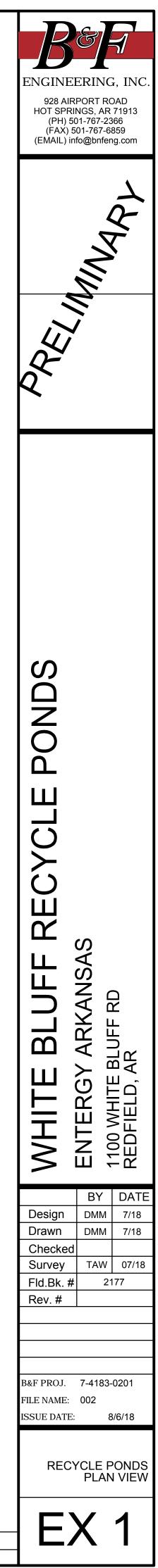
$(N_1)_{60CS} =$	% fines with	nin 5-35%
alpha	3.233549	
beta	1.066368	
$(N_1)_{60CS} =$	20 <	minmium blow count correlating to the characteristic soil
		0.11136
$(N_1)_{60CS} =$	9.8	

Fine content for boring -3 at 20-22 feet below grade is 18%

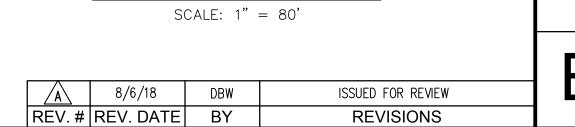

FC	a	β
≤5 %	0	1
5-35 %	exp[1.76 - (190/FC ²)]	$[0.99 + (FC^{1.5}/1000)]$
≥ 35 %	5	1.2


(N₁)₆₀ is the normalized standard penetration resistance given as
 (N₁)₆₀ = N_mC_NC_EC_BC_RC_S, where N_m is the measured SPT blow count and
 C_N, C_E, C_B, C_R, and C_S are defined in Table 4-3.

If the fines content (FC) was measured in the laboratory, that fines content was used for the spreadsheet analysis. Alternatively, FC was estimated based on field classification information on the boring logs according to:

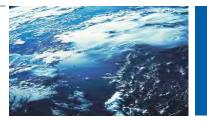

Descriptor	FC
ML, CL, CH	35
SM, SC, SC/SM, SM/SC	12
SP/SM, SP/SC, SW/SM, SW/SC	8
SP, SW	0

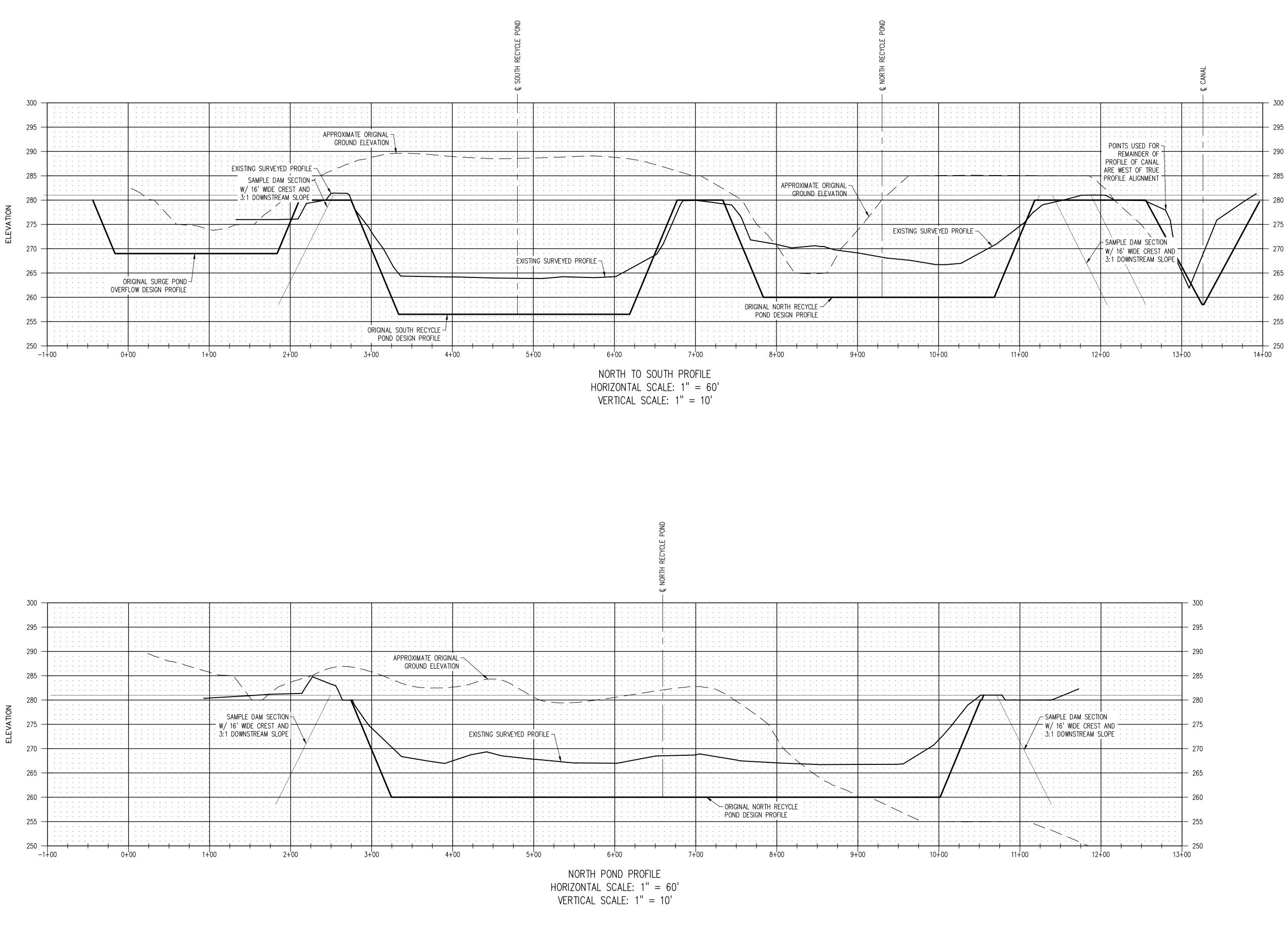
Appendix A Topographic Survey

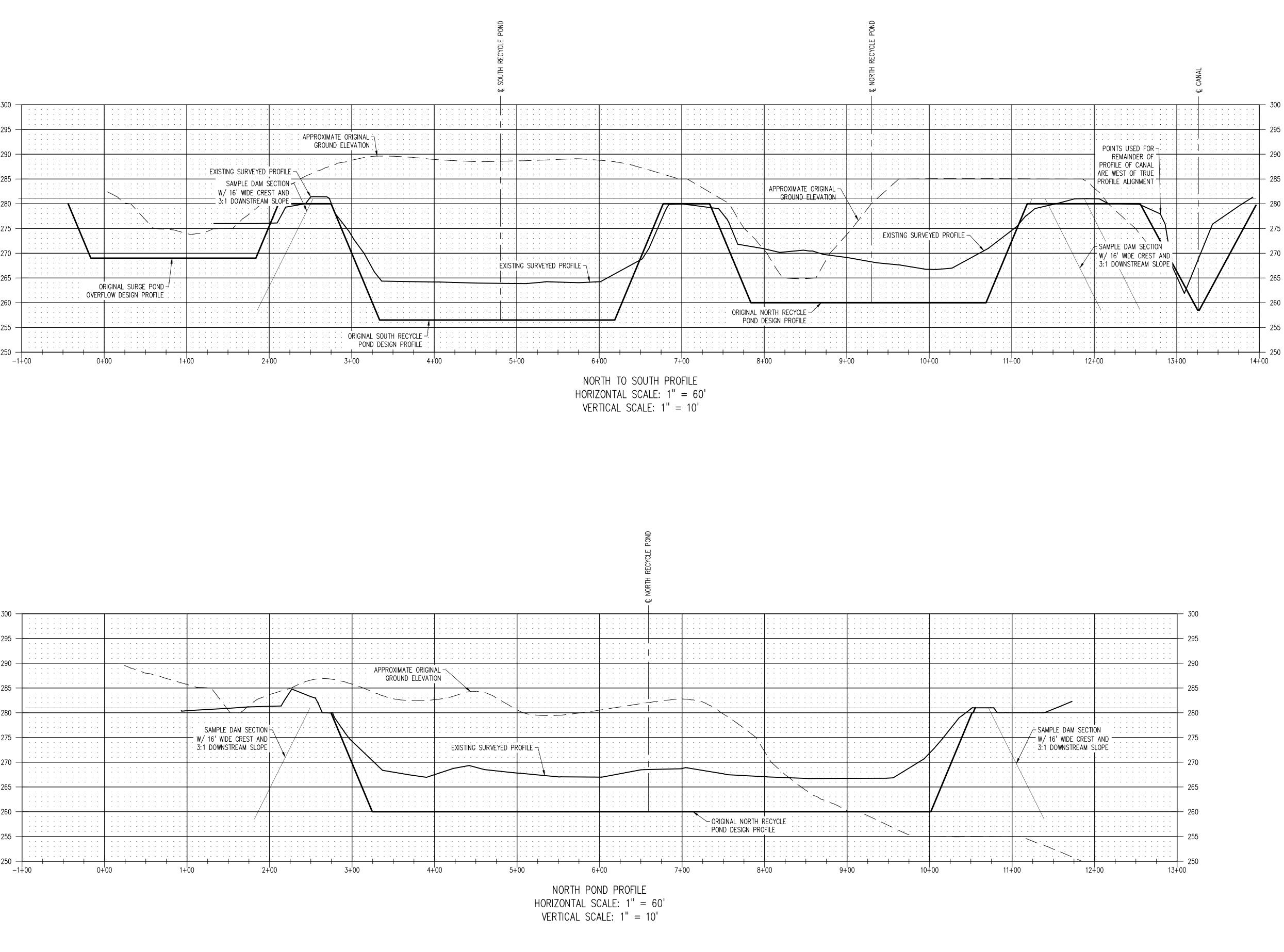

<u>Preliminaf</u> for reference

NOTE: TOPOGRAPHIC MAP BASED ON SURVEY BY B&F ENGINEERING ON JULY 5TH & 6TH, 2018 AND ELECTRONIC CAD FILE BY HARMON SURVEYING, INC. DATED 6/28/18.

LEGE	END
235	MAJOR CONTOUR INDEX
— — —	MINOR CONTOUR


R	Y	
È	ONLY	




40

160

Appendix B Recycle Ponds Profiles

PRELIMINA FOR REFERENCE

· · ·		- 300
	· · · · · · · · · · · · · · · · · · ·	- 295 - 290
		- 290
		- 280
	/- SAMPLE DAM SECTION	- 275
	W/ 16' WIDE CREST AND 3:1 DOWNSTREAM SLOPE	
	· · · · · · · · · · · · · · · · · · ·	- 270
		- 265
· · ·	· · · · · · · · · · · · · · · · · · ·	- 260
		- 255
)0	12+00 13+	- 250 00

		10 8 6 4 2	205	10	20	
			SCALE: 1	" = 10'		
<u>ARY</u>		60 ₅₀ 40 ₃₀ 20	₁₀ 0 3(0 60	100	
CE ONLY		S	CALE: 1"	= 60'		
	Â	8/6/18	DBW		ISSUED FOR REVIEW	
	REV. #	REV. DATE	BY		REVISIONS	

BERGINEERING, INC 928 AIRPORT ROAD HOT SPRINGS, AR 71913 (PH) 501-767-2366 (FAX) 501-767-6859 (EMAIL) info@bnfeng.com	
WHITE BLUFF RECYCLE PONDS ENTERGY ARKANSAS 1100 WHITE BLUFF RD REDFIELD, AR	
BYDATEDesignDMM7/18DrawnDMM7/18CheckedSurveyTAW07/18Fld.Bk. #2177Rev. #	
B&F PROJ. 7-4183-0201 FILE NAME: 002 ISSUE DATE: 8/6/18 RECYCLE PONDS PROFILES	

Appendix C Final Report for Geophysical Survey

FINAL REPORT ASH POND SURVEY WHITE BLUFF POWER PLANT JEFFERSON COUNTY, ARKANSAS

Prepared for FTN Associates, Ltd. Little Rock, Arkansas

> Prepared by GeoView, Inc. St. Petersburg, Florida

September 24, 2018

Ms. Dana Derrington, PE, PG FTN Associates, Ltd. 3 Innwood Circle, Suite 220 Little Rock, AR 72211

Subject: Transmittal of Final Report for Geophysical Survey White Bluff Steam Electric Station – Recycle Pond Survey Jefferson County, Arkansas GeoView Project Number 26897 Rev 2

Dear Ms. Derrington,

GeoView, Inc. (GeoView) is pleased to submit the final report which summarizes and presents the results of the geophysical survey conducted at the above referenced site. Sub-bottom profiling was used to map the bottom of the recycle ponds. GeoView appreciates the opportunity to have assisted you on this project. If you have any questions or comments about the report, please contact us.

Sincerely, GEOVIEW, INC.

Christopher Taylor

Chris Taylor, P.G. Vice President Florida Professional Geologist Number 2256

Merritt McLean Geophysicist

A Geophysical Services Company

4610 Central Avenue St. Petersburg, FL 33711 *Tel.:* (727) 209-2334 *Fax:* (727) 328-2477

1.0 Introduction

A marine geophysical survey was conducted on two recycle ponds located at the White Bluff Steam Electric Station in Jefferson County, Arkansas. The purpose of the study was to map the bottom elevation of the recycle ponds. Each recycle pond was approximately 750 by 390 feet in size. The survey was conducted on June 14 and 15, 2018. The locations of the geophysical survey area are provided on Figures 1 and 2.

2.0 Description of Geophysical Investigation

The geophysical survey was conducted using a sub-bottom profiling towfish. The sub-bottom data was collected using an Edgetech 3100 system with a 216 towfish. The Edgetech system is a full Spectrum CHIRP imaging system. A frequency range of 2-16 kHz was used. During the survey, the towfish was situated 1.0 feet below the surface of the water. The high-power, low-frequency system was chosen to map the pond bottoms. The equipment was mounted to an unmanned, portable pontoon boat. The boat was pulled using ropes along each transect line. Photographs showing the equipment configuration are provided in Appendix 2.

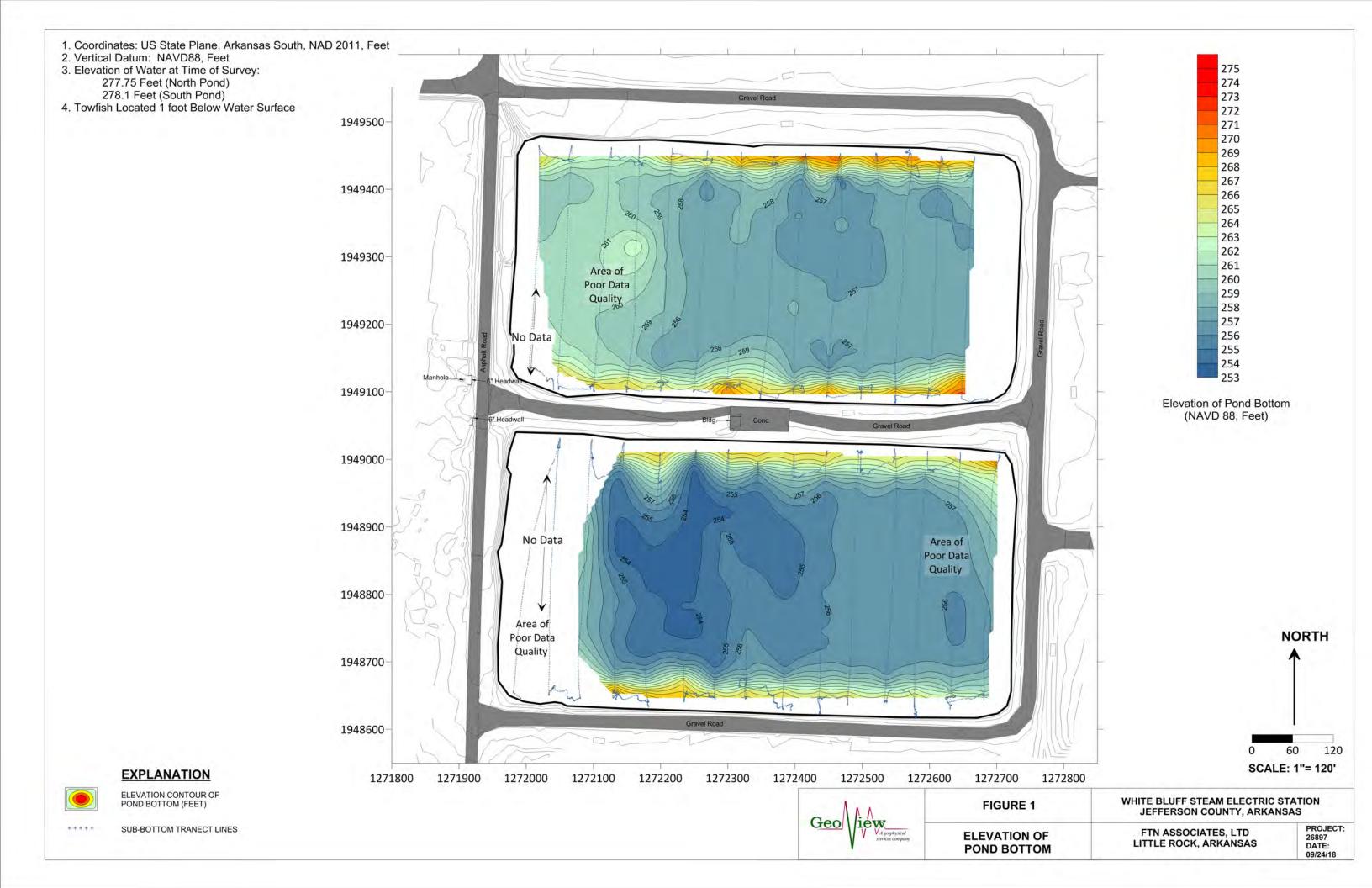
Within each pond, data was collected on north/south oriented transects spaced approximately 50 feet apart. The positions of the geophysical transect lines were recorded using a differential Trimble Geo6000 Global Positioning System (GPS). Real time differential corrections were applied to the GPS positions.

The data was processed using Edgetech Discover software. The two way travel time distances to the pond bottom were digitized and depths/elevations were calculated using a velocity of 4,921 feet per second.

The digitized elevations were exported into an Excel spreadsheet and converted for use in Surfer. The coordinates were converted to Arkansas South State Plane, NAD2011 (US Survey feet) using Trimble Pathfinder and the elevations were converted to State Plane NAVD88 using a topographic site survey provided by FTN.

3.0 Survey Results

Results of the survey were able to provide accurate sub-bottom information for the elevation of the bottom of the recycle ponds. Contour maps showing the elevations of the bottom of the ponds are shown on Figure 1.

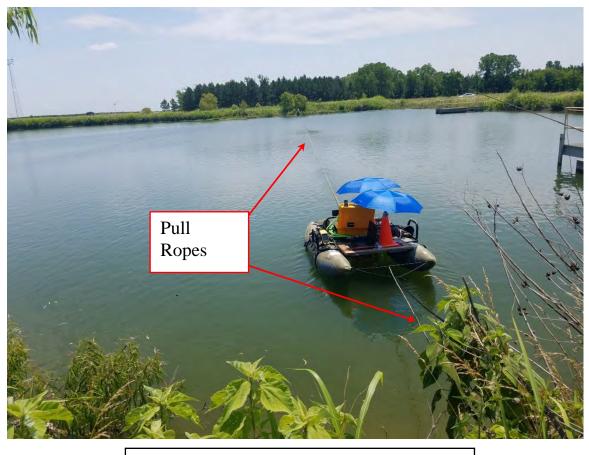

In general, the bottom elevation of the pond in the north pond ranged from approximately 256 to 260 feet. The bottom elevation of the pond in the south pond ranged from approximately 253.5 to 256 feet.

The data quality within the western portion of the north pond and the eastern and far western portions of the south pond was lower than in other portions of survey areas. In these areas, a shallower, intermediate reflector was present that partially obscured the bottom of the pond. In portions of the southern pond, the bottom of the pond was completely obscured and no valid data was able to be derived. These areas of poor quality are shown on the figure.

A discussion of the limitations of the geophysical methods used in this investigation is provided in Appendix 3.

Appendix 1 Figures

<u>Ge</u>oview


APPENDIX 2 Photographs

<u>Ge</u>oview

Picture Showing the GPS, 3100 Topside Unit and 216 Sub-bottom Unit (towfish)

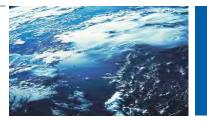
$$\underline{Ge}$$
 \widehat{V}

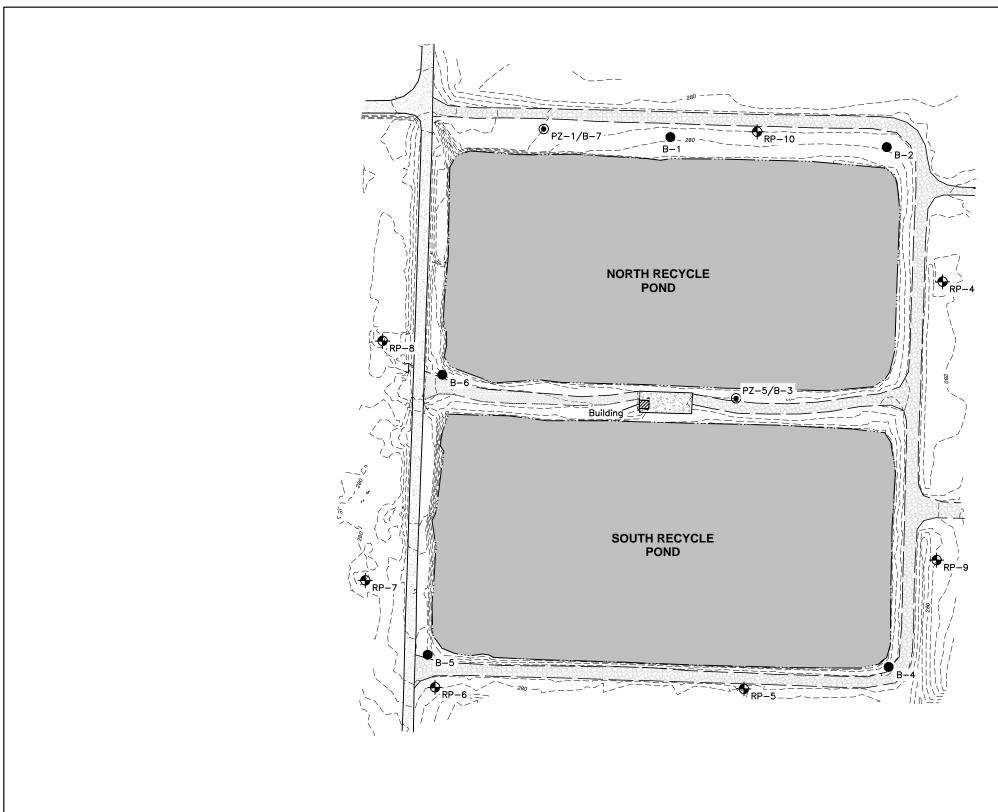
Data Collection

APPENDIX 3 LIMITATIONS

Edgetech 3100 XS system

The 3100- Sub-bottom Profiling System is a Full Spectrum CHIRP imaging system. It was used with a SB-216S towfish. The 3100- system uses specially designed transmitters with low Q wideband characteristics best suited for CHIRP transmissions. Two hydrophones are installed in the tow vehicle to reduce acoustic scattering from the sides. This results in a narrower across track beam pattern, enabling the 3100 to have both high resolution and ample depth of penetration. For this survey, GeoView mounted the fish directly under the center of the tow raft. A GPS antenna was mounted directly over the transducer.

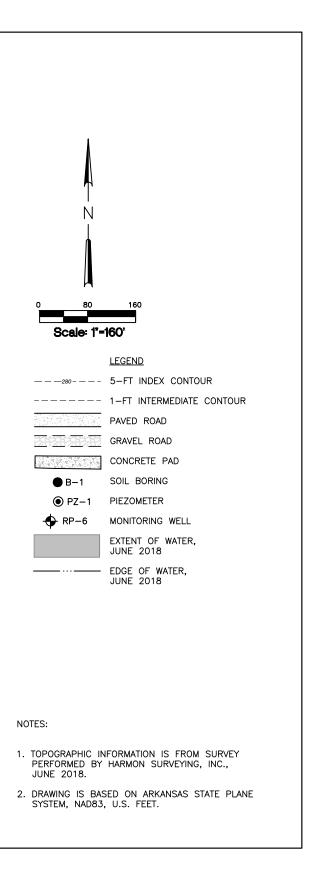
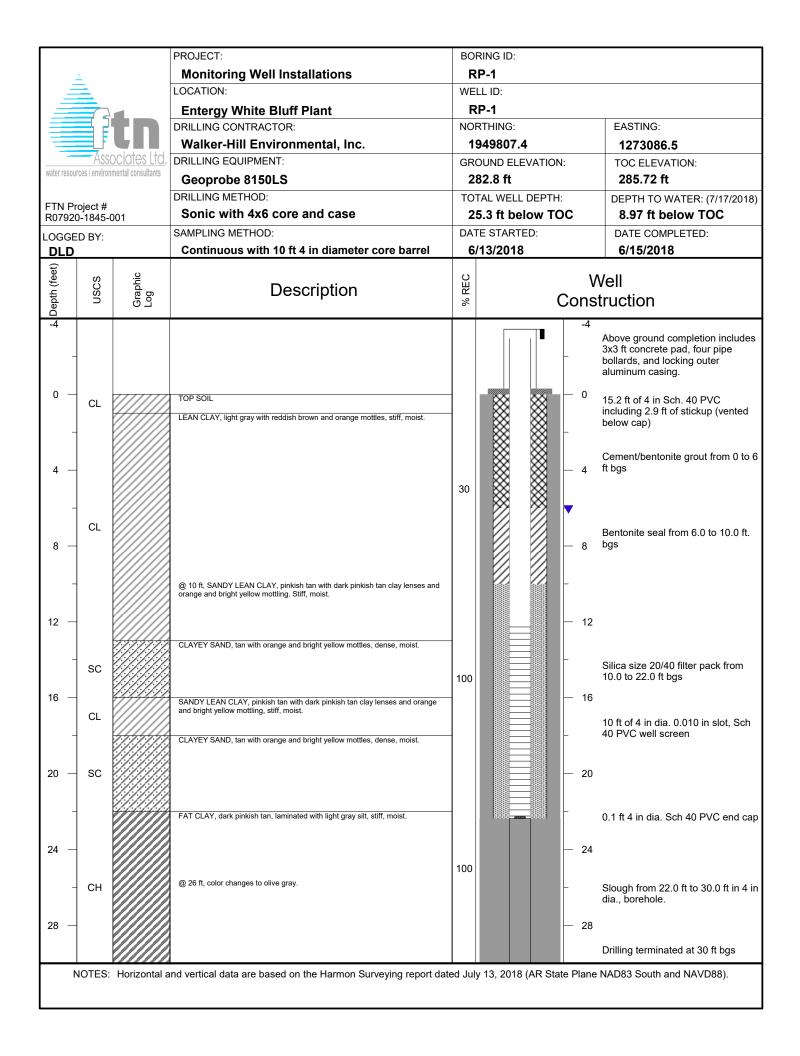
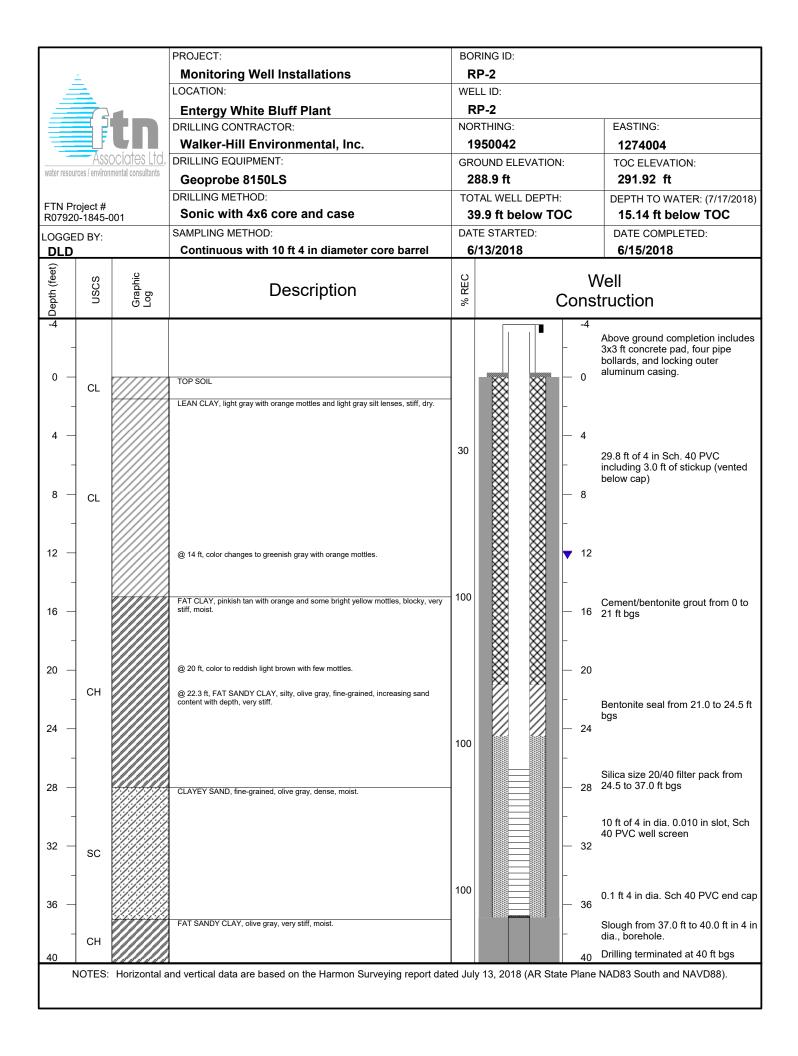

Limitations of geophysical data

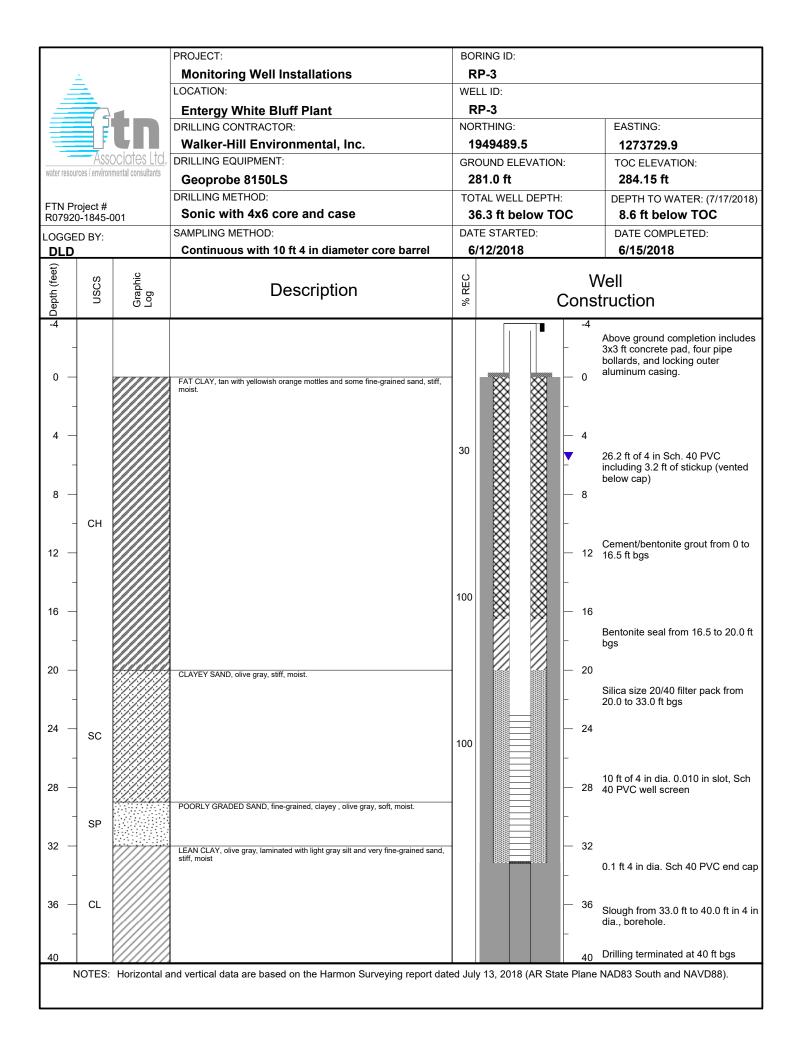

The marine environment, together with its boundaries, forms a remarkably complex medium for the propagation of sound. Both signal loss and interference result from interactions with boundaries and components within the water column, causing the source to be delayed, distorted and weakened. The main components affecting sound propagation are spreading loss and attenuation loss.

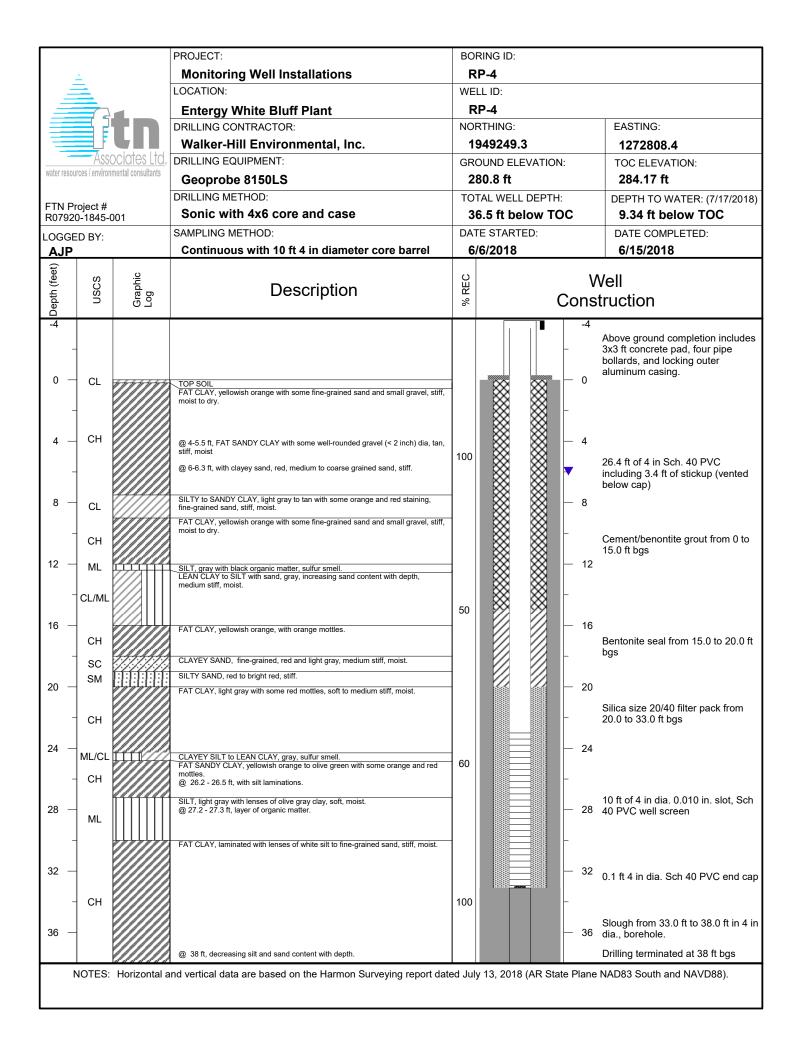
The ability of geophysical to collect interpretable information at a project site is limited by the attenuation (absorption) of the geophysical signal by underlying earth materials. Once the geophysical signal has been attenuated at a particular depth, information regarding deeper geological conditions will not be obtained. Geophysical data can only resolve subsurface features that have a sufficient density contrast between the feature in question and surrounding earth materials. If an insufficient contrast is present, the subsurface feature will not be identified.

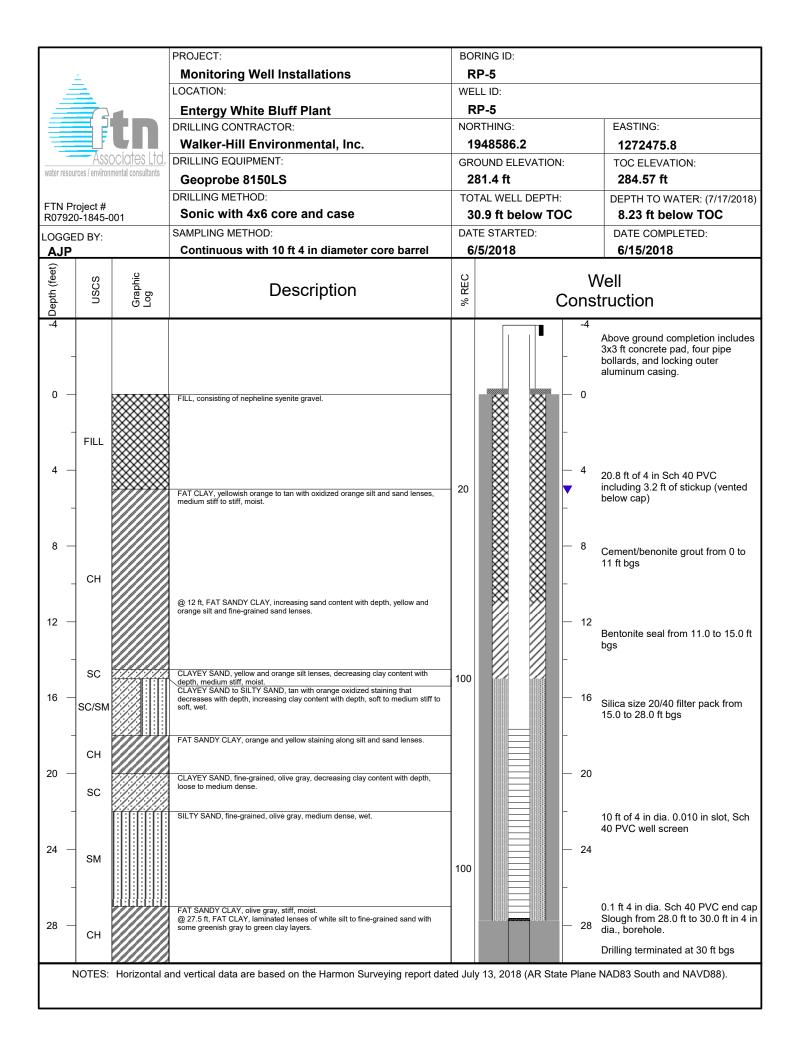
GeoView can make no warranties or representations of geological conditions that may be present beyond the depth of investigation or resolving capability of the geophysical equipment or in areas that were not accessible to the geophysical investigation.

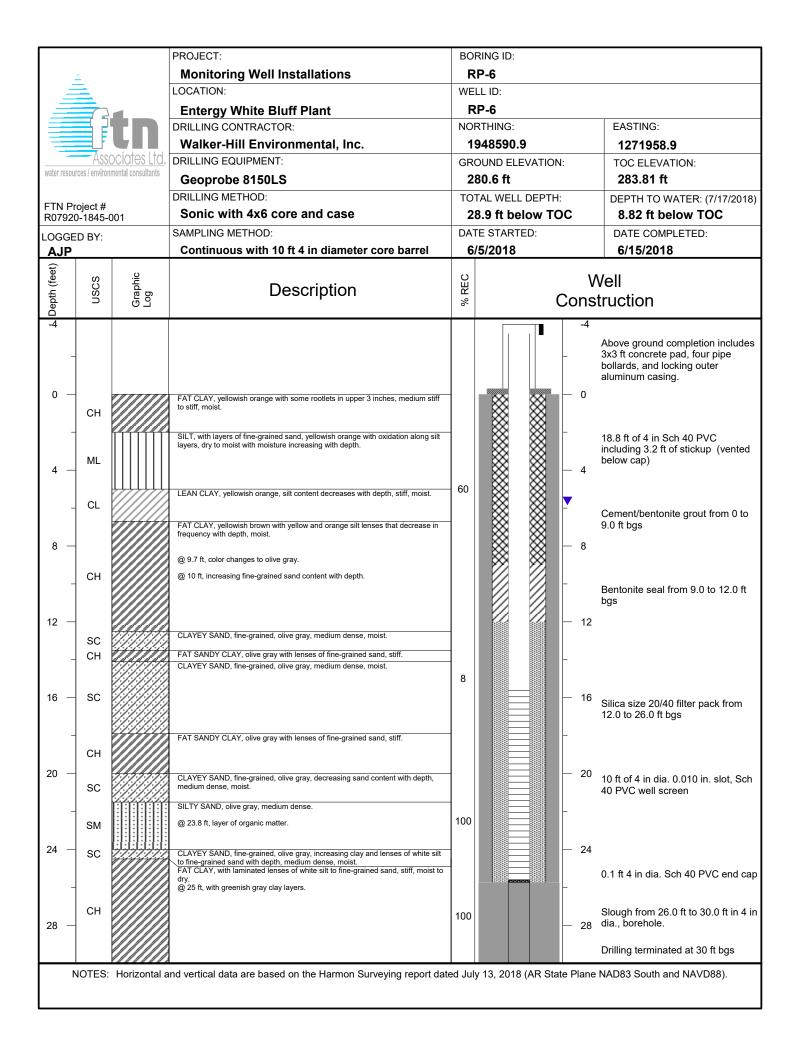
Appendix D Geotechnical Boring Locations

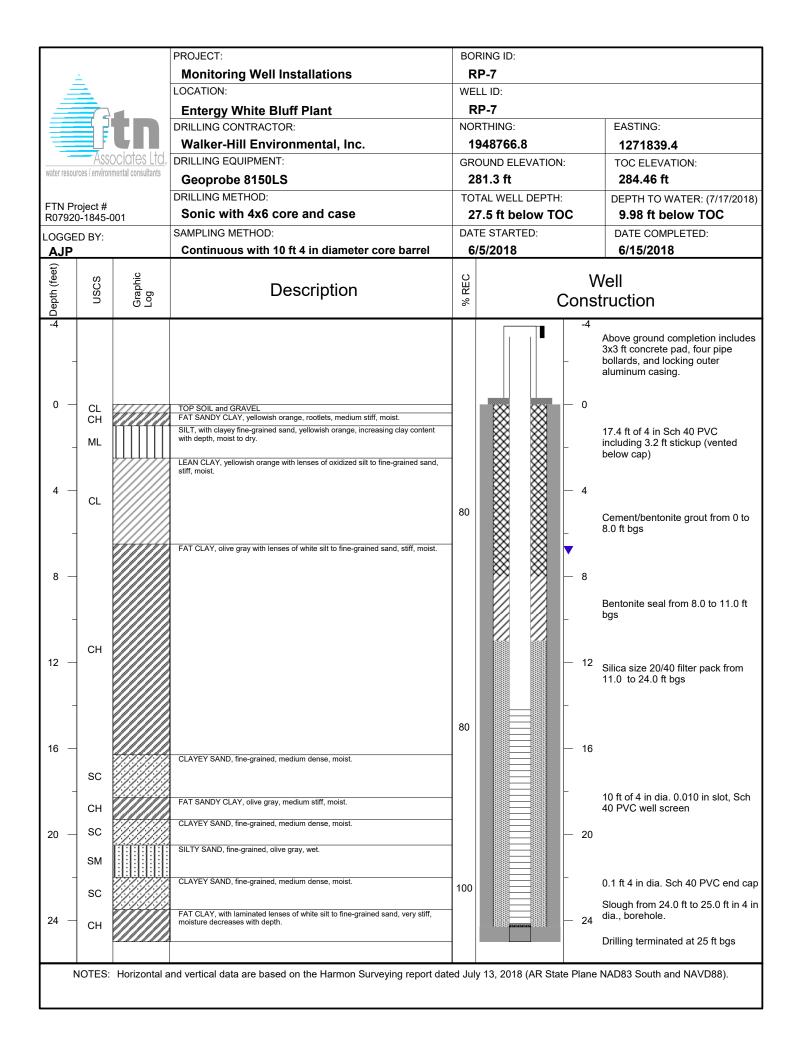




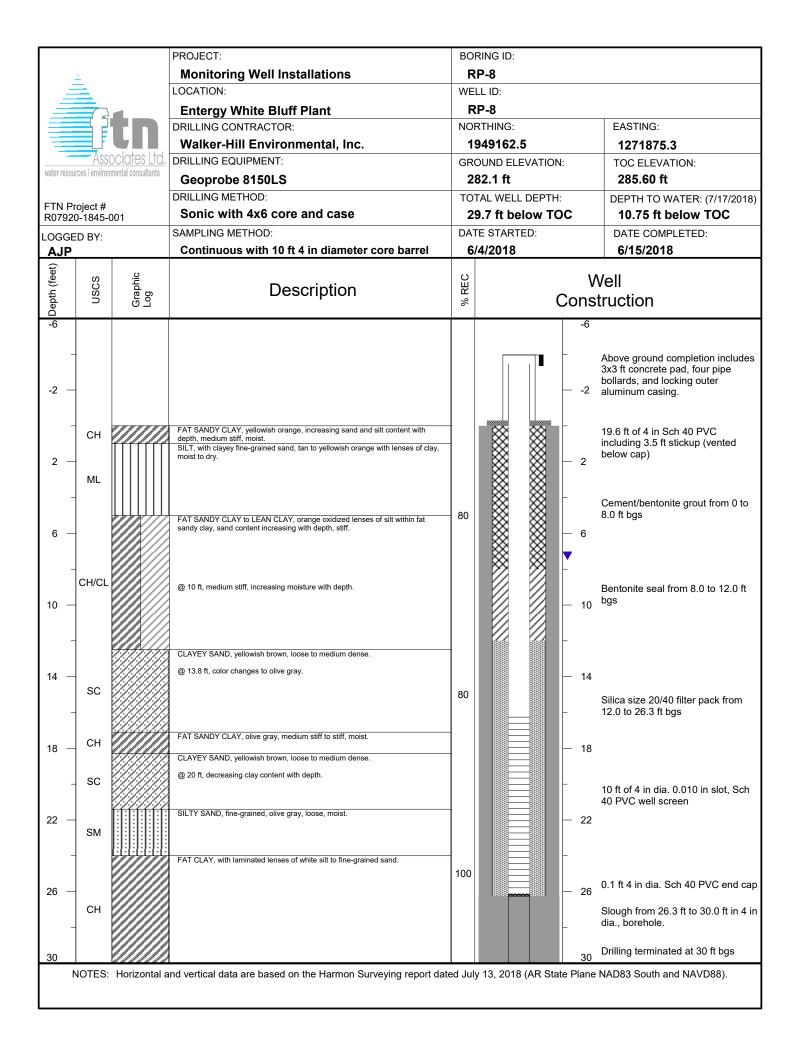

Figure 1. Site Map, Entergy White Bluff Recycle Ponds.

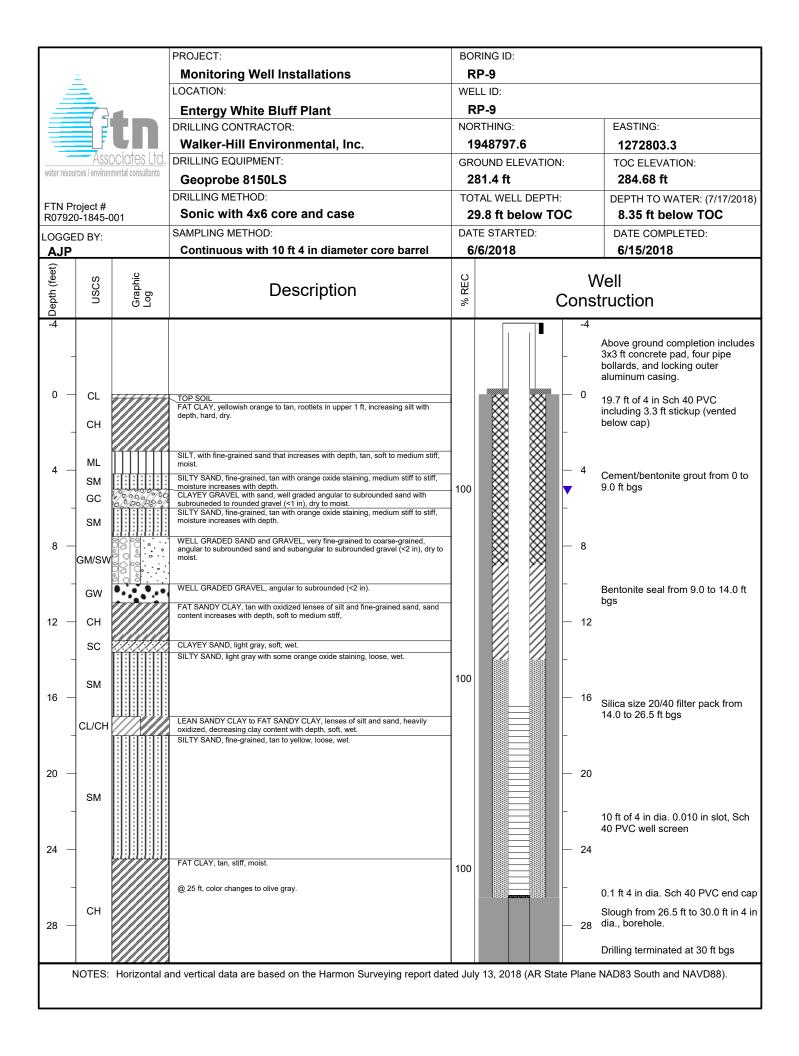

Appendix E Geotechnical Boring Logs

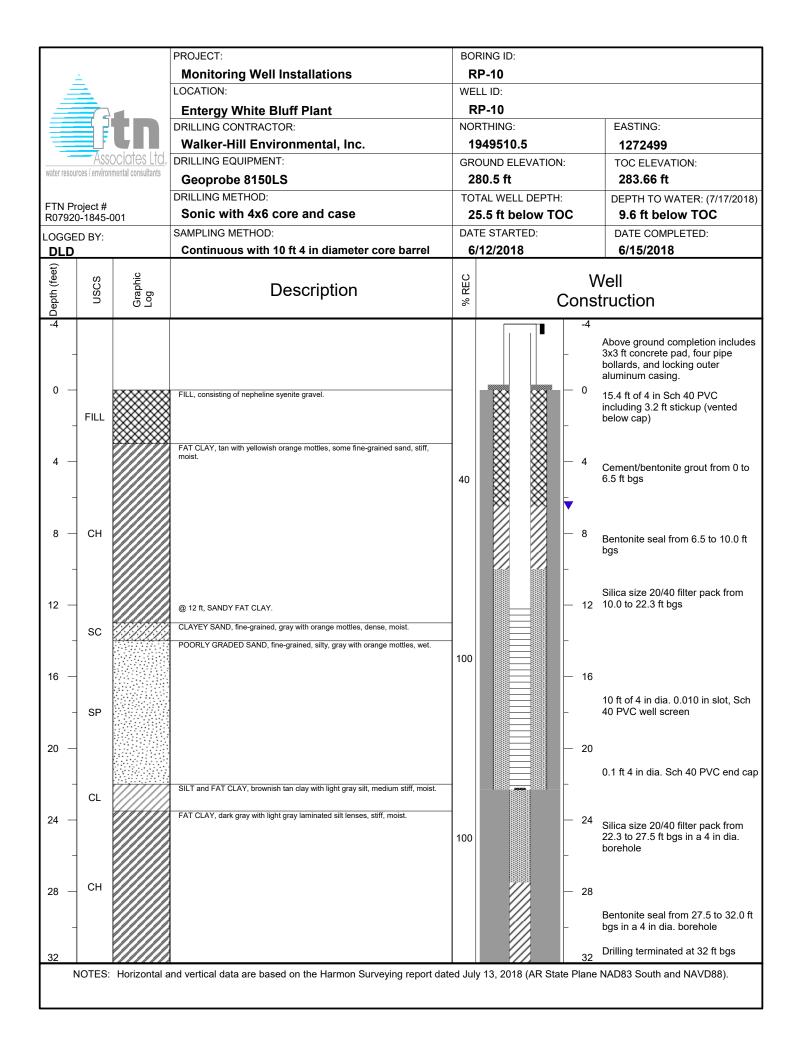


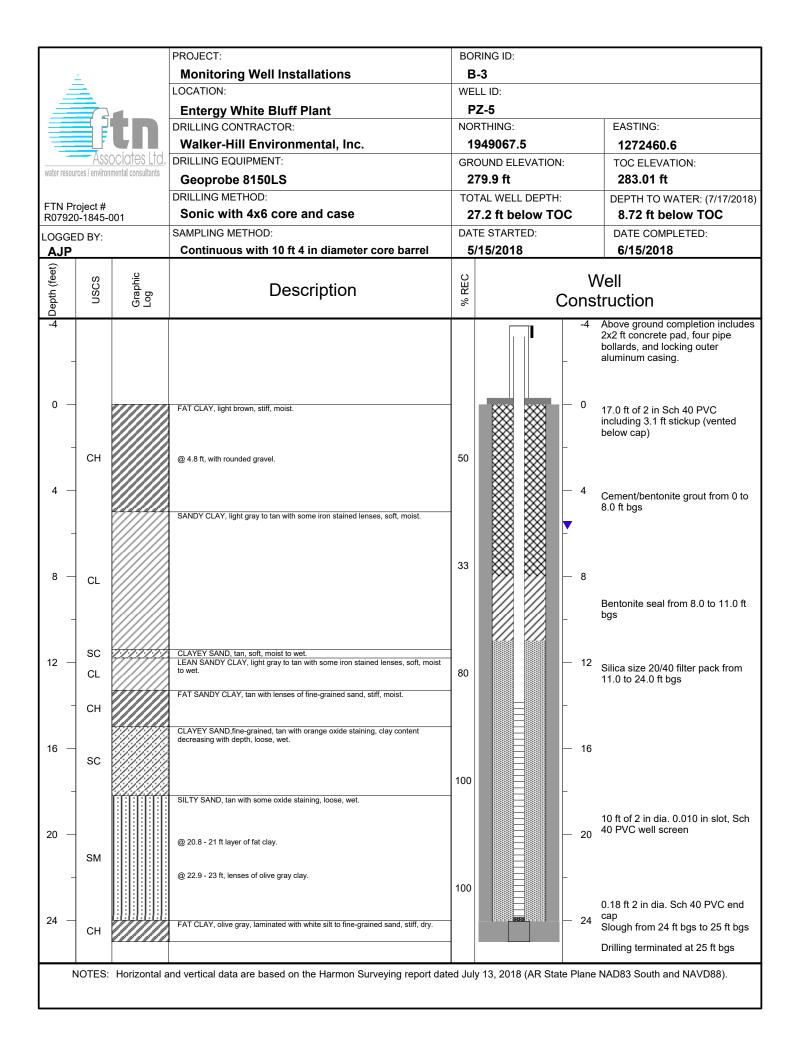




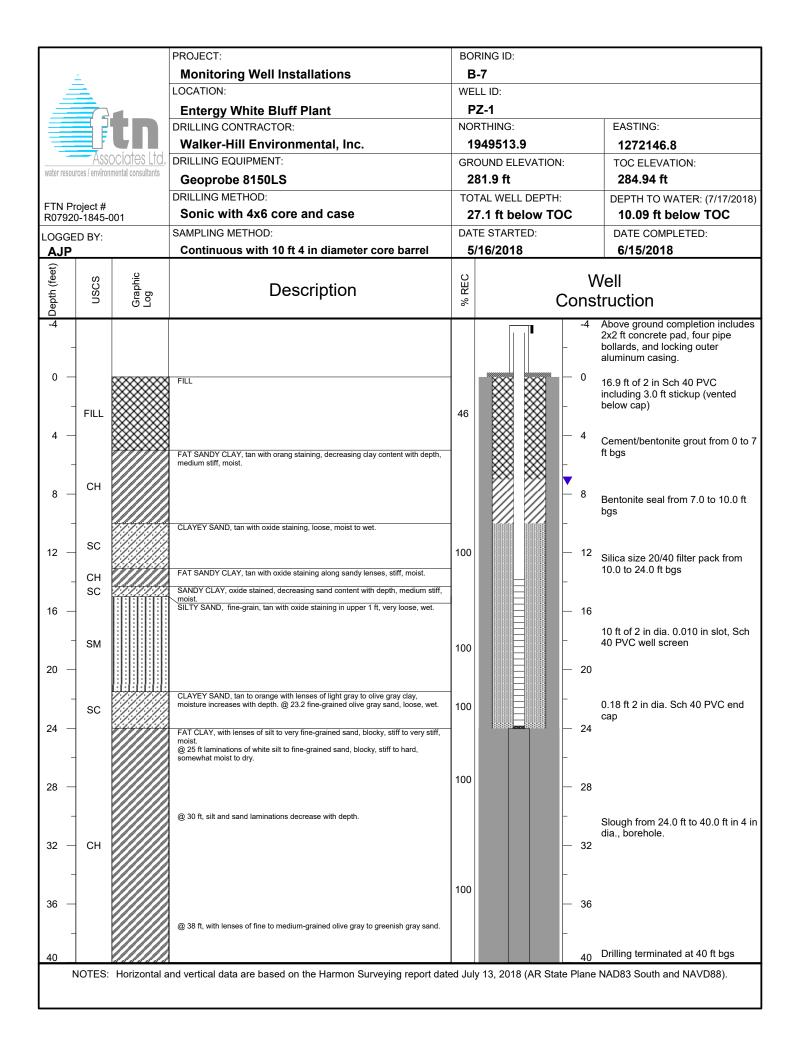








		hr	LOCAT	nitoring Well Installations	BORING ID: B-1 WELL ID: N/A	
water resourc	ASSC es / environm	CICITES nental consul	DRILLIN	NG CONTRACTOR: ker-Hill Environmental, Inc. NG EQUIPMENT:	NORTHING: 1949501.9 GROUND SURFACE ELE	EASTING: 1272354.9
				probe 8150LS	280.3 ft NAVD8	
FTN Pr	oject #		DRILLIN	NG METHOD:	TOTAL DEPTH:	DEPTH TO WATER:
R07920)-1845-0	001		ic with 4 in diameter core	10 ft bgs	N/A
LOGGE				ING METHOD: nuous with 10 ft 4 in diameter core barrel	DATE STARTED: 5/16/2018	DATE COMPLETED: 5/16/2018
					3/10/2010	5/10/2010
Depth (feet)	% REC	nscs	Graphic Log		scription	
0 - 1 —		FILL		FILL WELL GRADED GRAVEL with sand, medium to coa dense to loose, dry.	irse sand, fine to coarse-gra	ained angular to round gravel, medium
2 -	77	GW				
	66	CH		FAT SANDY CLAY, tan with orange oxide staining, I		pist.
10				Boring terminated at 10 ft bgs.		
NOTES				recorded using a Garmin eTrex30 and converted to AR bentonite to ground surface.	State Plane NAD83 South	


FTN Project # R07920-1845-001	PROJECT: Monitoring Well Installations LOCATION: Entergy White Bluff Plant DRILLING CONTRACTOR: Walker-Hill Environmental, Inc. DRILLING EQUIPMENT: Geoprobe 8150LS DRILLING METHOD: Sonic with 4 in diameter core SAMPLING METHOD: Continuous with 10 ft 4 in diameter core backson	BORING ID: B-2 WELL ID: N/A NORTHING: 1949485.1 GROUND SURFACE ELE 280.2 ft NAVD8 TOTAL DEPTH: 10 ft bgs DATE STARTED: arrel 5/16/2018	
o Depth (feet) % REC USCS	Graphic Log	Description	
1 - 1 - 2 - 2 - - 100 3 - 4 - 5 - 6 - 7 - 50 8 9 - 10 NOTES:	© 4.6 ft FAT CLAY with sand and some round @ 5 ft FAT SANDY CLAY, light gray with oran	led gravels, soft, moist.	

<u>_</u>			PROJE	CT:	BORING ID:	
				nitoring Well Installations	B-4	
	7 2.		LOCATI		WELL ID:	
	∃ f"	ГΓ	Ente	ergy White Bluff Plant	N/A	
			1.1.1		NORTHING:	EASTING:
water resources	s / environm	iental consul		ker-Hill Environmental, Inc.	1948619 GROUND SURFACE ELI	1272718.6
				probe 8150LS	280.8 ft NAVD8	
FTN Pro	viect #			NG METHOD:	TOTAL DEPTH:	DEPTH TO WATER:
R07920	-1845-(001	Son	ic with 4 in diameter core	10 ft bgs	N/A
LOGGED	BY:			ING METHOD:	DATE STARTED:	DATE COMPLETED:
				nuous with 10 ft 4 in diameter core barrel	5/17/2018	5/17/2018
Depth (feet)	% REC	nscs	Graphic Log		scription	
0		FILL		FILL		
				FAT CLAY with sand, yellowish orange with orange	to red oxide staining sand	content increasing with depth stiff moist
				@1.6-1.7 ft layer of white silt.		
				WILL IN TRAVELOF WILL SILL		
2 —						
_						
3 —						
4 —	88			@ 4 ft FAT SANDY CLAY, light gray to olive gray, fi	ne grained, sand content in	creases with depth, stiff, moist.
5 —				@ 5-5.3 ft small gravel.		
		СН				
6 —						
7 —						
'						
8 —						
9 —						
10				Boring terminated at 10 ft bgs.		
NOTES:	No	orthings	and eastings	recorded using a Garmin eTrex30 and converted to AR	State Plane NAD83 South	
				bentonite to ground surface.		
L						

			PROJEC	CT:	BORING ID:	
<u> </u>	-		Mon	itoring Well Installations	B-5	
_			LOCATI		WELL ID:	
	돌권		Ente	ergy White Bluff Plant	N/A	
				IG CONTRACTOR:	NORTHING:	EASTING:
	Assc	<u>iciates</u>	Ltd. Wall	ker-Hill Environmental, Inc.	1948639.2	1271950.5
ter resource:	es / environm	nental consul	tants DRILLIN	IG EQUIPMENT:	GROUND SURFACE ELE	EV.:
			Geo	probe 8150LS	281.0 ft NAVD8	38
TN Pro	oject#			IG METHOD:	TOTAL DEPTH:	DEPTH TO WATER:
R07920-	-1845-	001	Son	ic with 4 in diameter core	12 ft bgs	N/A
OGGED	D BY:			NG METHOD:	DATE STARTED:	DATE COMPLETED:
				uous with 10 ft 4 in diameter core barrel	5/17/2018	5/17/2018
Depth (feet)	% REC	nscs	Graphic Log	Des	cription	
0			××××××	FILL		
-						
1 —						
' 1						
-	66	FILL				
2 —						
-						
-						
3 –						
,				LEAN CLAY with sand, yellowish orange with yellow	and orange staining, stiff, o	dry.
-						
4 —						
4						
-						
5 —						
_						
3 —		CL				
,						
-	100					
7 _						
			///////			
-			///////			
3 –			//////			
1			(//////////////////////////////////////			
-				FAT CLAV with part stiff maint		
, _				FAT CLAY with sand, stiff, moist.		
7		СН				
-						
) –				LEAN CLAY, light brown, silty, some fine-grained sat	nd, trace fine-grained grave	el, moist.
-			(//////////////////////////////////////			
1 _		CL	//////			
'						
-			(//////////////////////////////////////			
2				Boring terminated at 12 ft bgs.		
OTES:	: No	orthings	and eastings r	ecorded using a Garmin eTrex30 and converted to AR	State Plane NAD83 South	
				bentonite to ground surface.		

			PROJE	CT:	BORING ID:	
_	_			nitoring Well Installations	B-6	
			LOCATI		WELL ID:	
	I S	le pe	Ente	ergy White Bluff Plant	N/A	
				NG CONTRACTOR:	NORTHING:	EASTING:
	Asso		<u></u>	ker-Hill Environmental, Inc.	1949105.8	1271974.9
water resource	es / environm	nental consult	hawka	NG EQUIPMENT:	GROUND SURFACE ELEV.	
			Geo	probe 8150LS	281.9 ft NAVD88	
					TOTAL DEPTH:	DEPTH TO WATER:
FTN Pr R0792	oject # 0-1845-(001		ic with 4 in diameter core	30 ft bgs	N/A
LOGGE			SAMPL	ING METHOD:	DATE STARTED:	DATE COMPLETED:
AJP			Contir	nuous with 10 ft 4 in diameter core barrel	6/14/2018	6/14/2018
eet)	С		<u>ic</u>			
Depth (feet)	REC	uscs	Graphic Log	Des	cription	
Depi	%	Š	20			
0_			******	FILL		
1 –		FILL				
2 -			*****	LEAN CLAY with sand, tan with lenses of sand and g	reenish grav silt soft wet	
3 -					,	
4 —			///////////////////////////////////////			
-	05					
5 —	25					
6 _		CL				
7 —						
8 -						
9 —						
-						
10 —				SILTY SAND, tan with lenses of orange to yellow oxi	dized cond	
11 -				SIL IT SAND, IAIT WITH TENSES OF OTALIGE TO YELLOW OXI	uizeu saliu.	
12 —						
13 -		SM				
14 —		SIVI				
	100			@ 15 ft color changes to tan and groonish group incre	asing clay content with death	
15 —	100			@ 15 ft color changes to tan and greenish gray, incre	aong day content with depth.	
16 —				FAT SANDY CLAY, brown to tan with orange oxidation	on along sandy lenses, fine-gr	ained sand, medium stiff, moist.
17 —		сч				
18 -		СН		@ 18 ft color changes to olive gray.		
19 -						
20 -		SC		CLAYEY SAND, olive gray, decreasing clay with dep		
				SILTY SAND, fine-grain, olive gray, medium stiff, sat	urated.	
21 –						
22 –						
23 —		SM				
24 -				@ 24-25 ft then lenses of dark gray clay.		
25 —	100					
-						
26 –				FAT CLAY with sand, olive gray to greenish gray cla	with laminated lenses of whit	e silt to fine-grained sand, stiff.
27 –						
28 —		СН				
29 -						
30 -				Borehole terminated at 30 ft bgs.		
NOTES	: No	orthings	and eastings i	recorded using a Garmin eTrex30 and converted to AR	State Plane NAD83 South	
	Во	rehole l	packfilled with	bentonite to ground surface.		
L						

Appendix F Geotechnical Laboratory Data

FTN/ENTERGY WHITE BLUFF/AR SUMMARY OF SOIL DATA

			Soil	Natural		Atte	rberg			Grain Size Distribution		Compa	action					Additional
Sample	Sample	Sample	Classi-	Moisture			mits		% Finer	% Finer	% Finer	Maximum	Optimum	1	Unit W	eight	Permeability	Tests
Identification	Туре	Depth	fication	%					No. 4	No. 200	.005	Dry Density	Moisture	Gs	Moisture	Dry	(cm/sec)	Conducted
					L.L.	P.L.	P.I.	L.I.	Sieve	Sieve	mm	(lb/cuft)	%		%	(lb/cuft)		(See Notes)
B-1	UD	3.0-5.0'	СН	29.0	63	17	46	0.27	100.0	88.9	59.5	-	-	-	29.0	92.8	1.6E-08	
B-1	UD	8.0-10.0'	CL	25.0	44	15	29	0.35	100.0	53.8	40.4	-	-	2.57	25.0	93.9	-	T-CU w/pp
B-3	UD	5.0-7.0'	CL	24.1	37	17	20	0.37	100.0	73.3	47.7	-	-	-	24.1	98.7	2.2E-08	-
B-3	UD	10.0-12.0'	SC	21.6	32	20	12	0.18	100.0	41.9	31.0	-	-	2.58	21.6	100.9	-	T-CU w/pp
B-3	UD	15.0-17.0'	SC	19.0	34	15	19	0.23	100.0	28.2	22.0	-	-	-	19.0	110.5	6.3E-06	-
B-3	UD	20.0-22.0'	SM	31.5	NP	NP	NP	NP	100.0	18.1	9.5	-	-	-	31.5	79.2	-	DS
B-4	UD	8.0-10.0'	СН	33.5	59	30	29	0.13	100.0	94.7	51.5	-	-	-	33.5	86.1	4.6E-08	-
B-5	UD	3.0-5.0'	CL	26.6	42	21	21	0.28	95.4	73.1	28.0	-	-	2.69	26.6	91.7	-	T-CU w/pp
B-5	UD	10.0-12.0'	CL	17.1	35	16	19	0.07	97.6	90.3	46.0	-	-	-	17.1	113.8	1.5E-08	-
B-7	UD	5.0-7.0'	SM	20.5	34	26	8	-0.73	90.4	40.0	21.1			2.66	20.5	104.7	-	T-CU w/pp
B-7	UD	7.0-9.0'	CL	21.8	34	20	14	0.13	100.0	52.7	34.5	-	-	-	21.8	98. 1	6.7E-07	-
B-7	UD	15.0-17.0'	SC	21.9	28	19	9	0.36	100.0	36.5	24.0	-	-	2.62	21.9	102.2	-	T-CU w/pp
RP-4	UD	20.0-22.0'	CL	22.2	44	15	29	0.24	93.0	66.9	39.5	-	-	2.67	22.2	101.8	-	T-CU w/pp
RP-4	UD	30.0-32.0'	СН	37.1	54	21	33	0.47	100.0	96.3	57.4		-	-	37.1	80.2	3.5E-07	-
RP-9	UD	30.0-32.0'	СН	30.2	54	24	30	0.19	100.0	98.8	44.0	-	-	2.67	30.2	88.9	-	С

ABBREVIATIONS: LIQUID LIMIT (LL) PLASTIC LIMIT (PL) PLASTICITY INDEX (P

PLASTICITY INDEX (PI) LIQUIDITY INDEX (LI) SPECIFIC GRAVITY (Gs) MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST

- **DS = DIRECT SHEAR TEST**
- **O** = **ORGANIC CONTENT**
- P = pH

18103173 7920-1845-001

FTN/ENTERGY WHITE BLUFF/AR SUMMARY OF SOIL DATA

Sample	Sample	Sample	Soil Classi-	Natural Moisture			rberg mits		% Finer	Grain Size Distributior % Finer		Compa Maximum	ction Optimum		Unit W	/cight	Permeability	Additional Tests
Identification	Туре	Depth	fication	%	L.L.	P.L.	P.I.	L.I.	No. 4 Sieve	No. 200 Sieve	.005 mm	Dry Density (lb/cuft)	Moisture %	Gs	Moisture %	Dry (lb/cuft)	(cm/sec)	Conducted (See Notes)
B-2	Bag	5.0-7.5'	СН	24.7	52	21	31	0.13	100.0	86.0	55.0				1.547.5			
B-3 (P2-5)	Bag	13.0-14.0'	CL	23.3	40	19	21	0.18	100.0	54.1	41.0				1.12.1	1.1		10.01
B-3 (P2-5)	Bag	23.0-24.0'	SM	30.0	NP	NP	NP	NP	100.0	28.1	16.5	1.1						
B-5	Bag	4.0-6.0'	ML	27.4	46	30	16	-0.17	100.0	70.7	33.0	0.101				1.1		
B-5	Bag	9.0-10.0'	ML	26.3	49	31	18	-0.27	100.0	89.1	45.0	-	2		14.0			
B-6	Bag	11.0-12.0'	SM	12.4	NP	NP	NP	NP	100.0	27.6	20.0		1.00					
B-6	Bag	16.0-17.0'	CL	21.3	36	23	13	-0.11	100.0	54.2	38.0					-		4
B-6	Bag	22.0-24.0'	SM	10.9	NP	NP	NP	NP	100.0	28.6	18.9							
B-7	Bag	18.0-20.0'	SM	22.8	NP	NP	NP	NP	100.0	21.4	15.0							
RP-3	Bag	18.0-20.0'	СН	27.1	56	27	29	0.02	100.0	95.6	44.0				1.12			
RP-3	Bag	29.0-30.0'	SM	22.4	NP	NP	NP	NP	100.0	26.3	20.0	1				4	A	
RP-4	Bag	8.0-9.0'	CL	13.4	30	16	14	-0.17	100.0	50.8	29.0	1.1		•	1.2	4		
RP-4	Bag	25.0-26.0'	ML	37.7	48	30	18	0.40	100.0	98.7	43.0					1.201		
RP-5	Bag	15.0-18.0'	SC-SM	24.4	28	22	6	0.51	100.0	34.0	25.9	1.1		1.1	10.02		100 <u>1</u>	-
RP-7	Bag	16.6-17.4'	SC	22.3	36	19	17	0.20	100.0	46.7	34.0	1.11	1					-

ABBREVIATIONS: LIQUID LIMIT (LL) PLASTIC LIMIT (PL) PLASTICITY INDEX (PI) LIQUIDITY INDEX (LI) SPECIFIC GRAVITY (Gs) MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST

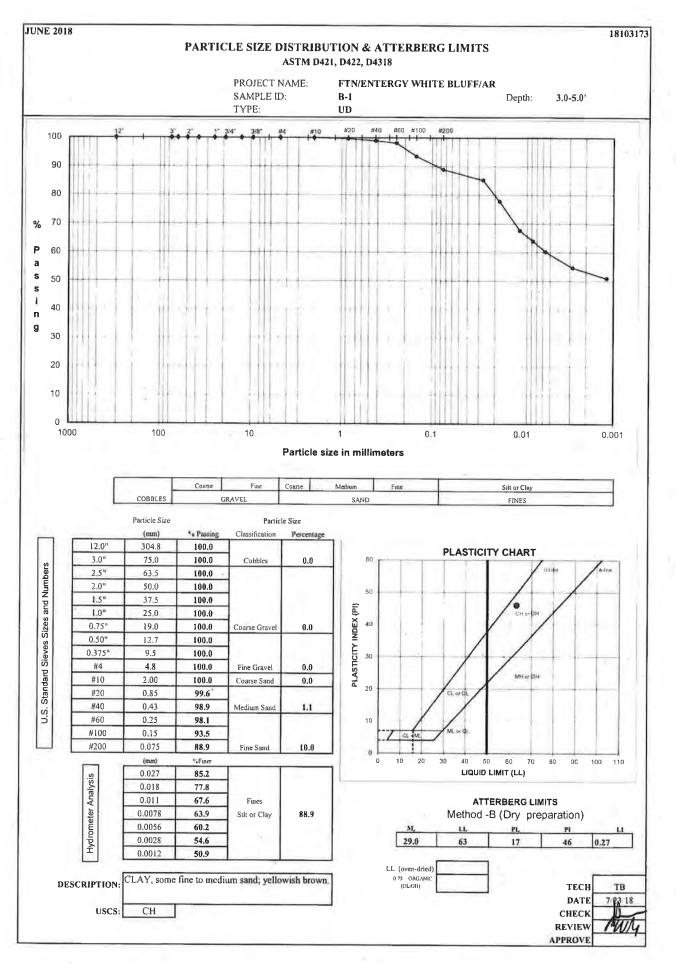
DS = DIRECT SHEAR TEST

O = ORGANIC CONTENT

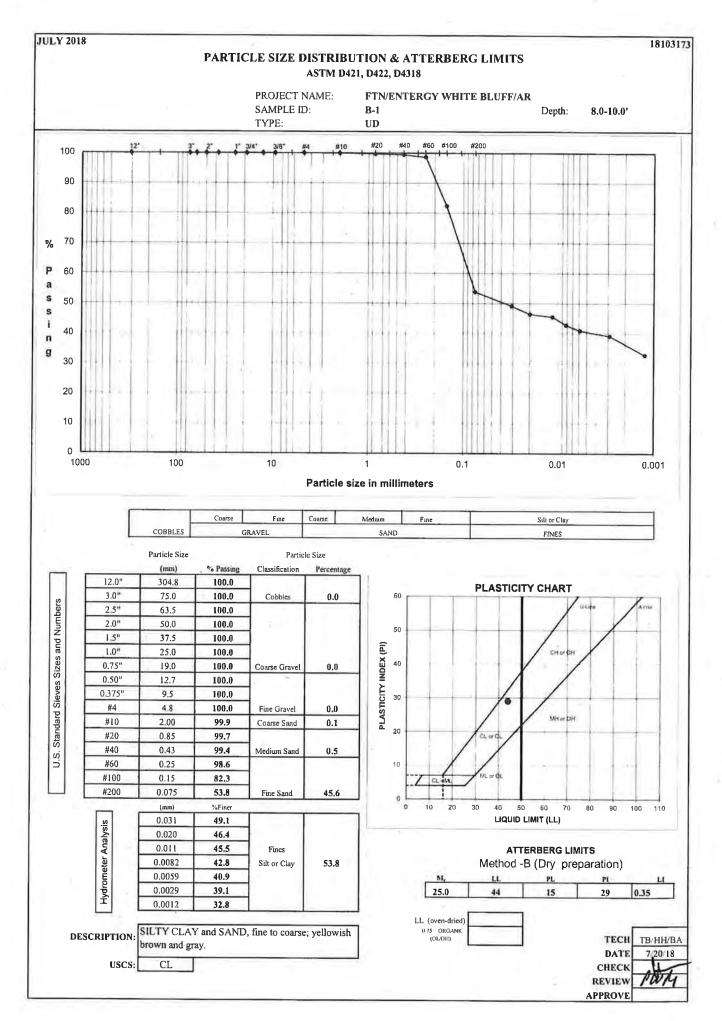
P = pH

18103173 7920-1845-001

FTN/ENTERGY WHITE BLUFF/AR SUMMARY OF SOIL DATA

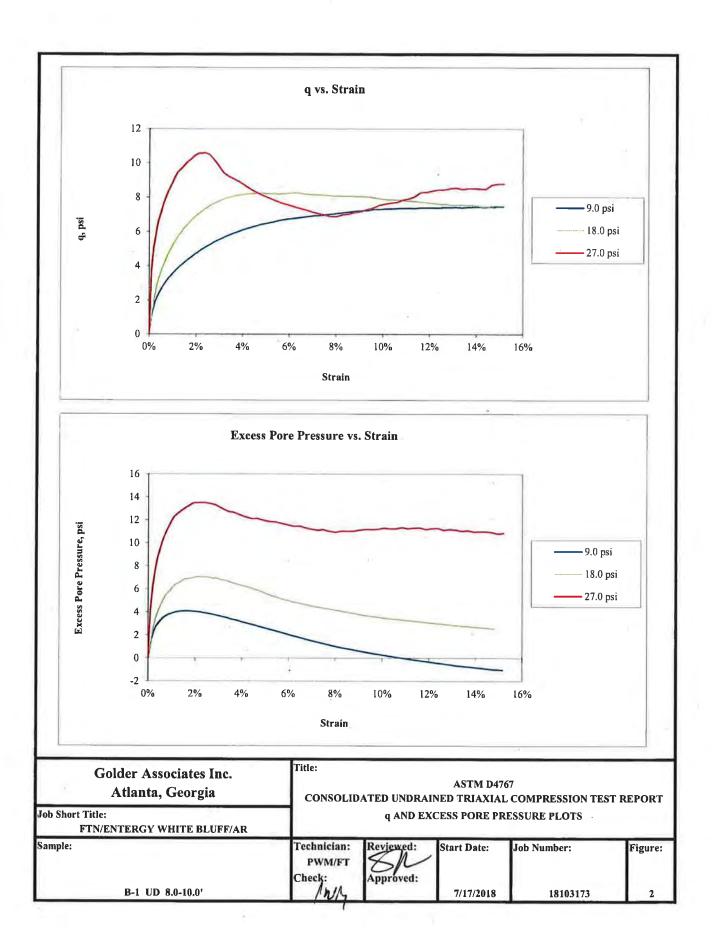

Sample Identification	Sample Type	Sample Depth	Soil Classi- fication	Natural Moisture %			rberg mits		% Finer		n % Finer	Compa Maximum Day Daraity	Optimum		Unit W		Permeability	Additional Tests
Identification	Туре	Берги	neation	70	L.L.	P.L.	P.I.	L.I.	No. 4 Sieve	No. 200 Sieve	.005 mm	Dry Density (lb/cuft)	Moisture %	Gs	Moisture %	Dry (lb/cuft)	(cm/sec)	Conducted (See Notes)
RP-9	Bag	9.0-10.0'	SC-SM	4.2	20	15	5	-2.35	67.7	16.4	9.5	-		-		2	÷	
RP-9	Bag	26.0-27.0'	СН	31.3	50	20	30	0.36	100.0	98.1	54.0			•		1		i den
					-	1	-	-										
															LAC 1			
					-			-						_				
															1.00			1
				1			-											
					_				-									
													1.e		1			
										C								

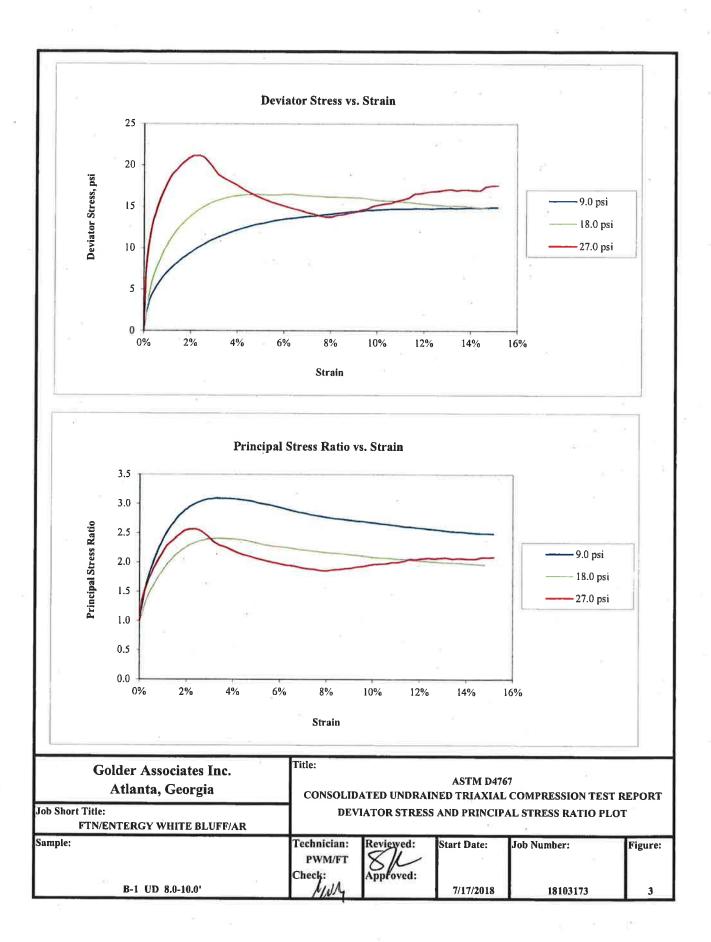
ABBREVIATIONS: LIQUID LIMIT (LL) PLASTIC LIMIT (PL) PLASTICITY INDEX (PI) LIQUIDITY INDEX (LI) SPECIFIC GRAVITY (Gs) MOISTURE (Mc)

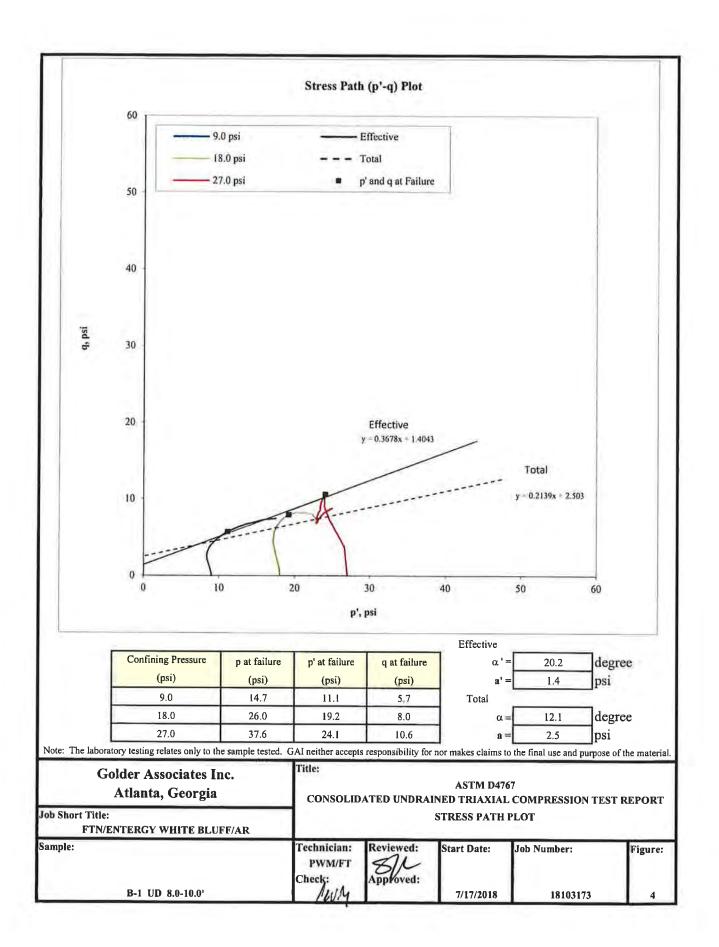

NOTES: T = TRIAXIAL TEST

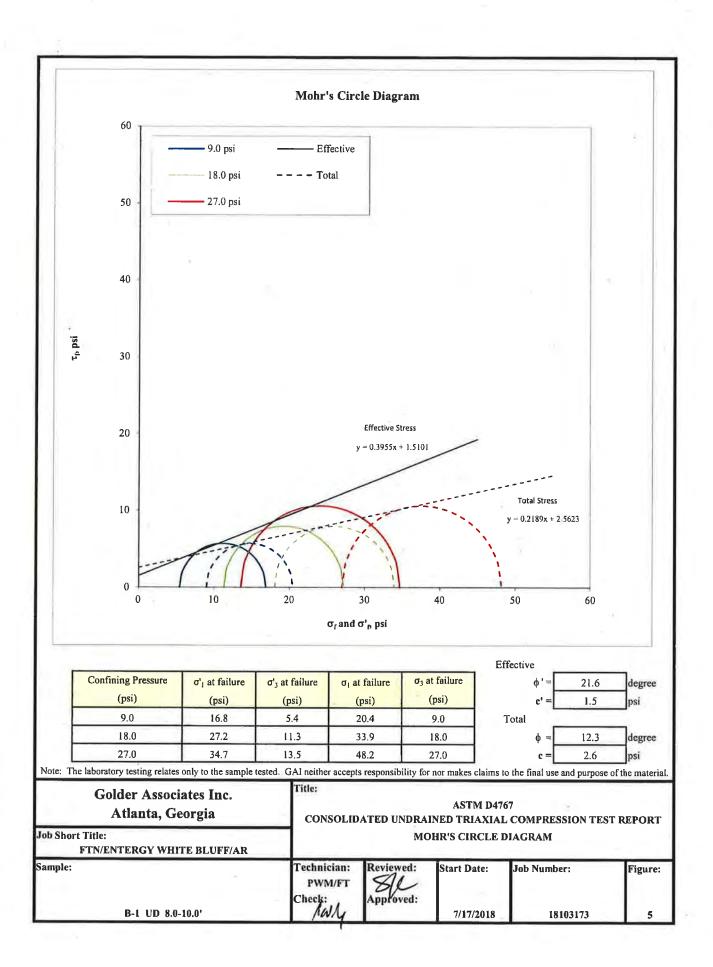
U = UNCONFINED COMPRESSION TEST

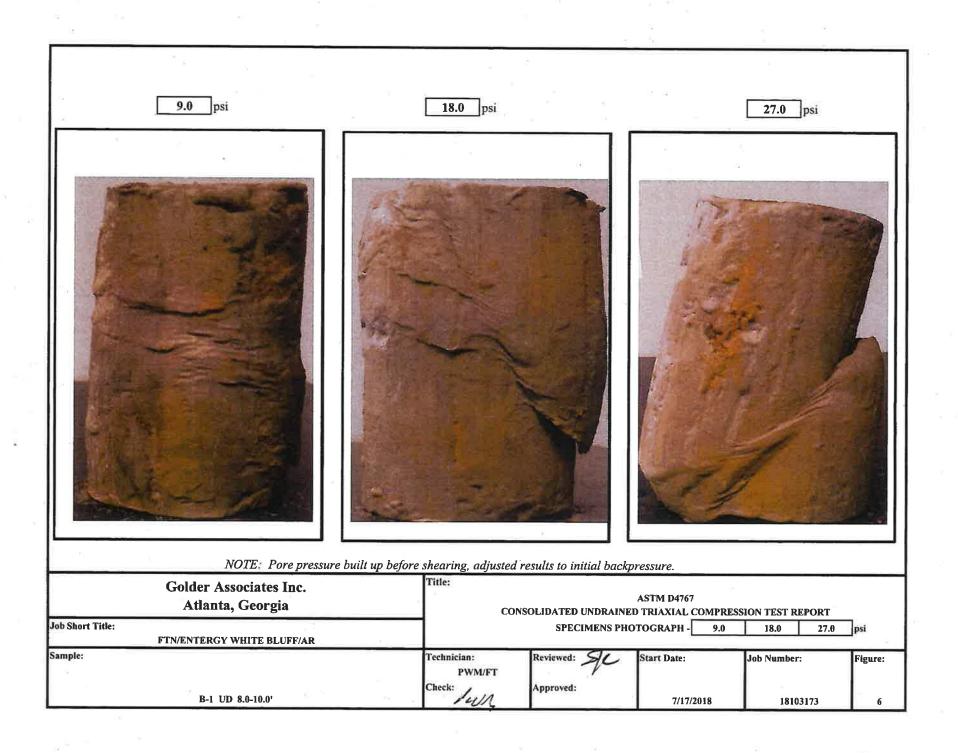
- C = CONSOLIDATION TEST
- DS = DIRECT SHEAR TEST
- **O** = ORGANIC CONTENT
- P = pH

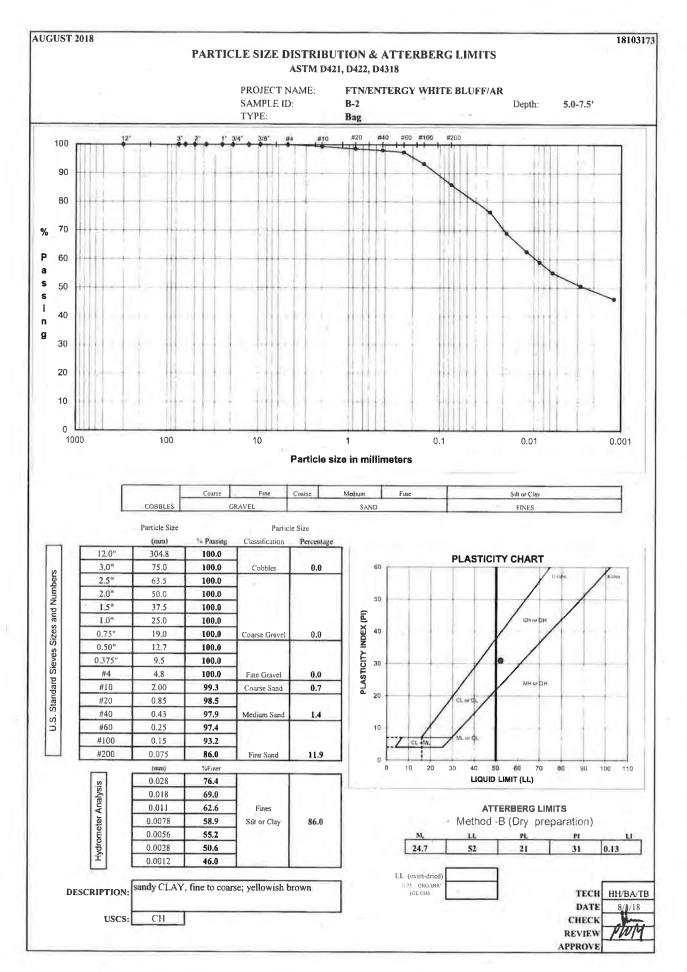

						FLEXIB	LE WALL ASTM D		BILITY		-			
					N	METHOD	, CONSTA		OF FLOW					
PROJECT TITLE	FTN/FNT	ERGY WHIT	E DI LICE/A	D	1	Board #	12	1	OMMENTS	-				-
PROJECT NUMBER	1810317		EBCOFFA	.K	1	Flow Pump			. OWNWIE IN I S					
SAMPLE ID	B-1	,	3.0-	5.0'	-	Pump Speed		1						
AMPLE TYPE	UD				1	Technician	-	1)				
						_								
Sample Data, Initial	-	1			Sample Da			1						
Height, inches	3.114	B-Value, f	0.97		Height, inc		3.142		-			Sample		Sample
Diameter, inches	2.836	Cell Pres.	88.0		Diameter, i	nches	2.858		WATER C		1	Initial		Final
Area, cm² Volume, cm³	40.75	Bot. Pres.	80.0 80.0		Area, cm ²	_3	41.39		Wt Soil & 1		g	618.40		715.61
Volume, cm Mass, g	618.40	Top Pres. Tot. B.P.	80.0		Volume, cn	n	330.31		Wt Soil & 1	l'are, f	g	479.25		562.37
Moisture Content, %	29.04	Head, max.	137.16		Mass, g Moisture C	amtant 9/	632.58 31.99		Wt Tare		g	0.00		83.41
Dry Density, pcf	92.77	Head, min.	137.16		Dry Densit		<u>31.99</u> 90.54		Wt Moistur		g	139.15		153.24
opec. Gravity (assumed)		Max. Grad.	17.19		Volume Sol		90.54		Wt Dry Soi Water Con		g %	479.25 29.04%		478.96
olume Solids, cm ³	176.19	Min. Grad.	17.19		Volume Vo	ide om ³	154.12	1	tratter com	. ent	/ 0	23.0470		1.3376
olume Voids, cm ³	146.15	Inna Orau.	17.15		Void Ratio	ius, cin	0.87							
oid Ratio	-	-					0.07							
	0.8.1	1			Saturation	%	99 5%	A	DESCRIPT	TON				
	0.83 95.2%				Saturation,	%	99.5%		DESCRIPT CLAY, som		edium sand;	yellowish brown.		-
Saturation, %		1	-		Saturation,	%	99.5%				edium sand;	yellowish brown.		
		p Rate	1.18E-05	cm ³ /sec	Saturation,	% USCS	99.5% CH				edium sand;	yellowish brown.		
	95.2%	p Rate	1.18E-05	cm ³ /sec	Saturation,			1			edium sand;	yellowish brown.		
	95.2%		1.18E-05 E FUNCTIO					dP			edium sand;	yellowish brown.		
	95.2%							dP dt,acc			Gradient	yellowish brown. Permeability		
aturation, %	95.2% Flow Pum DAY	TIM	E FUNCTIO	NS, SECO	NDS	USCS	Сн		CLAY, som	ne fine to m				
aturation, %	95.2% Flow Pum DAY 43304	TIMI HOUR 9	E FUNCTIO	NS, SECO TEMP	NDS dt	USCS dt,acc	CH	dt,acc	CLAY, som	ne fine to m		Permeability		
aturation, % DATE 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304	TIMI HOUR 9 9	E FUNCTIO MIN 0 5	DNS, SECO TEMP (°C) 20.5 20.5	NDS dt (min) 0 5	USCS dt,acc (min) 0 5	CH dt (sec) 0 300	dt,acc (sec) 0 300	CLAY, som Reading (psi) 1.95 1.95	Head (cm) 137.16 137.16	Gradient 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08		
aturation, % DATE 07/23/18 07/23/18 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304 43304	TIMI HOUR 9 9 9	E FUNCTIO MIN 0 5 10	DNS, SECO TEMP (°C) 20.5 20.5 20.5	NDS dt (min) 0 5 5 5	USCS dt,acc (min) 0 5 10	CH dt (sec) 0 300 300	dt,acc (sec) 0 300 600	CLAY, som Reading (psi) 1.95 1.95 1.95	Head (cm) 137.16 137.16 137.16	Gradient 17.19 17.19 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08 1.6E-08 1.6E-08		
aturation, % DATE 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304 43304	TIM HOUR 9 9 9 9 9	E FUNCTIO MIN 0 5 10 15	ONS, SECO TEMP (°C) 20.5 20.5 20.5 20.5 20.5	NDS dt (min) 0 5 5 5 5	USCS dt,acc (min) 0 5 10 15	CH dt (sec) 0 300 300 300 300	dt,acc (sec) 0 300 600 900	CLAY, som Reading (psi) 1.95 1.95 1.95 1.95 1.95	Head (cm) 137.16 137.16 137.16 137.16 137.16	Gradient 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08	*	
aturation, % DATE 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304 43304 43304 43304	TIM HOUR 9 9 9 9 9 9 9	E FUNCTIO MIN 0 5 10 15 20	DNS, SECO TEMP (°C) 20.5 20.5 20.5 20.5 20.5 20.5	NDS dt (min) 0 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20	CH dt (sec) 0 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	CLAY, som Reading (psi) 1.95 1.95 1.95 1.95 1.95 1.95	Head (cm) 137.16 137.16 137.16 137.16 137.16 137.16	Gradient 17.19 17.19 17.19 17.19 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08	*	
aturation, % DATE 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304 43304 43304 43304 43304	TIMI HOUR 9 9 9 9 9 9 9 9 9	E FUNCTIO MIN 0 5 10 15 20 25	DNS, SECO TEMP (°C) 20.5 20.5 20.5 20.5 20.5 20.5 20.5	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CH dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAY, som Reading (psi) 1.95 1.95 1.95 1.95 1.95 1.95 1.95	Head (cm) 137.16 137.16 137.16 137.16 137.16 137.16 137.16	Gradient 17.19 17.19 17.19 17.19 17.19 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08		
aturation, % DATE 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304 43304 43304 43304 43304 43304 43304	TIMI HOUR 9 9 9 9 9 9 9 9 9 9	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	NDS dt (min) 0 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20	CH dt (sec) 0 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	CLAY, som Reading (psi) 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	Head (cm) 137.16 137.16 137.16 137.16 137.16 137.16 137.16 137.16	Gradient 17.19 17.19 17.19 17.19 17.19 17.19 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08	* *	
aturation, % DATE 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304 43304 43304 43304 43304 43304 43304	TIMI HOUR 9 9 9 9 9 9 9 9 9	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CH dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAY, som Reading (psi) 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	Head (cm) 137.16 137.16 137.16 137.16 137.16 137.16 137.16 137.16	Gradient 17.19 17.19 17.19 17.19 17.19 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08	*	
aturation, % DATE 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304 43304 43304 43304 43304 43304 43304	TIMI HOUR 9 9 9 9 9 9 9 9 9 9	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CH dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAY, som Reading (psi) 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	Head (cm) 137.16 137.16 137.16 137.16 137.16 137.16 137.16 137.16	Gradient 17.19 17.19 17.19 17.19 17.19 17.19 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08	* * * m/sec **	
aturation, % DATE 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304 43304 43304 43304 43304 43304 43304	TIMI HOUR 9 9 9 9 9 9 9 9 9 9	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CH dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAY, som Reading (psi) 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	Head (cm) 137.16 137.16 137.16 137.16 137.16 137.16 137.16 137.16	Gradient 17.19 17.19 17.19 17.19 17.19 17.19 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08	* * * m/sec **	DATI
aturation, % DATE 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18 07/23/18	95.2% Flow Pum DAY 43304 43304 43304 43304 43304 43304 43304 43304	TIMI HOUR 9 9 9 9 9 9 9 9 9 9	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CH dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAY, som Reading (psi) 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95	Head (cm) 137.16 137.16 137.16 137.16 137.16 137.16 137.16 137.16	Gradient 17.19 17.19 17.19 17.19 17.19 17.19 17.19 17.19	Permeability (cm/sec) 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08 1.6E-08	* * * m/sec **	

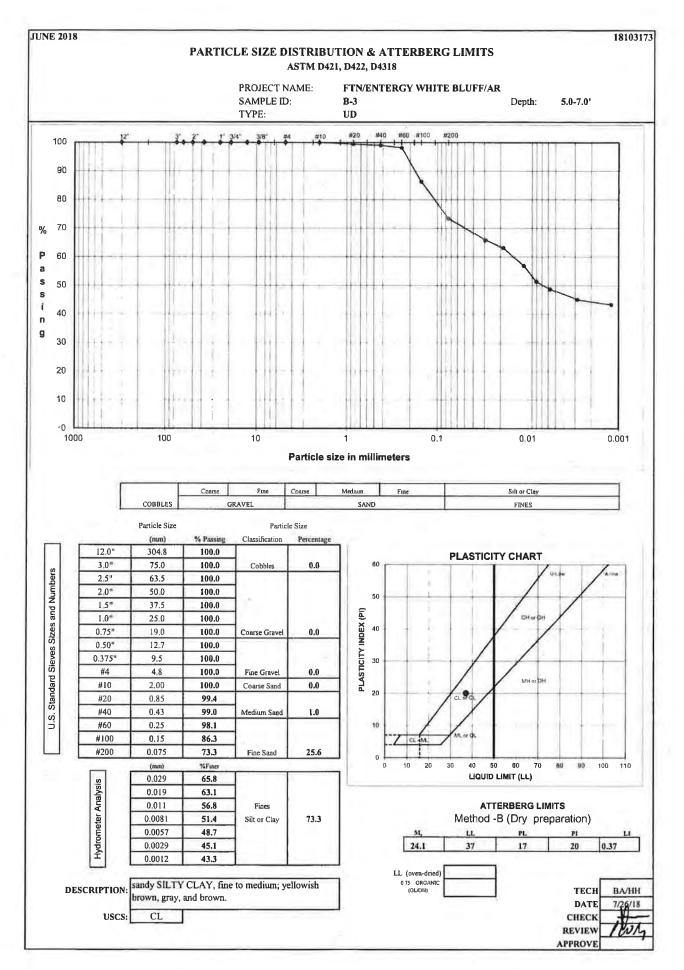


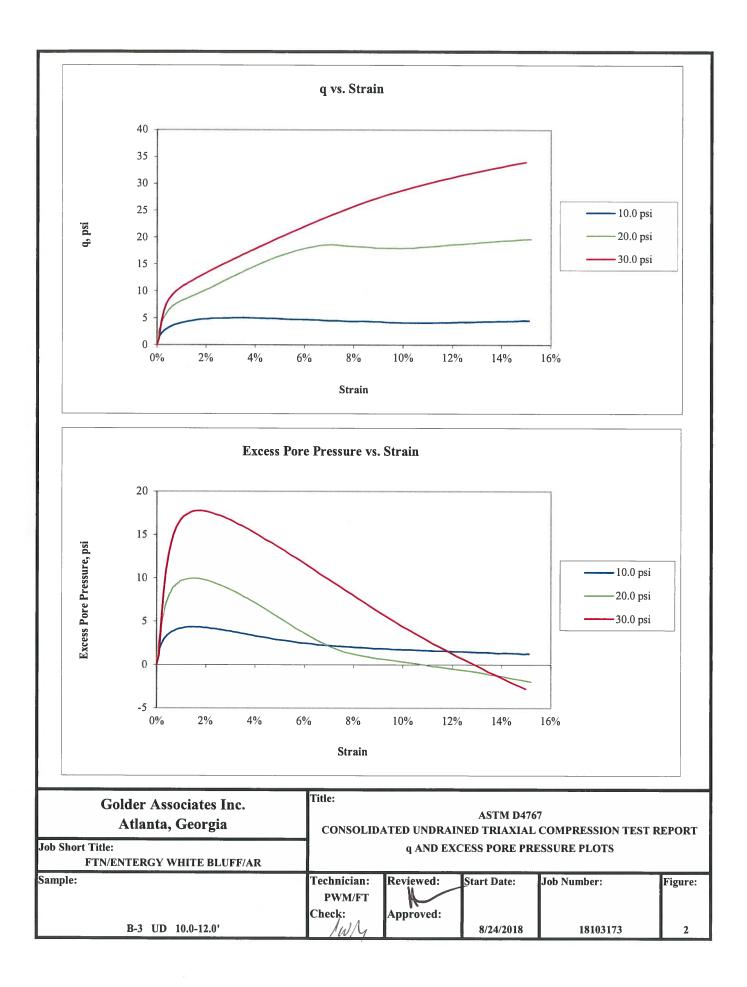

Golder Associates Inc.

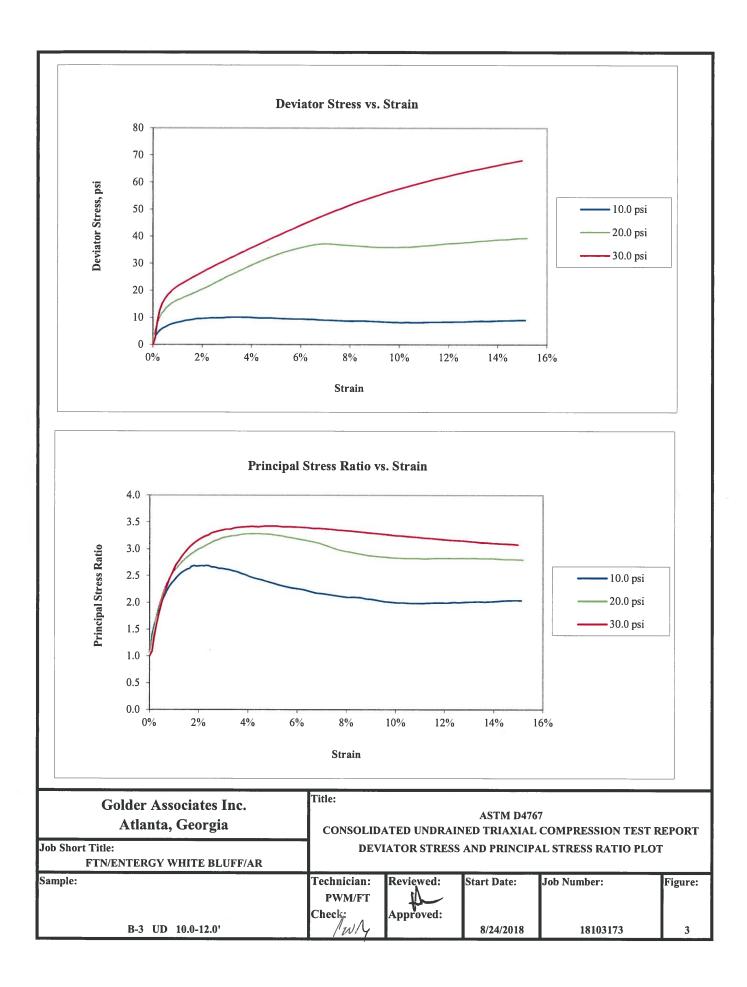

	SPECIFIC GRAV		
	ASTM I		
	PYCNOMETE		
PROJECT TITLE	FTN/ENTERGY WHITE BLUE		
PROJECT NUMBER	18103173	SAMPLE ID	B-1
TESTED FOR	Gs	SAMPLE TYPE SAMPLE DEPTH	UD 8.0-10.0'
	OF MATERIAL PASSING THE #4 SIL		8.0-10.0
Weight Soil and Tare, In		203.53	
Weight Soil and Tare, Fi		203.55	
Weight Of Tare (gm)	har (gin)	51.24	
Weight Of Moisture (gm)	0.42	
Weight Of Dry Soil (gm	•	151.87	
Hygroscopic Moisture In	·	0.3%	
Test Method			
rest methou		Method - B	
Pycnometer Number		24	
	Weight Pycnometer Empty (gm)	181.79	
	Volume of Pycnometer (gm)	499.61	
	Weight Pycnometer and Water (gm)	680.37	
	Mass of Pycnometer and Water at the tes		
	Observed Temperature (Tb), for (Mb) In	Degrees C 24.50	
Weight of Soil, Water &	k Pycnometer (gm)	(B) 710.61	
Temperature, C		24.5	
	Density of water @ tested temperature (g	/ml) 1.00	
These Marsha			
Tare Number Weight of Dry Soil Slur	ry plus Taro	50.04	
Weight of Tare	ty plus l'ale	50.04	
weight of Tare	Weight of Dry Soil (gm)	(C) 0.00 50.04	- Q.
	to organ or bry son (gin)		
	Temperature Coefficient	0.9990	
	SPECIFIC GRAVITY (G)	2.575	
	$G @ 20^{\circ} C = [C/(A-(B - C))]^{*}(K)$		
METHOD - A	WET METHOD	METHOD OF AIR REMOV	AL.
METHOD - B	OVEN-DRIED METHOD	VACUUM	
	Decomposed and	Mass for Test Specimen	
	Recommended		
		Specimen Dry Mass	
	Soil Type	when using 500 ml	
	SP, SP-SM	Pycnometer 100	
	SP-SC, SM, SC	75	
	SILT OR CLAY	50	
	2		
			CH TJ
		D2 CHI	ATE 7/20/18
		REVI	
			OVE

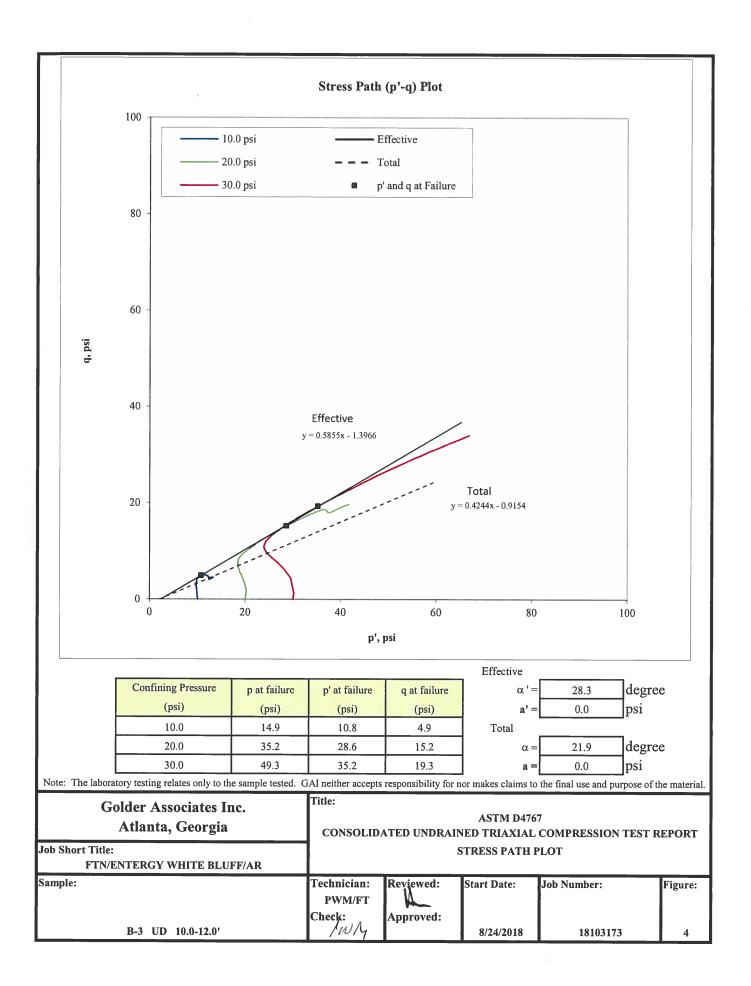

	Boring or Test Pit:	B-1		Boring or Test Pit			Boring or Test Pit:	B-1	
	Sample:	UD		Sample			Sample:	UD	
		8.0-10.0	' ft	Depth	8.0-10.0)' ft	Depth:	8.0-10.0' ft	
	Point No.:	1		Point No.	2		Point No.:	3	1.0
1									
		Initial			Initial			Initial	
	Length =	6,234	in	Length =		in	Length =		
	Diameter =	2.856	in	Diameter =		in	Diameter =		
	Wet Mass =	2.835	lb	Wet Mass =		lb	Wet Mass =		
	Area =	6.406	in ²	Area =		in ²	Area =		
	Volume =	39.937		Volume =				39.035 in ³	
	Specific Gravity =	2.57	(ASTM D854)	Specific Gravity =		(ASTM D854)			1 0054
	Dry Mass of Solids =	2.291	lb	Dry Mass of Solids =		(ASTM D834)	Specific Gravity =		1 D854)
	Moisture Content =	23.8%	10	Moisture Content =		10	Dry Mass of Solids =		
	Wet Unit Weight =	122.7	pcf			r.	Moisture Content =		
			•	Wet Unit Weight =		pcf	Wet Unit Weight =		
	Dry Unit Weight =	99.1	pcf	Dry Unit Weight =		pcf	Dry Unit Weight =	•	
	Void Ratio =	0.62		Void Ratio =			Void Ratio =		
	Percent Saturation =	99%		Percent Saturation =	80%		Percent Saturation =	94%	
	After	Consoli	dation	Afte	r Consoli	dation	After	r Consolidation	
	Length =	6 173	in	Length =		in	Length =		
	Diameter =	2.917	in	Diameter =		in	Diameter =		
	Area =	6.682	in ² (Method B)	Area =		in ² (Method B)	Area =		ethod B)
	Volume =		in ³	Volume =				37.784 in ³	
	Moisture Content =	26.1%	111	Moisture Content =		811	Moisture Content ==		
	Wet Unit Weight =	121.0	pcf	Wet Unit Weight =		nof			
	Dry Unit Weight =	96.0	pcf			pcf	Wet Unit Weight =		
	Void Ratio =	90.0 0.67	per	Dry Unit Weight =		pcf	Dry Unit Weight =		
				Void Ratio =			Void Ratio =		
	Percent Saturation =	100%		Percent Saturation =	100%		Percent Saturation =	100%	
	B Parameter =	0.99		B Parameter =	1.00		B Parameter =	0 97	
	Shear Rate =	0.012%	/min	Shear Rate =		/min	Shear Rate =		
	$t_{50} =$	5 84	min.	$t_{50} =$		min.	$t_{50} =$	9.87 min.	
	Strain at Failure =	3.2%		Strain at Failure =			Strain at Failure =		
				Stidin di Fundiç	5.570		Strain at 1 and C -	2.270	
	Cell Pressure =	89.0	psi	Cell Pressure =	98.0	psi	Cell Pressure =	107.0 psi	
	Back Pressure =	80.0	psi	Back Pressure =	80.0	psi	Back Pressure =	80.0 psi	
	Confining Pressure =	9.0	psi	Confining Pressure =	18.0	psi	Confining Pressure =	27.0 psi	
								-	
	Notes: Sample des	scription:	(CL) SILTY CLA	Y and SAND, fine to c	oarse; yell	owish brown and g	gray.		
	Atterberg l	imits:	LL = 44	PL = 15	PI =	= <mark>29</mark> (ASTN	A D4318)		
	Percent fin	er:	3/4 in. = 100%	No. 4 = 100%	No. 200 =	= 54% (ASTN	A D422, refer to separate	report for gradati	on curve)
	Specimen t	ype:	X Intact	Reconstit	uted				
	Moisture fr	rom:	Cutting	s X Entire spe	cimen	14			
	Saturation	method:	X Wet	Dry	1				
	Failure crit	erion:	Χ (σ' ₁ /σ' ₃) _m	at (0'1-0'3)max		% strain			
	Membrane	effect:	X Correct	ed Not Corre	cted				
	Golder A	Associa	ates Inc.	Title:					
							ASTM D4767		
	Auan	ta, Ge	orgia	CONS	OLIDAT	ED UNDRAINE	D TRIAXIAL COMPR	ESSION TEST F	REPORT
Job Sha	rt Title:					SAMP	LE AND TEST DATA		
	FTN/ENTERG	Y WHIT	TE BLUFF/AR						
Sample				Technicia	in:	Reviewed;	Start Date:	Job Number:	Figure:
					A/FT	511			ingure.
				Check;		Approved:			
	R_1	UD 8.0-;	10.0'	Check Ma	14	Approved:	7/17/3010	10102172	,
	D-1	0.0-	10.0	1 100	14		7/17/2018	18103173	1

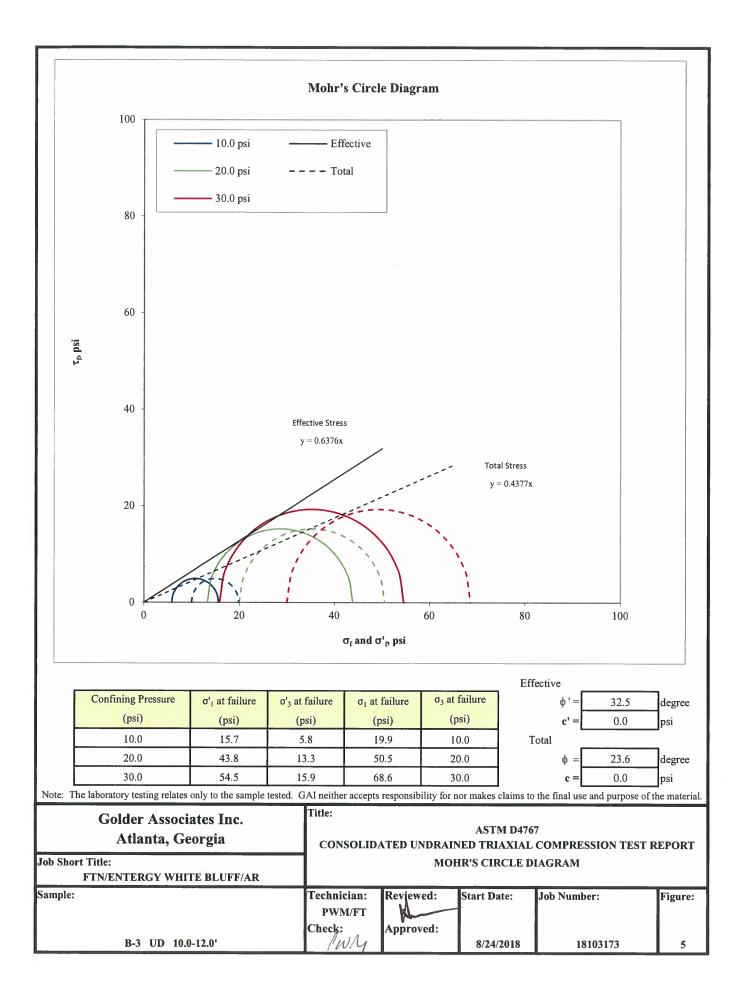




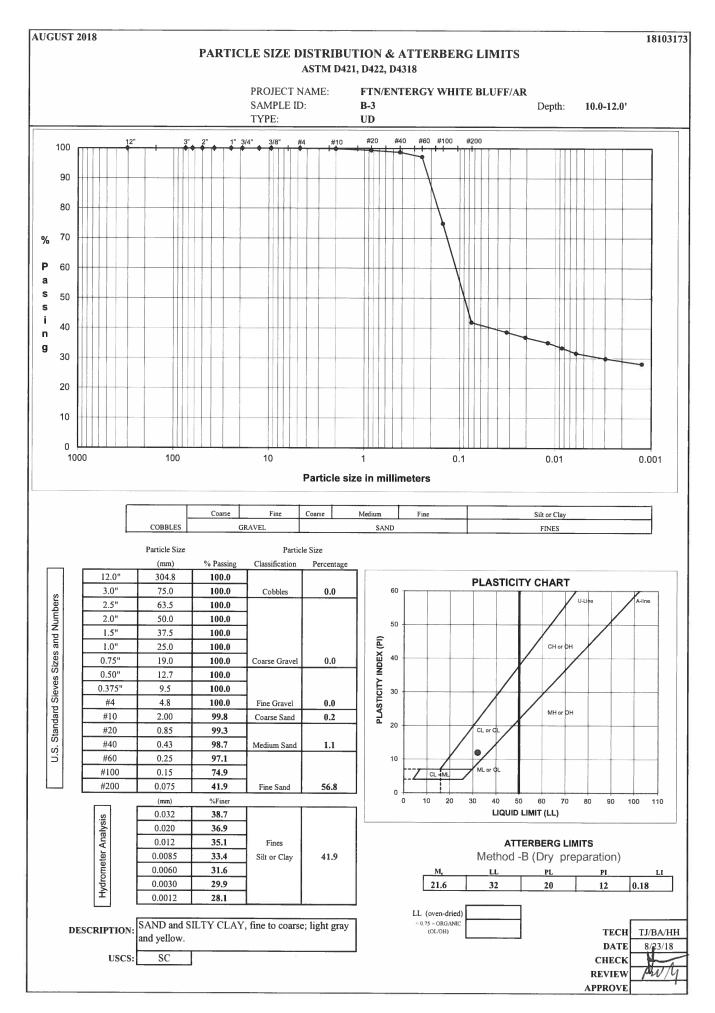


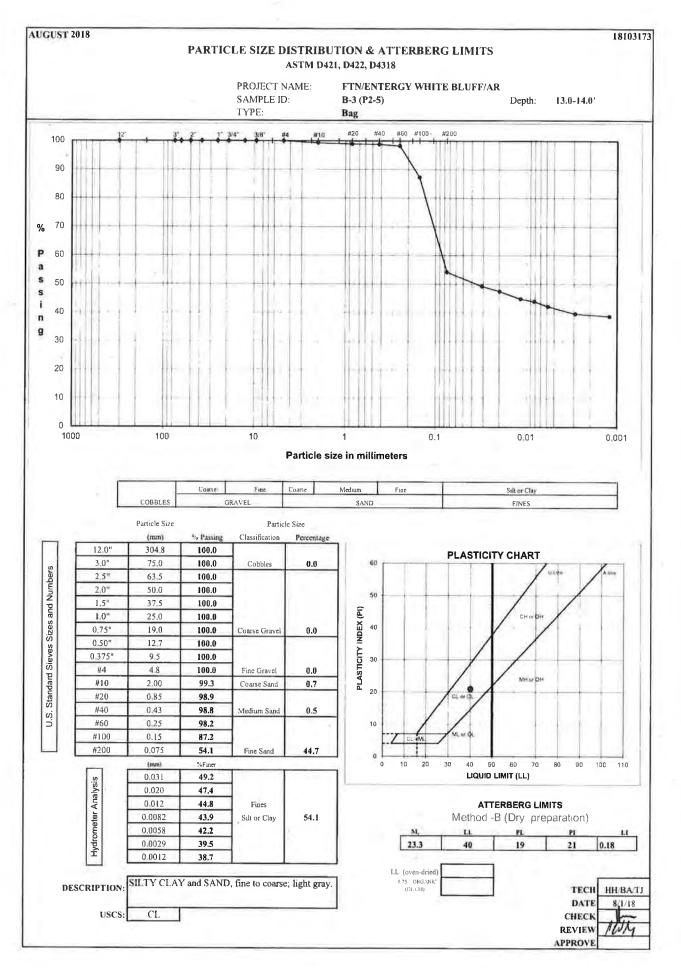


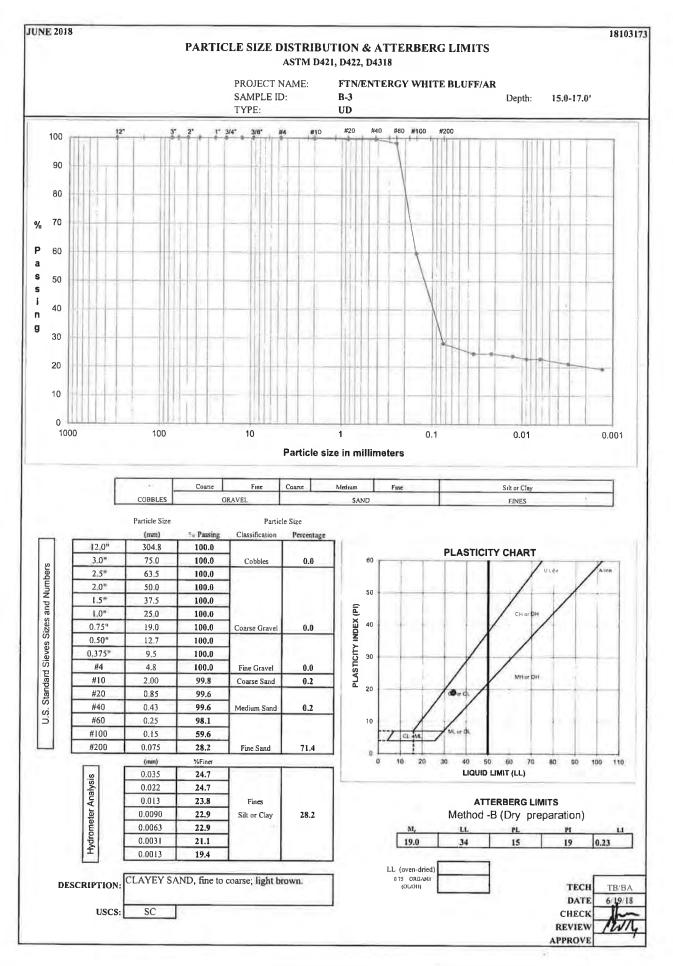

.


								ASTM D	5084						
						ŗ	METHOD D	, CONSTAN	NT RATE	OF FLOW					
PROJECT TITLE	E	FTN/ENT	ERGY WHIT	E BLUFF/A	R	1	Board #	9		OMMENTS	-			-	
PROJECT NUME		1810317					Flow Pump			0					
SAMPLE ID		B-3		5.0-	-7.0'		Pump Speed								
SAMPLE TYPE		UD				1	Technician	FT							
ample Data, Initi Ieight, inches		3.147	B-Value, f	1.00	1	Sample Da		3.139	1				0		
Diameter, inches	1.19	2.854	Cell Pres.	88.0		Height, inc		2.837	1	WATED C	ONTENTE		Sample		Sample
Area, cm ²	18	41.27	Bot. Pres.	80.0		Diameter, i Area, cm ²	urcaes	40.78		WATER CO Wt Soil & T			Initial 647.92		Final 736.33
Volume, cm ³		329.91	Top Pres.	80.0		Volume, cn	n ³	325.16	S	Wt Soil & 1	-	g	522.03		601.84
Mass, g	116	647.92	Tot. B.P.	80.0	1	Mass, g		656.52	1	Wt Tare	, 1	g	0.00		79.81
Moisture Content,	5%	24.12	Head, max.	187.10	1	Moisture C	Content, %	25.76	7	Wt Moistur	re Lost	g	125.89		134.49
Dry Density, pcf		98.74	Head, min.	187.10	1	Dry Densit		100.18		Wt Dry Soi		g	522.03		522,03
Spec. Gravity (ass	sumed)	2.750	Max. Grad.	23.47		Volume So		189.83		Water Con		%	24.12%	- 1	25.76%
olume Solids, cm	n ³	189.83	Min. Grad.	23.47		Volume Vo	oids, cm ³	135.33							
	3	140.08				Void Ratio		0.71							
/olume Voids, cm	n'	140.00						0.71							
	n'	0.74				Saturation,		99.4%		DESCRIPT	TION				_
Volume Voids, cm Void Ratio Saturation, %	n"]					-				fine to mediu	ım; yellowish brown, gray	, and bro	wn.
oid Ratio	a'	0.74 89.9%]		1.		, %	99.4%				fine to mediu	ım; yellowish brown, gray	, and bro	wn.
oid Ratio	a.	0.74	p Rate	2.25E-05	cm ³ /sec			-	l. I			fine to mediu		r, and bro	wn.
oid Ratio	A."	0.74 89.9%	p Rate	2.25E-05	cm ³ /sec		, %	99.4%	1			fine to mediu	ım; yellowish brown, gray	, and bro	wn.
Void Ratio Saturation, %		0.74 89.9% Flow Pum	TIM	E FUNCTIO	DNS, SECO	Saturation,	, %	99.4%	dP			fine to mediu		, and bro	wn.
'oid Ratio aturation, %	DATE	0.74 89.9%			DNS, SECO TEMP	Saturation, NDS dt	, % USCS dt,acc	99.4% CL dt	dt,acc	sandy SILT	Y CLAY, ' Head	fine to mediu Gradient	Permeability	, and bro	wn.
oid Ratio aturation, %	DATE	0.74 89.9% Flow Pum DAY	TIM	E FUNCTIO MIN	DNS, SECO TEMP (°C)	Saturation, NDS dt (min)	, % USCS dt,acc (min)	99.4% CL dt (sec)	dt,acc (sec)	Reading (psi)	Y CLAY, Head (cm)	Gradient	Permeability (cm/sec)	, and bro	wn.
'oid Ratio aturation, %	DATE 7/26/18	0.74 89.9% Flow Pum DAY 43307	TIM HOUR	E FUNCTIO MIN 0	DNS, SECO TEMP (°C) 22.3	Saturation, NDS dt (min) 0	, % USCS dt,acc (min) 0	99.4% CL dt (sec) 0	dt,acc (sec) 0	Reading (psi) 2.66	Y CLAY, Head (cm) 187.10	Gradient 23.47	Permeability (cm/sec) 2.2E-08	, and bro	wn.
'oid Ratio aturation, %	DATE 7/26/18 7/26/18	0.74 89.9% Flow Pum DAY 43307 43307	TIM HOUR 13 13	E FUNCTIO MIN 0 5	DNS, SECO TEMP (°C) 22.3 22.3	Saturation, NDS dt (min) 0 5	, % USCS dt,acc (min) 0 5	99.4% CL dt (sec) 0 300	dt,acc (sec) 0 300	Reading (psi) 2.66 2.66	Y CLAY, Head (cm) 187.10 187.10	Gradient 23.47 23.47	Permeability (cm/sec) 2.2E-08 2.2E-08	, and bro	wn.
/oid Ratio Saturation, %	DATE 7/26/18 7/26/18 7/26/18	0.74 89.9% Flow Pum DAY 43307 43307 43307	TIM HOUR 13 13 13	E FUNCTIC MIN 0 5 10	DNS, SECO TEMP (°C) 22.3 22.3 22.3	Saturation, NDS dt (min) 0 5 5 5	, % USCS dt,acc (min) 0 5 10	99.4% CL dt (sec) 0 300 300	dt,acc (sec) 0 300 600	Reading (psi) 2.66 2.66 2.66	Head (cm) 187.10 187.10 187.10	Gradient 23.47 23.47 23.47	Permeability (cm/sec) 2.2E-08 2.2E-08 2.2E-08 2.2E-08		wn.
Void Ratio Saturation, %	DATE 7/26/18 7/26/18 7/26/18 7/26/18	0.74 89.9% Flow Pum DAY 43307 43307 43307 43307	TIM HOUR 13 13 13 13 13	E FUNCTIC MIN 0 5 10 15	DNS, SECO TEMP (°C) 22.3 22.3 22.3 22.3	Saturation, NDS dt (min) 0 5 5 5 5	, % USCS dt,acc (min) 0 5 10 15	99.4% CL dt (sec) 0 300 300 300 300	dt,acc (sec) 0 300 600 900	Reading (psi) 2.66 2.66 2.66 2.66 2.66	Head (cm) 187.10 187.10 187.10 187.10	Gradient 23.47 23.47 23.47 23.47 23.47	Permeability (cm/sec) 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08		wn.
/oid Ratio Saturation, %	DATE 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18	0.74 89.9% Flow Pum DAY 43307 43307 43307 43307 43307	TIM HOUR 13 13 13 13 13	E FUNCTIC MIN 0 5 10 15 20	DNS, SECO TEMP (°C) 22.3 22.3 22.3 22.3 22.3 22.3	Saturation, NDS dt (min) 0 5 5 5 5 5 5	, % USCS dt,acc (min) 0 5 10 15 20	99.4% CL dt (sec) 0 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	Reading (psi) 2.66 2.66 2.66 2.66 2.66 2.66	Head (cm) 187.10 187.10 187.10 187.10 187.10 187.10	Gradient 23.47 23.47 23.47 23.47 23.47 23.47	Permeability (cm/sec) 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08	*	wn.
/oid Ratio saturation, %	DATE 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18	0.74 89.9% Flow Pum DAY 43307 43307 43307 43307 43307 43307	TIM HOUR 13 13 13 13 13 13 13	E FUNCTIO MIN 0 5 10 15 20 25	DNS, SECO TEMP (°C) 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.	Saturation, NDS dt (min) 0 5 5 5 5 5 5 5 5 5 5	, % USCS dt,acc (min) 0 5 10 15 20 25	99.4% CL dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 2.66 2.66 2.66 2.66 2.66 2.66 2.66	Head (cm) 187.10 187.10 187.10 187.10 187.10 187.10 187.10 187.10	Gradient 23.47 23.47 23.47 23.47 23.47 23.47 23.47	Permeability (cm/sec) 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08		wn.
'oid Ratio aturation, %	DATE 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18	0.74 89.9% Flow Pum DAY 43307 43307 43307 43307 43307 43307	TIM HOUR 13 13 13 13 13 13 13 13 13	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.	Saturation, NDS dt (min) 0 5 5 5 5 5 5	, % USCS dt,acc (min) 0 5 10 15 20	99.4% CL dt (sec) 0 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	Reading (psi) 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.6	Head (cm) 187.10 187.10 187.10 187.10 187.10 187.10 187.10 187.10	Gradient 23.47 23.47 23.47 23.47 23.47 23.47 23.47 23.47	Permeability (cm/sec) 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08	* * *	wn.
/oid Ratio Saturation, %	DATE 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18	0.74 89.9% Flow Pum DAY 43307 43307 43307 43307 43307 43307	TIM HOUR 13 13 13 13 13 13 13	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.	Saturation, NDS dt (min) 0 5 5 5 5 5 5 5 5 5 5	, % USCS dt,acc (min) 0 5 10 15 20 25	99.4% CL dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.6	Head (cm) 187.10 187.10 187.10 187.10 187.10 187.10 187.10 187.10	Gradient 23.47 23.47 23.47 23.47 23.47 23.47 23.47	Permeability (cm/sec) 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08	* * *	
Yoid Ratio aturation, %	DATE 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18	0.74 89.9% Flow Pum DAY 43307 43307 43307 43307 43307 43307	TIM HOUR 13 13 13 13 13 13 13 13 13	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.	Saturation, NDS dt (min) 0 5 5 5 5 5 5 5 5 5 5	, % USCS dt,acc (min) 0 5 10 15 20 25	99.4% CL dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.6	Head (cm) 187.10 187.10 187.10 187.10 187.10 187.10 187.10 187.10	Gradient 23.47 23.47 23.47 23.47 23.47 23.47 23.47 23.47	Permeability (cm/sec) 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08	* * *	DATE
/oid Ratio saturation, %	DATE 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18 7/26/18	0.74 89.9% Flow Pum DAY 43307 43307 43307 43307 43307 43307	TIM HOUR 13 13 13 13 13 13 13 13 13	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.	Saturation, NDS dt (min) 0 5 5 5 5 5 5 5 5 5 5	, % USCS dt,acc (min) 0 5 10 15 20 25	99.4% CL dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.6	Head (cm) 187.10 187.10 187.10 187.10 187.10 187.10 187.10 187.10	Gradient 23.47 23.47 23.47 23.47 23.47 23.47 23.47 23.47	Permeability (cm/sec) 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08	* * *	

	Boring or Test Pit:	B-3			Boring o	or Test Pit:	B-3			Boring or Test Pit:	B-3				
	Sample:	UD				Sample:	UD			Sample:					
	Depth: 10.0-12.0 ft				Depth: 10.0-12.0 ft				Depth: 10.0-12.0 ft						
	Point No.: 1				Point No.: 2				Point No.: 3						
		Initial					Initial				Initial				
	Length =	6.001	in			Length =	5.995	in		Length =		in			
	Diameter =	2.829	in		г	Diameter =	2.871	in		Diameter =		in			
	Wet Mass =	2.610	lb			et Mass =	2.758	lb		Wet Mass =		lb			
	Area =	6.286	in ²			Area =		in ²		Area =		in ²			
	Volume =		22 C			Volume =				Volume =					
	Specific Gravity =	2.58	(ASTM E	1854)		Gravity =	2.58	(ASTM I	7854)	Specific Gravity =		(ASTM E	954)		
	Dry Mass of Solids =	2.117	lb	1 A A A A A A A A A A A A A A A A A A A	Dry Mass of	-	2.316	lb		Dry Mass of Solids =		lb	<i>J</i> 0 <i>J</i> 4 <i>)</i>		
	Moisture Content =	23.3%	10		•	Content =	19.1%	10	L	Moisture Content =		10			
	Wet Unit Weight =	23.3% 119.6	pcf												
	-		1			t Weight =	122.8	pcf		Wet Unit Weight =		pcf			
	Dry Unit Weight =	97.0	pcf			t Weight =	103.1	pcf		Dry Unit Weight =		pcf			
	Void Ratio =	0.65				id Ratio =	0.56			Void Ratio =					
	Percent Saturation =	92%			Percent Sa	turation =	88%			Percent Saturation =	102%				
		_													
		Consoli					Consolic		After Consolidation						
	Length =		in			Length =		in		Length =	5.930	in			
	Diameter =	2.844	in		Ľ	Diameter =	2.884	in		Diameter =	2.879	in			
	Area =	6.353	in ² (Meth	od B)		Area =	6.533	in ² (Meth	nod B)	Area =		in ² (Meth	od B)		
	Volume =	37.747	in ³			Volume =	38.920	in ³		Volume =	38.593	in ³			
	Moisture Content =	25.5%			Moisture	Content =	21.8%			Moisture Content =	22.1%				
	Wet Unit Weight =	121.6	pcf		Wet Unit	t Weight =	125.2	pcf		Wet Unit Weight =	124.9	pcf			
	Dry Unit Weight =	96.9	pcf		Dry Unit	t Weight =	102.8	pcf		Dry Unit Weight =	102.3	pcf			
	Void Ratio =	0.66			Vo	id Ratio =	0.56			Void Ratio =	0.57	-			
	Percent Saturation =	100%			Percent Sa	turation =	100%			Percent Saturation =	100%				
	B Parameter =	0.97			B Pa	arameter =	0.97			B Parameter =	0.99				
	Shear Rate =	0.012%	/min.		Sh	ear Rate =	0.090%	/min.		Shear Rate =		/min.			
	t ₅₀ =	28.79	min.			t ₅₀ =	2.39	min.		t ₅₀ =		min.			
	Strain at Failure =	2.3%			Strain at	t Failure =	4.3%			Strain at Failure =					
					bitutti u		1.570				1.7 20				
	Cell Pressure =	90.0	psi		Cell	Pressure =	100.0	psi		Cell Pressure =	110.0	psi			
	Back Pressure =	80.0	psi			Pressure =	80.0	psi		Back Pressure =	80.0	psi			
	Confining Pressure =		psi		Confining 1			* .	C	Confining Pressure =		· .			
	Comming Pressure -	10.0	psi		Comming	riessure –	20.0	psi	C	Johnning Flessure	30,0	psi			
	Notes: Sample de			ID and ST											
			LL =		LTY CLAY PL =		_		-	4210)					
	Atterberg Percent fin						= PI		(ASTM D	,			,		
			3/4 in. =	1 1	No. 4 =	1 2 2	No. 200 =	42%	(ASIM D	422, refer to separate	report for	r gradation	curve)		
	Specimen	• •	X	Intact		Reconstitu									
	Moisture f			Cuttings	X	Entire spec	cimen								
	Saturation		X	Wet		Dry		1							
	Failure cri		X	$(\sigma'_i/\sigma'_3)_{max}$		$(\sigma'_1 - \sigma'_3)_{max}$		% strain							
	Membrane	e effect:	X	Corrected	1 l	Not Correc	cted								
Golder Associates Inc.						Title:	litle:								
Atlanta, Georgia								A	STM D4767						
	Atlan	ica, Ge	orgia			CONS	CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPOR						PORT		
Job Sho	ort Title:									AND TEST DATA					
FTN/ENTERGY WHITE BLUFF/AR									STATE LE	THU TEST DATA					
		, TT 111.	LE DEUTI			T 1 1 1		n :	,						
Sample:					Technician: Reviewed:				Start Date: Job Number: Figu			Figure:			
					PWM/FT		W I								
						Check:		Approve	d:						
B-3 UD 10.0-12.0'						Ĭlu	IM			8/24/2018	1810	3173	1		







10.0 psi		20.0 psi			30.0 psi			
Golder Associates Inc.	Title: ASTM D4767							
Atlanta, Georgia	CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT							
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	SPECIMENS PHOTOGRAPH - 10.0 20.0 30.0 psi							
Sample:		Technician: PWM/FT Check:	Reviewed: Approved:	Start Date:	Job Number:	Figure:		
B-3 UD 10.0-12.0'		/wh.		8/24/2018	18103173	6		

÷.

						FLEXIB	LE WALL I ASTM D		BILITY						
					M	METHOD D			OF FLOW			-			
ROJECT TITLE	ETNIENT	EDCVWUT	E DI LICC/A	D	1										
		ERGY WHIT	E BLUFF/A	AR	-	Board #			COMMENTS	6					
ROJECT NUMBER	1810317 B-3	3	15.0	-17.0'	-	Flow Pump				-41					
AMPLE TYPE	UD		13.0	-17.0	FIOWE	Pump Speed									
UNITED TITE					_	Technician	F1				_				
mple Data, Initial					6I- D	4. E ⁴ 1							8		
eight, inches	3.008	B-Value, f	0.99	1	Sample Da		2 000	f i							
iameter, inches	2.839	Cell Pres.	88,0	1	Height, incl Diamatan		3.009 2.848	1	WATER	ONTENTO		Sample			Sample
rea, cm ²	40.84	Bot. Pres.	80.0		Diameter, i Area, cm ²	inches	41.10		WATER C			Initial			Final
olume, cm ³	312.03	Top Pres.	80.0		Volume, cn	" ³	314.12		Wt Soil & 1 Wt Soil & 1	'	g	657.54			742.00
ass, g	657.54	Tot. B.P.	80.0		Mass, g		660.77		Wt Soll & 1 Wt Tare	i are, î	g	552.54 0.00			634.47
oisture Content, %	19.00	Head, max.	33.76	1	Moisture C	ontent %	19.59		Wt Moistur	re Lost	g g	105.00			85.52 107.53
ry Density, pcf	110.50	Head, min.	33.76	1	Dry Densit		109.76		Wt Dry Soi		g	552.54			548.95
oec. Gravity (assumed)	2.700	Max. Grad.	4.42	1	Volume So		204.64		Water Cont		%	19.00%			19.59%
olume Solids, cm ³	204.64	Min, Grad.	4.42	1	Volume Vo	ids. cm ³	109.47	ân -							
olume Voids, cm ³	107.39				Void Ratio		0.53								
oid Ratio	0.52				Saturation,	%	98.9%		DESCRIPT	ION					
oid Ratio sturation, %	0.52 97.8%	-		÷	Saturation,	.%	98.9%		DESCRIPT CLAYEY S		to coarse; lig	ght brown.	-	_	
	-	1			Saturation,	,%	98.9%				to coarse; lig	ght brown,			
	-	p Rate	1.17E-03	cm ³ /sec	Saturation,	w USCS	98.9% SC				to coarse; lig	ght brown.	-		
	97.8%	p Rate	1.17E-03	cm ³ /sec	Saturation,						to coarse; lig	ght brown.			
	97.8%		1.17E-03 E FUNCTIO					dP			to coarse; lig	ght brown,			
	97.8%							dP dt,acc			to coarse; lig Gradient	ght brown. Permeabi	ility		
turation, %	97.8% Flow Pum	TIM	E FUNCTIO	ONS, SECO	NDS .	USCS	SC		CLAYEY S	SAND, fine]
ruration, %	97.8% Flow Pum	TIM	E FUNCTIO	DNS, SECO TEMP	onDs dt	USCS dt,acc	SC	dt,acc	CLAYEY S Reading	GAND, fine		Permeabi	:)]
DATE 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270	TIM HOUR 10 10	E FUNCTIO MIN	DNS, SECO TEMP (°C)	NDS dt (min)	USCS dt,acc (min)	SC dt (sec)	dt,acc (sec)	CLAYEY S Reading (psi)	GAND, fine Head (cm)	Gradient	Permeabi (cni/sec	z) 6]
turation, % DATE 06/19/18 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270 43270	TIMI HOUR 10 10 10	E FUNCTIC MIN 0 5 10	DNS, SECO TEMP (°C) 20.9 20.9 20.9 20.9	DNDS dt (min) 0 5 5 5	USCS dt,acc (min) 0 5 10	SC dt (sec) 0 300 300	dt,acc (sec) 0 300 600	CLAYEY S Reading (psi) 0.48 0.48 0.48	Head (cm) 33.76 33.76 33.76	Gradient 4.42	Permeabi (cm/sec 6.3E-06	z) 6 6		
turation, % DATE 06/19/18 06/19/18 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270 43270 43270	TIM HOUR 10 10	E FUNCTIO MIN 0 5	DNS, SECO TEMP (°C) 20.9 20.9	PNDS dt (min) 0 5	USCS dt,acc (min) 0 5	SC dt (sec) 0 300	dt,acc (sec) 0 300	CLAYEY S Reading (psi) 0.48 0.48	Head (cm) 33.76 33.76	Gradient 4.42 4.42	Permeabi (cm/sec 6.3E-06 6.3E-06	z) 6 6 6 6	*	
turation, % DATE 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270 43270 43270 43270 43270	TIM) HOUR 10 10 10 10 10 10	E FUNCTIC MIN 0 5 10 15 20	DNS, SECO TEMP (°C) 20.9 20.9 20.9 20.9 20.9 20.9 20.9	DNDS dt (min) 0 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20	SC dt (sec) 0 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	CLAYEY S Reading (psi) 0.48 0.48 0.48	Head (cm) 33.76 33.76 33.76	Gradient 4.42 4.42 4.42	Permeabi (cm/sec 6.3E-06 6.3E-06 6.3E-06	<u>;)</u> 6 6 6 6 6	*	
turation, % DATE 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270 43270 43270 43270 43270 43270	TIM) HOUR 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25	DNS, SECO TEMP (°C) 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	DNDS dt (min) 0 5 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	SC dt (sec) 0 300 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAYEY S Reading (psi) 0.48 0.48 0.48 0.48	Head (cm) 33.76 33.76 33.76 33.76	Gradient 4.42 4.42 4.42 4.42 4.42	Permeabi (cm/sec 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06	z) 6 6 6 6 6 6		
turation, % DATE 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270 43270 43270 43270 43270 43270 43270 43270	TIM HOUR 10 10 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	DNDS dt (min) 0 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20	SC dt (sec) 0 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	CLAYEY S Reading (psi) 0.48 0.48 0.48 0.48 0.48 0.48	Head (cm) 33.76 33.76 33.76 33.76 33.76 33.76	Gradient 4.42 4.42 4.42 4.42 4.42 4.42	Permeabi (cm/sec 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06	z) 6 6 6 6 6 6 6 6	*	
turation, % DATE 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270 43270 43270 43270 43270 43270 43270 43270	TIM) HOUR 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	DNDS dt (min) 0 5 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	SC dt (sec) 0 300 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAYEY S Reading (psi) 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	Head (cm) 33.76 33.76 33.76 33.76 33.76 33.76 33.76 33.76 33.76	Gradient 4.42 4.42 4.42 4.42 4.42 4.42 4.42	Permeabi (cm/sec 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06	z) 6 6 6 6 6 6 6 6	*	
turation, % DATE 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270 43270 43270 43270 43270 43270 43270 43270	TIM HOUR 10 10 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	DNDS dt (min) 0 5 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	SC dt (sec) 0 300 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAYEY S Reading (psi) 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	Head (cm) 33.76 33.76 33.76 33.76 33.76 33.76 33.76 33.76 33.76	Gradient 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.4	Permeabi (cm/sec 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06	z) 6 6 6 6 6 6 6 6	*	DATE
turation, % DATE 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270 43270 43270 43270 43270 43270 43270 43270	TIM HOUR 10 10 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	DNDS dt (min) 0 5 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	SC dt (sec) 0 300 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAYEY S Reading (psi) 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	Head (cm) 33.76 33.76 33.76 33.76 33.76 33.76 33.76 33.76 33.76	Gradient 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.4	Permeabi (cm/sec 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06	z) 6 6 6 6 6 6 6 6	*	СНЕСК
turation, % DATE 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18 06/19/18	97.8% Flow Pum DAY 43270 43270 43270 43270 43270 43270 43270 43270 43270	TIM HOUR 10 10 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 20.9 20.9 20.9 20.9 20.9 20.9 20.9 20.9	DNDS dt (min) 0 5 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	SC dt (sec) 0 300 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAYEY S Reading (psi) 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	Head (cm) 33.76 33.76 33.76 33.76 33.76 33.76 33.76 33.76 33.76	Gradient 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.4	Permeabi (cm/sec 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06 6.3E-06	z) 6 6 6 6 6 6 6 6	*	1

Boring or Test Pit: B-3 Sample: UD Depth: 20.0-22.0' Point No.: 1

Boring or Test Pit: B-3 Sample: UD Depth: 20.0-22.0' Point No.: 2 Boring or Test Pit: B-3 Sample: UD Depth: 20.0-22.0' Point No.: 3

	Initial			Initial			Initial	
Thickness =	0.750	in	Thickness =	0.750	in	Thickness =	0.750	in
Diameter =	2.500	in	Diameter =	2.500	in	Diameter =	2.500	in
Wet Mass =	0.220	lb	Wet Mass =	0.211	lb	Wet Mass =	0.235	lb
Area =	4.909	in ²	Area =	4.909	in ²	Area =	4.909	in ²
Volume =	3.682	in ³	Volume =	3.682	in ³	Volume =	3.682	in ³
Specific Gravity =	2.67	(Assumed)	Specific Gravity =	2.67	(Assumed)	Specific Gravity =	2.67	(Assumed)
Dry Mass of Solids =	0.167	lb	Dry Mass of Solids =	0.160	lb	Dry Mass of Solids =	0.179	lb
Moisture Content =	31.5%		Moisture Content =	31.5%		Moisture Content =	31.5%	
Wet Unit Weight =	103.1	pcf	Wet Unit Weight =	99.0	pcf	Wet Unit Weight =	110.4	pcf
Dry Unit Weight =	78.4	pcf	Dry Unit Weight =	75.3	pcf	Dry Unit Weight =	83.9	pcf
Void Ratio =	1.12		Void Ratio =	1.21		Void Ratio =	0.98	
Percent Saturation =	75%		Percent Saturation =	70%		Percent Saturation =	86%	

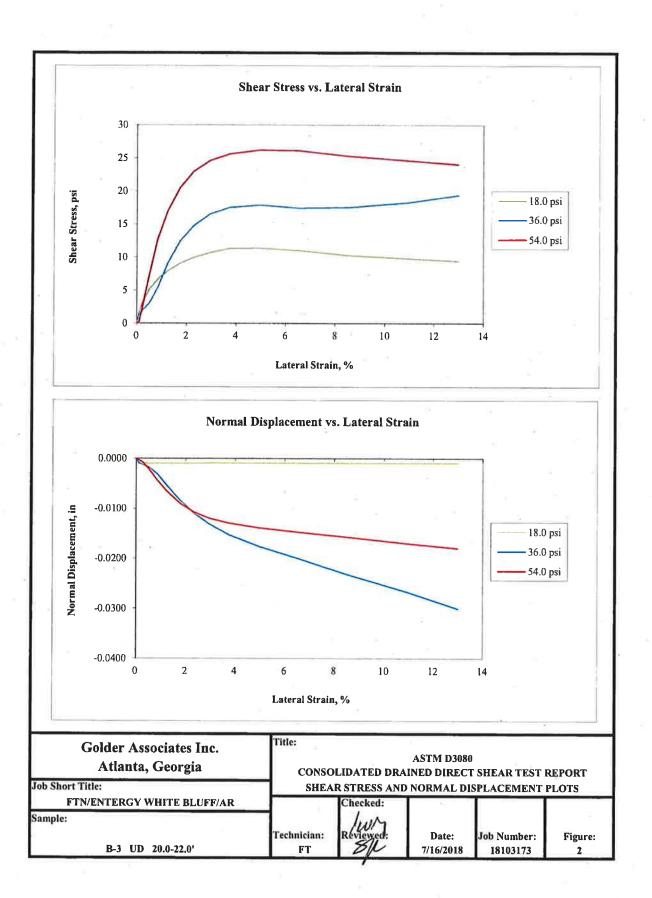
Pre-Shear	Pre-Shear	Pre-Shear
Thickness = 0.739 in	Thickness = 0.663 in	Thickness = 0.641 in
Diameter = 2.500 in	Diameter = 2.500 in	Diameter = 2.500 in
$Area = 4.909 in^2$	$Area = 4.909 \text{ in}^2$	$Area = 4.909 in^2$
Volume = 3.628 in ³	Volume = 3.254 in ³	Volume = 3.147 in^3
Moisture Content = 35.1%	Moisture Content = 42.1%	Moisture Content = 28.2%
Wet Unit Weight = 107.4 pcf	Wet Unit Weight = 121.0 pcf	Wet Unit Weight = 125.9 pcf
Dry Unit Weight = 79.5 pcf	Dry Unit Weight = 85.2 pcf	Dry Unit Weight = 98.2 pcf
Void Ratio = 1.09	Void Ratio = 0.95	Void Ratio = 0.70
Percent Saturation = 100%	Percent Saturation = 100%	Percent Saturation = 100%

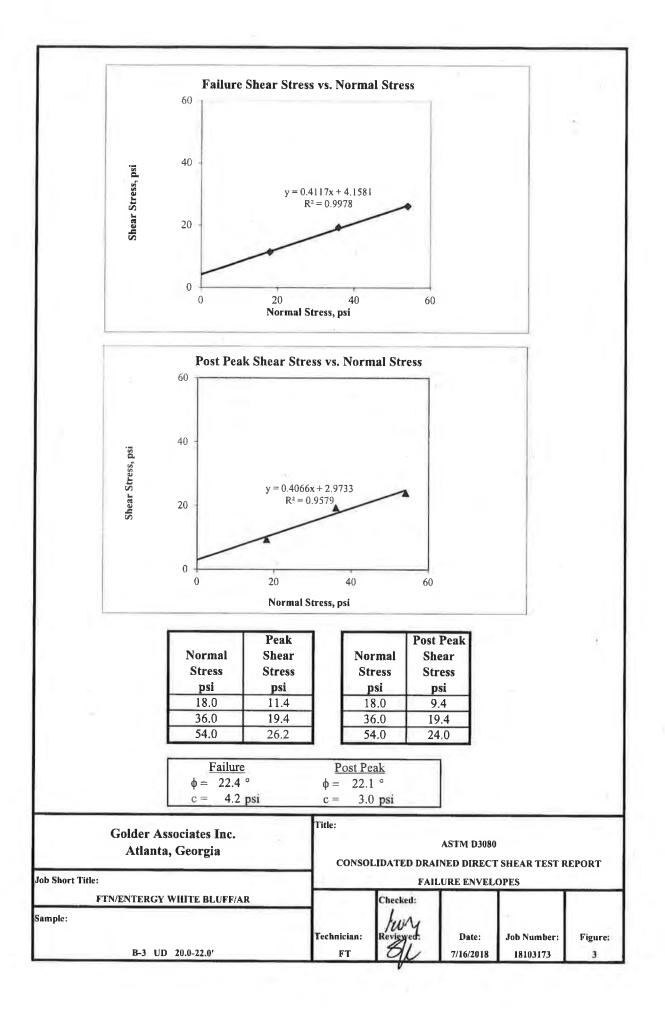
Shear Rate =	0.001	in/min	Shear Rate =	0.001	in/min	Shear Rate = 0.001 i	in/min
Normal Stress =	18	psi	Normal Stress =	36	psi	Normal Stress = 54	psi

Notes:

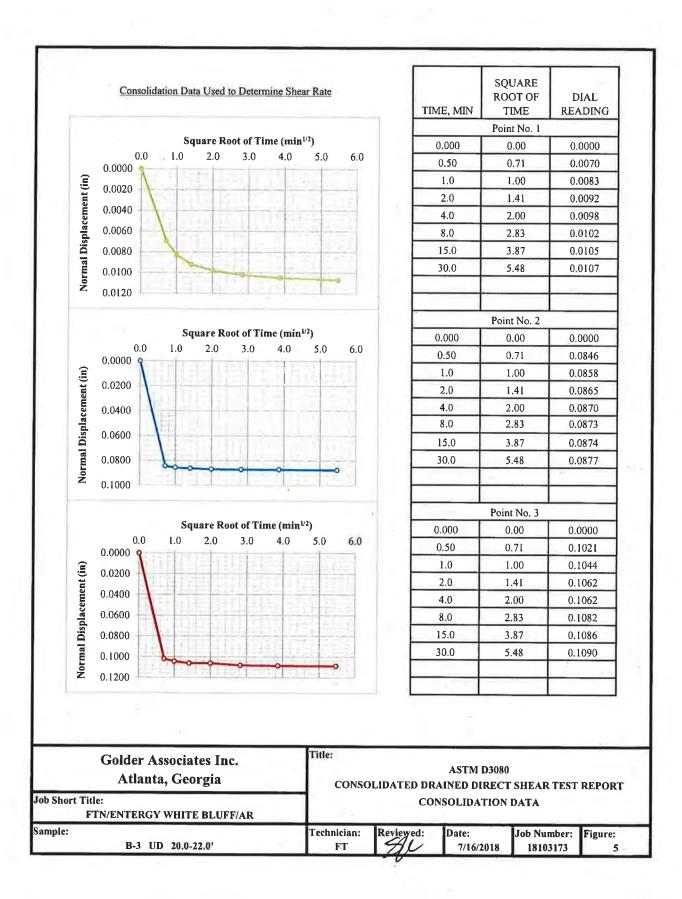
 Sample description:
 (SM) SILTY SAND, fine to medium; light yellowish brown.

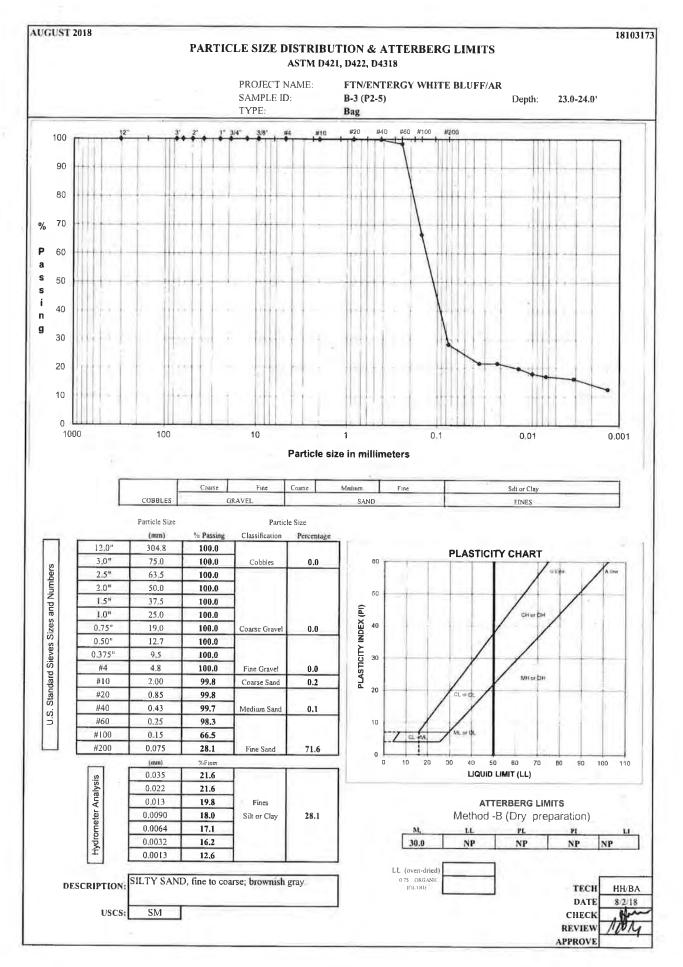
 Atterberg limit:
 L = NP
 PL = NP
 PI = NP
 (ASTM D4318)

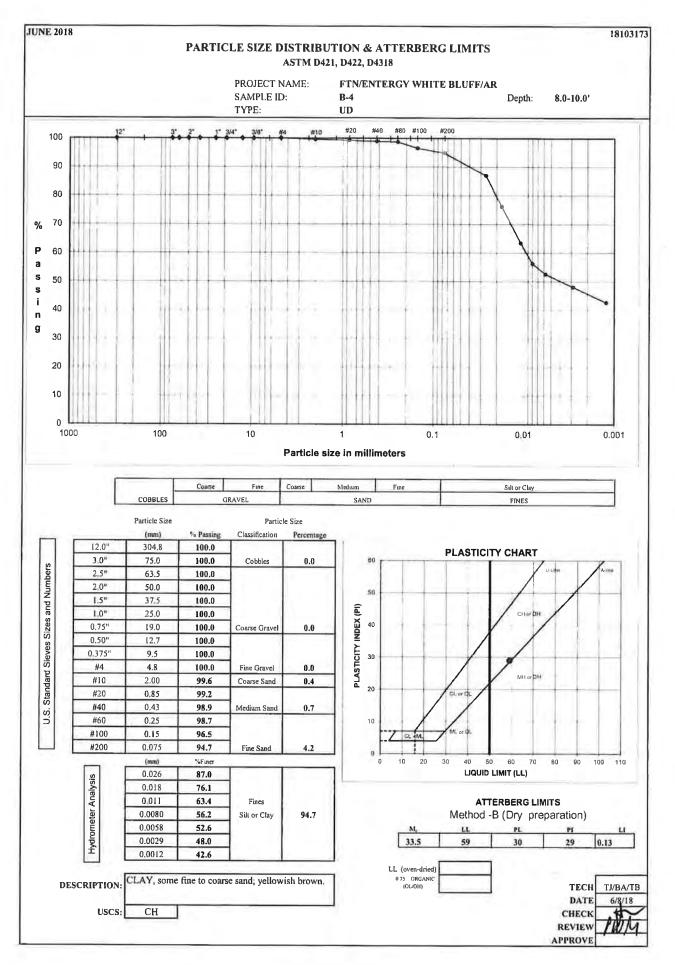

 Percent finer:
 3/4 in. = 100%
 No. 4 = 100%
 No. 200 = 18%
 (ASTM D422, refer to separate report)

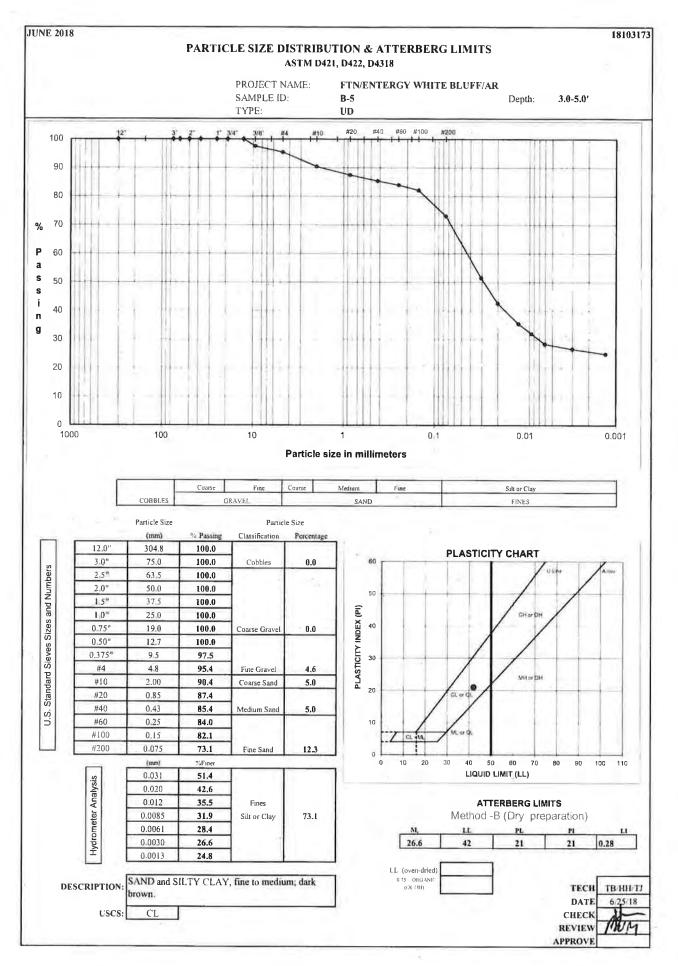

 Specimen type:
 X
 Intact
 Reconstituted

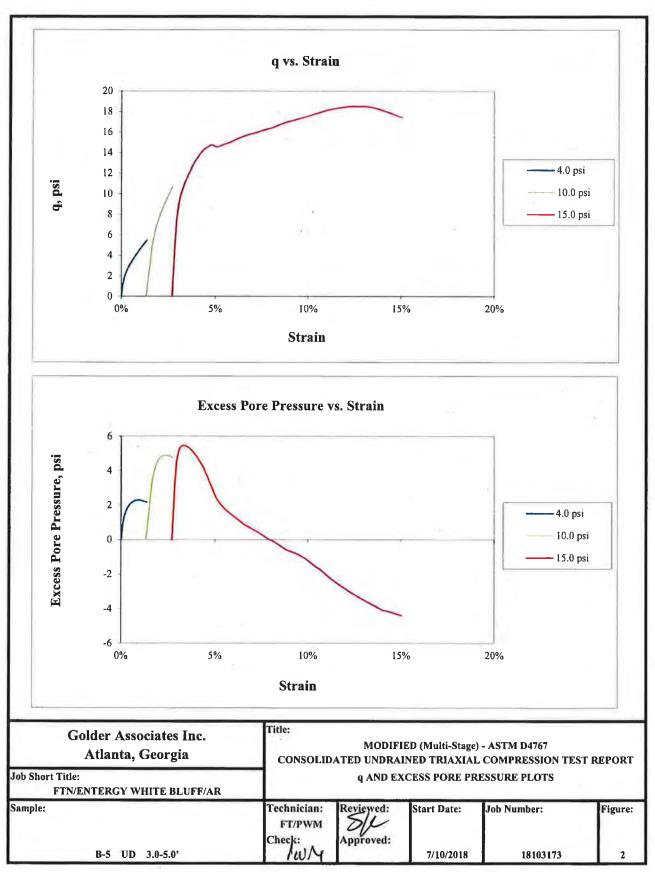
 Inundation:
 At seating load of approximately 100 psf

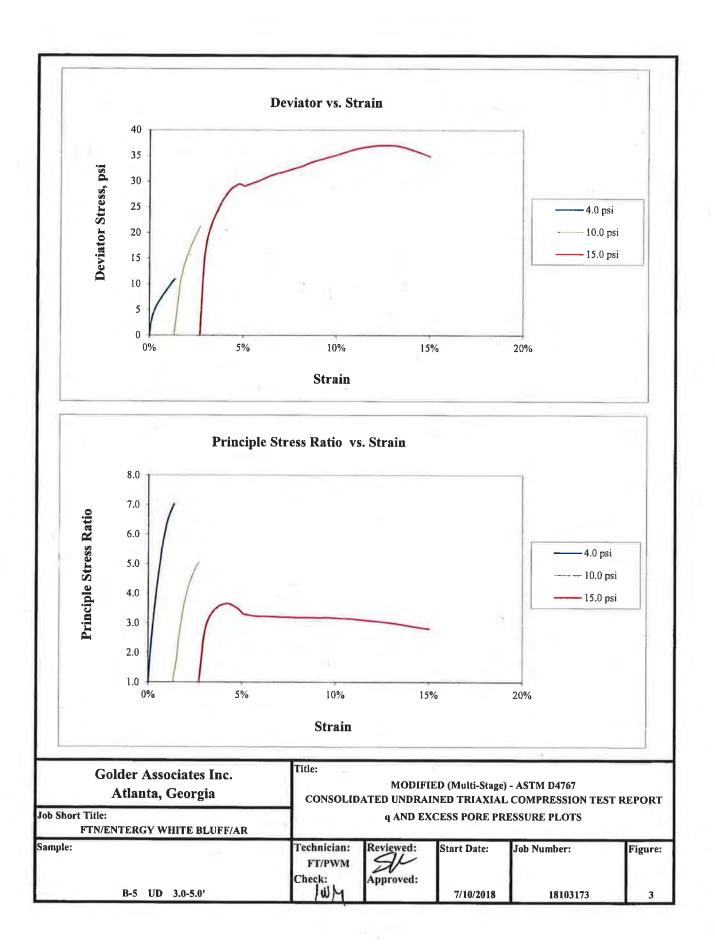

 Apparatus:
 2.5 -inch nominal diameter box, Humboldt Material Testing Software and Equipment.

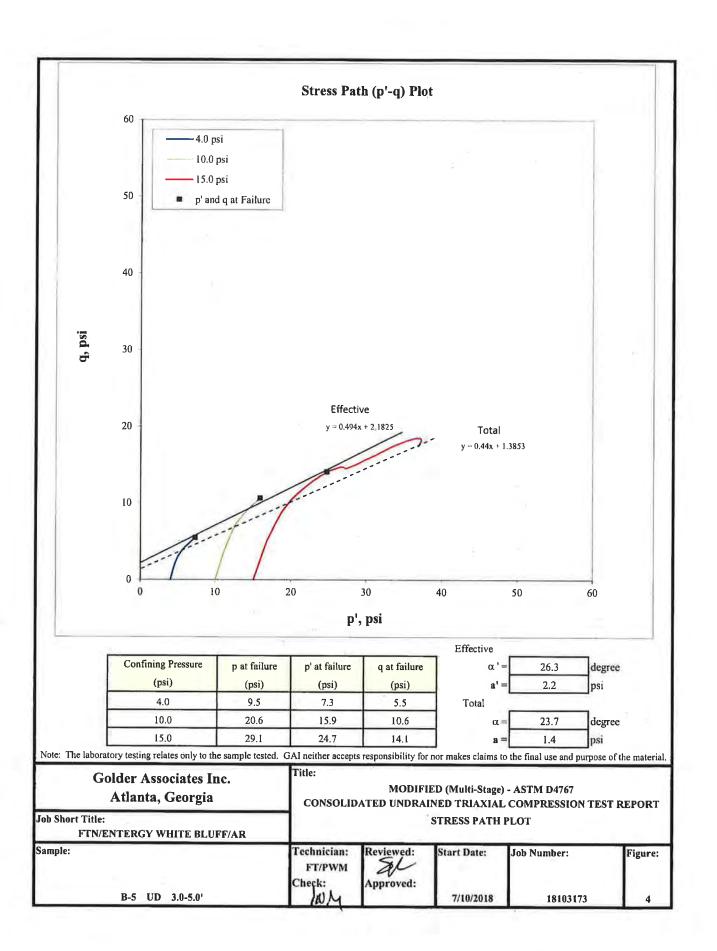

Golder Associates Inc. Atlanta, Georgia Job Short Title:	Title: CONSOL		ASTM D308(INED DIRECT LE AND TEST	Г SHEAR TEST	REPORT
FTN/ENTERGY WHITE BLUFF/AR	-	Checked:	LE AID IES		
Sample: B-3 UD 20.0-22.0'	Technician: FT	fWA Reviewed:	Date; 7/16/2018	Job Number: 18103173	Figure: 1

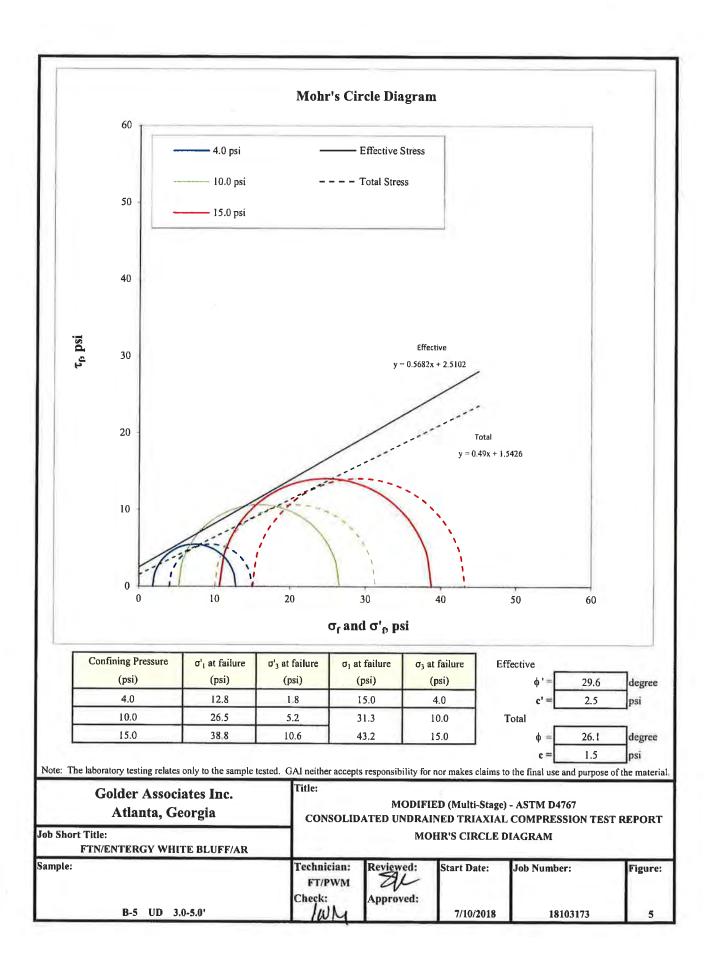




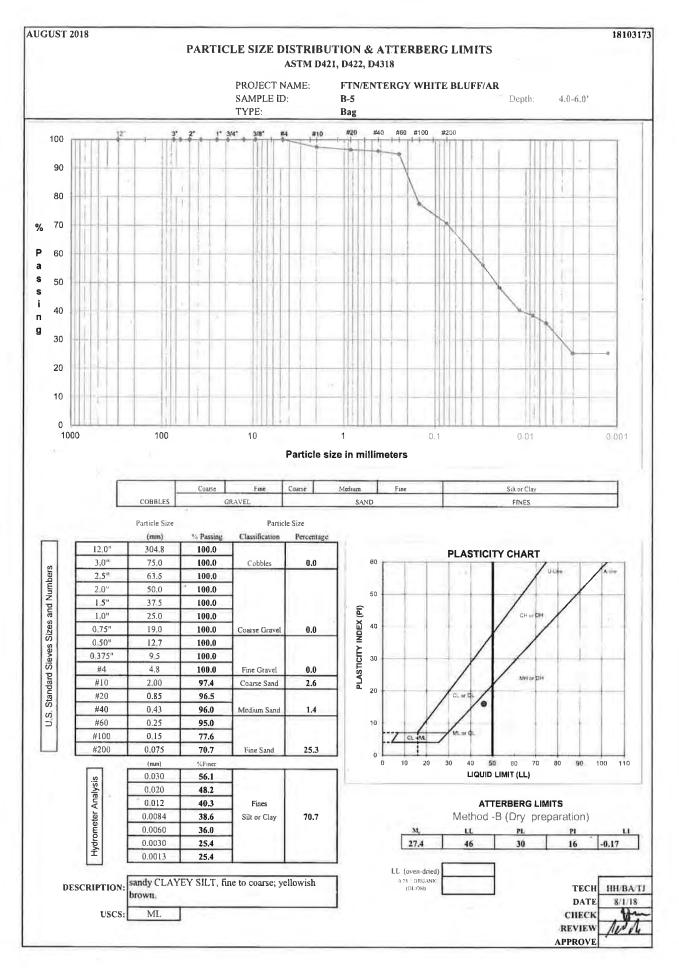

÷.

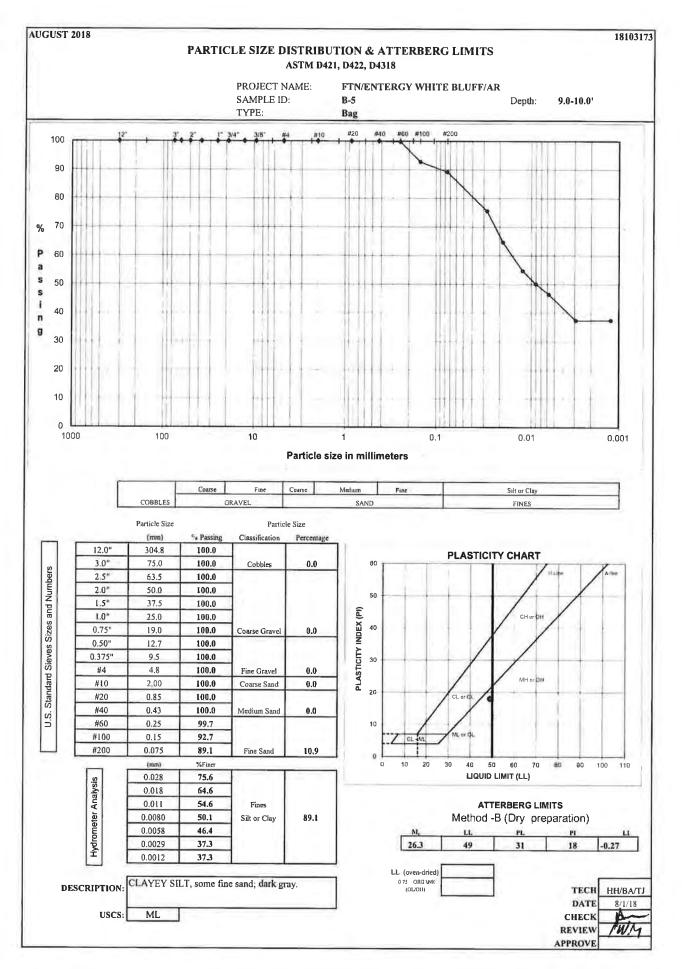


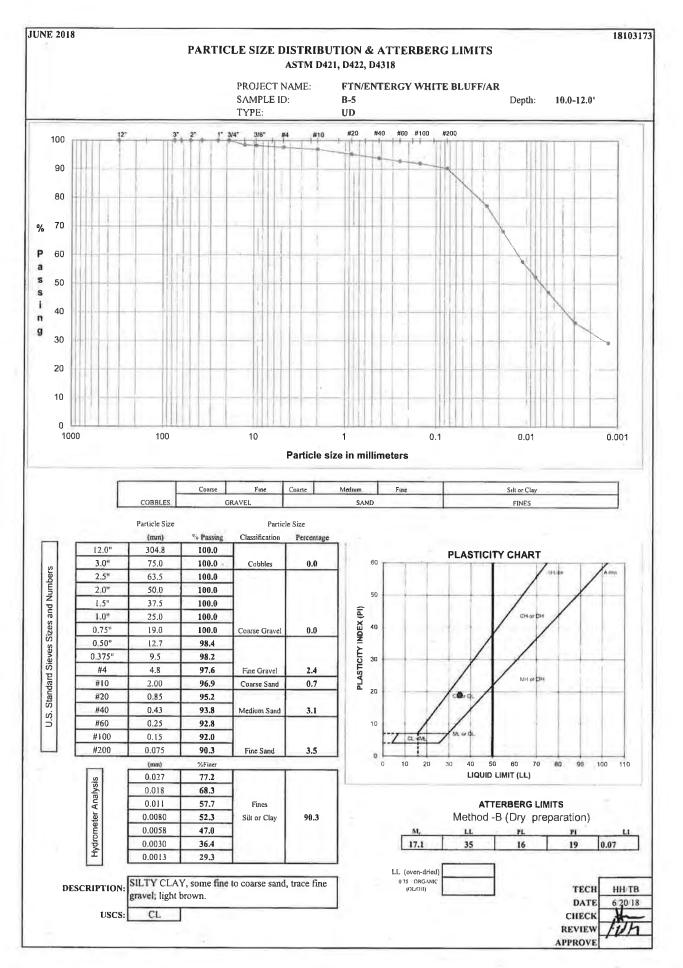

ROJECT TITLE ROJECT NUMBER AMPLE ID AMPLE TYPE ample Data, Initial leight, inches itameter, inches .rea, cm ² 'olume, cm ³ lass, g loisture Content, % 'ry Density, pcf pec. Gravity (assumed) 'olume Solids, cm ³ 'olume Voids, cm ³ 'olume Voids, cm ³ 'olume Voids, cm ³	FTN/ENT 18103173 B-4 UD 2.999 2.869 41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5% Flow Pum	B-Value, f Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	-	-10.0']	thes inches m ³ Content, % ty, pef Jids, cm ³ oids, cm ³	2 2 9		OMMENTS WATER C Wt Soil & 7 Wt Soil & 7 Wt Tare Wt Moistur Wt Dry Soi Water Cont DESCRIPT	ONTENTS Fare, i Fare, f re Lost 1 tent	g 5 g 4 g 1 g 1	ample Initial 38.55 0.00 46.76 38.55 3.46%		Sample Final 686.79 528.69 90.33 158.10 438.36 36.07%
ROJECT NUMBER AMPLE ID AMPLE TYPE ample Data, Initial (eight, inches biameter, inches rea, cm ² 'olume, cm ³ lass, g loisture Content, % 'ry Density, pcf pec. Gravity (assumed) 'olume Solids, cm ³ 'olume Voids, cm ³ 'oid Ratio aturation, %	18103173 B-4 UD 2.999 2.869 41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	B-Value, f Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	8.0-1 0.99 88.0 80.0 80.0 162.49 162.49 21.31 21.31	-10.0'	Flow F Sample Da Height, inc Diameter, i Area, cm ² Volume, cn Moisture C Dry Density Volume Sol Volume Vo Volume Vo	Flow Pump Pump Speed Technician ata, Final thes inches n ³ Content, % y, pef Jids, cm ³ oids, cm ³	2 9 FT 3.002 2.899 42.58 324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%	c	WATER C Wt Soil & T Wt Soil & T Wt Tare Wt Moistur Wt Dry Soi Water Com	ONTENTS Fare, i Fare, f re Lost 1 tent	g 1 g 4 g 1 g 4 % 3.	nitial 138.55 0.00 46.76 138.55 3.46%		Final 686.79 528.69 90.33 158.10 438.36
ROJECT NUMBER AMPLE ID AMPLE TYPE ample Data, Initial (eight, inches biameter, inches rea, cm ² 'olume, cm ³ lass, g loisture Content, % 'ry Density, pcf pec. Gravity (assumed) 'olume Solids, cm ³ 'olume Voids, cm ³ 'oid Ratio aturation, %	18103173 B-4 UD 2.999 2.869 41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	B-Value, f Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	8.0-1 0.99 88.0 80.0 80.0 162.49 162.49 21.31 21.31	-10.0'	Flow F Sample Da Height, inc Diameter, i Area, cm ² Volume, cn Moisture C Dry Density Volume Sol Volume Vo Volume Vo	Flow Pump Pump Speed Technician ata, Final thes inches n ³ Content, % y, pef Jids, cm ³ oids, cm ³	2 9 FT 3.002 2.899 42.58 324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%		WATER C Wt Soil & T Wt Soil & T Wt Tare Wt Moistur Wt Dry Soi Water Com	ONTENTS Fare, i Fare, f re Lost J tent	g 1 g 4 g 1 g 4 % 3.	nitial 138.55 0.00 46.76 138.55 3.46%		Final 686.79 528.69 90.33 158.10 438.36
AMPLE ID AMPLE TYPE ample Data, Initial leight, inches biameter, inches viameter, inches vi	B-4 UD 2.999 2.869 41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	B-Value, f Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	0.99 88.0 80.0 80.0 162.49 162.49 21.31 21.31		Flow F Sample Da Height, inc Diameter, i Area, cm ² Volume, cn Moisture C Dry Density Volume Sol Volume Vo Volume Vo	Pump Speed Technician ata, Final ches inches n ³ Content, % y, pef Jids, cm ³ oids, cm ³	9 FT 3.002 2.899 42.58 324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%		Wt Soil & T Wt Soil & T Wt Tare Wt Moistur Wt Dry Soi Water Com	Fare, i Fare, f re Lost 1 tent	g 1 g 4 g 1 g 4 % 3.	nitial 138.55 0.00 46.76 138.55 3.46%		Final 686.79 528.69 90.33 158.10 438.36
AMPLE TYPE ample Data, Initial leight, inches biameter, inches urea, cm ² folume, cm ³ lass, g loisture Content, % by Density, pcf pec. Gravity (assumed) folume Solids, cm ³ folume Voids, cm ³ folume Voids, cm ³	UD 2.999 2.869 41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	0.99 88.0 80.0 80.0 162.49 162.49 21.31 21.31		Sample Da Height, inc Diameter, i Area, cm ² Volume, cn Mass, g Moisture C Dry Density Volume Sol Volume Vo Volume Vo Void Ratio	Technician ata, Final ches inches n ³ Content, % y, pef Jids, cm ³ oids, cm ³	FT 3.002 2.899 42.58 324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%		Wt Soil & T Wt Soil & T Wt Tare Wt Moistur Wt Dry Soi Water Com	Fare, i Fare, f re Lost 1 tent	g 1 g 4 g 1 g 4 % 3.	nitial 138.55 0.00 46.76 138.55 3.46%		Final 686.79 528.69 90.33 158.10 438.36
ample Data, Initial leight, inches biameter, inches crea, cm ² folume, cm ³ lass, g loisture Content, % by Density, pcf pec. Gravity (assumed) folume Solids, cm ³ folume Voids, cm ³ foid Ratio aturation, %	2.999 2.869 41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	88.0 80.0 80.0 162.49 162.49 21.31 21.31]cm ³ /sec	Height, incl Diameter, i Area, cm ² Volume, cm Mass, g Moisture C Dry Density Volume Sol Volume Vo Void Ratio	nta, Final ches inches m ³ Content, % (y, pcf blids, cm ³ bids, cm ³	3.002 2.899 42.58 324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%		Wt Soil & T Wt Soil & T Wt Tare Wt Moistur Wt Dry Soi Water Com	Fare, i Fare, f re Lost 1 tent	g 1 g 4 g 1 g 4 % 3.	nitial 138.55 0.00 46.76 138.55 3.46%		Final 686.79 528.69 90.33 158.10 438.36
leight, inches biameter, inches viameter, inches volume, cm ³ lass, g loisture Content, % rry Density, pcf pec. Gravity (assumed) volume Solids, cm ³ volume Voids, cm ³ volume Voids, cm ³	2.869 41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	88.0 80.0 80.0 162.49 162.49 21.31 21.31]cm ³ /sec	Height, incl Diameter, i Area, cm ² Volume, cm Mass, g Moisture C Dry Density Volume Sol Volume Vo Void Ratio	thes inches n ³ Content, % ty, pcf Jids, cm ³ oids, cm ³	2.899 42.58 324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%		Wt Soil & T Wt Soil & T Wt Tare Wt Moistur Wt Dry Soi Water Com	Fare, i Fare, f re Lost 1 tent	g 1 g 4 g 1 g 4 % 3.	nitial 138.55 0.00 46.76 138.55 3.46%		Final 686.79 528.69 90.33 158.10 438.36
eight, inches iameter, inches rea, cm ² olume, cm ³ ass, g loisture Content, % ry Density, pcf bec. Gravity (assumed) olume Solids, cm ³ olume Voids, cm ³ old Ratio nturation, %	2.869 41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	88.0 80.0 80.0 162.49 162.49 21.31 21.31]cm ³ /sec	Height, incl Diameter, i Area, cm ² Volume, cm Mass, g Moisture C Dry Density Volume Sol Volume Vo Void Ratio	thes inches n ³ Content, % ty, pcf Jids, cm ³ oids, cm ³	2.899 42.58 324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%		Wt Soil & T Wt Soil & T Wt Tare Wt Moistur Wt Dry Soi Water Com	Fare, i Fare, f re Lost 1 tent	g 1 g 4 g 1 g 4 % 3.	nitial 138.55 0.00 46.76 138.55 3.46%		Final 686.79 528.69 90.33 158.10 438.36
iameter, inches rea, cm ² olume, cm ³ lass, g loisture Content, % ry Density, pcf pec. Gravity (assumed) olume Solids, cm ³ olume Voids, cm ³ oid Ratio aturation, %	2.869 41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	88.0 80.0 80.0 162.49 162.49 21.31 21.31]cm ³ /sec	Diameter, i Area, cm ² Volume, cm Mass, g Moisture C Dry Densit Volume Sol Volume Vo Void Ratio	inches n ³ Content, % y, pcf Jidds, cm ³ Dids, cm ³	2.899 42.58 324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%		Wt Soil & T Wt Soil & T Wt Tare Wt Moistur Wt Dry Soi Water Com	Fare, i Fare, f re Lost 1 tent	g 1 g 4 g 1 g 4 % 3.	nitial 138.55 0.00 46.76 138.55 3.46%		Final 686.79 528.69 90.33 158.10 438.36
rea, cm ² 'olume, cm ³ lass, g loisture Content, % 'ry Density, pcf pec. Gravity (assumed) 'olume Solids, cm ³ 'olume Voids, cm ³ 'oid Ratio aturation, %	41.71 317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	Bot. Pres. Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	80.0 80.0 80.0 162.49 162.49 21.31 21.31]cm ³ /sec	Area, cm ² Volume, cm Mass, g Moisture C Dry Density Volume Sol Volume Vo Void Ratio	n ³ Content, % y, pcf Jlids, cm ³ oids, cm ³ , %	42.58 324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%		Wt Soil & T Wt Soil & T Wt Tare Wt Moistur Wt Dry Soi Water Com	Fare, i Fare, f re Lost 1 tent	g 5 g 4 g 1 g 4 % 3.	85.31 138.55 0.00 46.76 138.55 3.46%		686.79 528.69 90.33 158.10 438.36
Yolume, cm ³ lass, g loisture Content, % yry Density, pcf pec. Gravity (assumed) Yolume Solids, cm ³ Yolume Voids, cm ³ Yolume Voids, cm ³ Yolume Voids, cm ³	317.71 585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	Top Pres. Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	80.0 80.0 162.49 162.49 21.31 21.31]cm ³ /sec	Volume, cn Mass, g Moisture C Dry Density Volume Sol Volume Vo Volume Vo	Content, % (y, pcf Jids, cm³ oids, cm³	324.71 596.72 36.07 84.28 162.43 162.29 1.00 97.5%		Wt Soil & 1 Wt Tare Wt Moistur Wt Dry Soi Water Cont	Fare, f re Lost J tent	g 4 g 1 g 4 % 3.	138.55 0.00 46.76 138.55 3.46%		528.69 90.33 158.10 438.36
lass, g loisture Content, % ry Density, pcf pec. Gravity (assumed) 'olume Solids, cm ³ 'olume Vöids, cm ³ 'oid Ratio aturation, %	585.31 33.46 86.13 2.700 162.43 155.28 0.96 94.5%	Tot. B.P. Head, max. Head, min. Max. Grad. Min. Grad.	80.0 162.49 162.49 21.31 21.31]cm ³ /sec	Mass, g Moisture C Dry Densit Volume Sol Volume Vo Volume Ratio	Content, % (y, pcf Jids, cm³ oids, cm³	596.72 36.07 84.28 162.43 162.29 1.00 97.5%		Wt Tare Wt Moistur Wt Dry Soi Water Cont	re Lost 1 tent	g 1 g 4 % 3.	0.00 46.76 138.55 3.46%		90.33 158.10 438.36
Ioisture Content, % by Density, pcf pec. Gravity (assumed) folume Solids, cm ³ folume Voids, cm ³ foid Ratio aturation, %	33.46 86.13 2.700 162.43 155.28 0.96 94.5%	Head, max. Head, min. Max. Grad. Min. Grad.	162.49 162.49 21.31 21.31] cm ³ /sec	Moisture C Dry Density Volume Sol Volume Vo Void Ratio	y, pef lids, cm ³ oids, cm ³	36.07 84.28 162.43 162.29 1.00 97.5%		Wt Moistur Wt Dry Soi Water Con DESCRIPT	l tent TION	g <u>1</u> g <u>4</u> % <u>3</u> .	46.76 (38.55 (33.46%)		158.10 438.36
ry Density, pcf pec. Gravity (assumed) 'olume Solids, cm ³ 'olume Voids, cm ³ 'oid Ratio aturation, %	86.13 2.700 162.43 155.28 0.96 94.5%	Head, min. Max. Grad. Min. Grad.	162.49 21.31 21.31] cm ³ /sec	Dry Density Volume Sol Volume Vo Void Ratio	y, pef lids, cm ³ oids, cm ³	84.28 162.43 162.29 1.00 97.5%		Wt Dry Soi Water Cont DESCRIPT	l tent TION	g 4 % 3:	138.55 3.46%		438.36
folume Solids, cm ³ folume Voids, cm ³ foid Ratio aturation, %	162.43 155.28 0.96 94.5%	Min. Grad.	21.31]]cm ³ /sec	Volume Vo Void Ratio	oids, cm ³ , %	162.29 1.00 97.5%		Water Cont	tent "ION	% 3			
olume Voids, cm ³ oid Ratio aturation, %	155.28 0.96 94.5%]]]cm ³ /sec	Void Ratio	, %	1.00 97.5%				parse sand; yellov	vish brown.		
oid Ratio aturation, %	0.96 94.5%	p Rate	4.26E-05]cm ³ /sec		, %	97.5%				oarse sand; yellov	vish brown.		
aturation, %	94.5%	p Rate	4.26E-05	cm ³ /sec	Saturation,						parse sand; yellov	wish brown.		
	-	p Rate	4.26E-05]cm ³ /sec		USCS	СН		CLAY, som	ie fine to co	oarse sand; yellov	wish brown.		
DATE	Flow Pum	p Rate	4.26E-05]cm ³ /sec		USCS	СН		1					
DATE	Flow Pum	p Rate	4.26E-05	cm ³ /sec		USCS	СН	0.1.1.						
DATE														
DATE			-											50°
DATE		TIM	IE FUNCTIO	ONS, SECO	NDS			dP						
	DAY	HOUR	MIN	ТЕМР	dt	dt,acc	dt	dt,acc	Reading	Head	Gradient	Permeability		
				(°C)	(min)	(min)	(sec)	(sec)	(psi)	(cm)		(cm/sec)		_
06/08/18	43259	13	0	20.9	0	0	0	0	2.31	162.49	21.31	4.6E-08		
06/08/18	43259	13	5	20.9	5	5	300	300	2.31	162.49	21.31	4.6E-08		
06/08/18	43259	13	10	20.9	5	10	300	600	2.31	162.49	21.31	4.6E-08	*	
06/08/18	43259	13	15	20.9	5	15	300	900	2.31	162.49	21.31	4.6E-08		
06/08/18	43259	13	20	20.9	5	20	300	1200	2.31	162.49	21.31	4.6E-08	*	1
06/08/18	43259	13	25	20.9	5	25	300	1500	2.31	162.49	21.31	4.6E-08	*	
06/08/18	43259	13	30	20.9	5	30	300	1800	2.31	162.49	21.31	4.6E-08	*	
*TRANSC	RIBED FR	OM ORIGINA	AL DATA SI	HEETS					PEI	RMEABIL	ITY REPORTEI	D AS ** 4.6E-08 c	m/sec **	
														DATE
														CHECK
														REVIEW

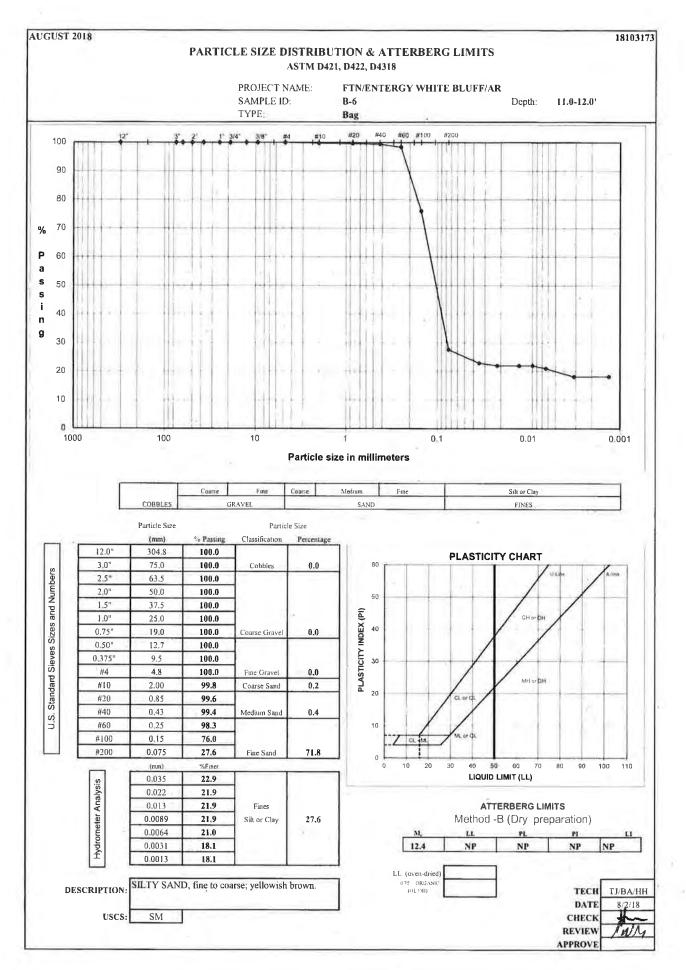


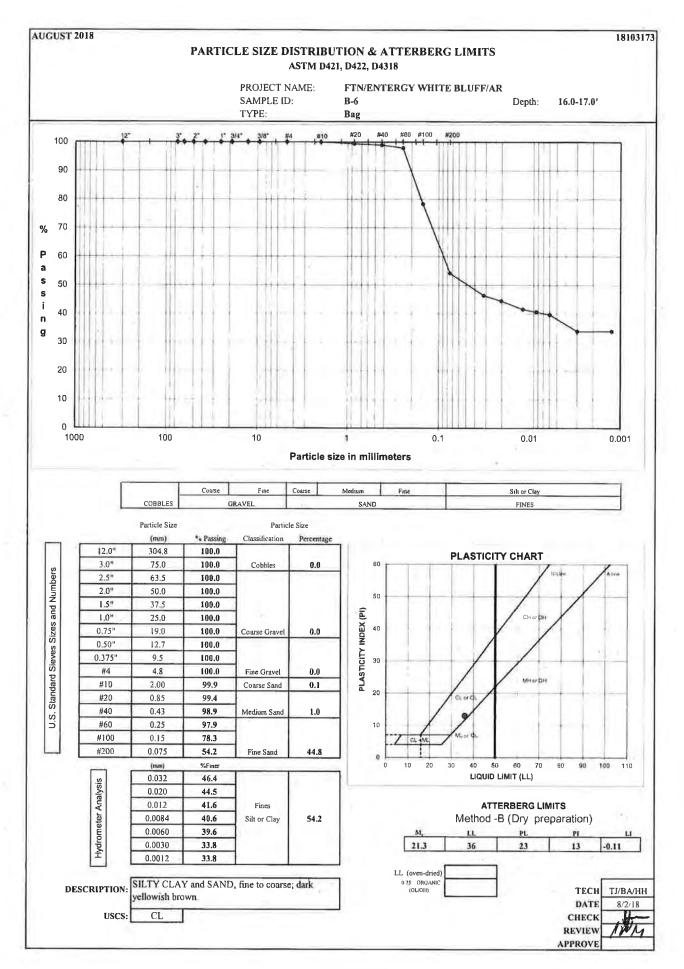
1.													
	Boring or Test Pit:	B-5			Boring	or Test Pit:				Boring or Test Pit:			
	Sample:				Dound	Sample:				Sample:			
	Depth:		ft			Depth:				Depth:			-
	Point No.:	1	n			Point No.:				Point No.:			
	ronic ivo	1				rome No.,				Folia (No			
													9
		Initial											
	Length =	6.012	în			Length =	6.009			Length =	5.925		
0	Diameter =	2.877	in			Diameter =	2.842			Diameter =	2.863		
	Wet Mass =	2.625	16		Ŵ	/et Mass =				Wet Mass =			
	Area =	6.501	in ²			Area =				Area =			
	Volume =	39.083	in ³			Volume =				Volume =			
	Specific Gravity =	2.69	(ASTM)	D854)	Specific	Gravity =				Specific Gravity =			
	Dry Mass of Solids =	2.073	lb	D	гу Mass o	of Solids =			1	Dry Mass of Solids =			
	Moisture Content =	26.6%			Moisture	Content =				Moisture Content =			
	Wet Unit Weight =	116.1	pcf		Wet Unit	t Weight =				Wet Unit Weight =			
	Dry Unit Weight =	91 7	pcf		Dry Unit	t Weight =				Dry Unit Weight =			
	Void Ratio =	0.83			Vo	id Ratio =				Void Ratio =			
94 	Percent Saturation =	86%		F	ercent Sa	turation =				Percent Saturation =			
6													
	After	Consoli	dation			After	Consolid	lation		After	r Consolid	lation	
	Length =	6.009	in			Length =		in		Length =		in	
	Diameter =	2.842	in			Diameter =	2.863	in		Diameter =		in	
	Area ==	6.345	111		Ľ	Area =	6.436	10		Area =		in ² (Meth	(a ba
	Volume =									Volume =			OU D)
		38.129				Volume =	38.129					in	1.1
6	Moisture Content =					Content =				Moisture Content =		c	
	Wet Unit Weight =					t Weight =				Wet Unit Weight =		pcf	- U
	Dry Unit Weight =				-	t Weight =				Dry Unit Weight =	94.0	pcf	
	Void Ratio =			_		id Ratio =				Void Ratio =			
	Percent Saturation =			P	ercent Sa	aturation =				Percent Saturation =	100%		
	B Parameter =	0.99			B Pa	arameter =	÷			B Parameter =	- ÷		
	Shear Rate =	0.089%	/min.		Sh	ear Rate =	0.099%	/min		Shear Rate =	0.092%	/min.	
	t ₅₀ =	03	min.			t ₅₀ =	0.6	min.		t ₅₀ =	01	min	
	Strain at Failure =	1.3%			Strain a	t Failure =	2.7%			Strain at Failure =	4.3%		
	Cell Pressure =	74.0	psi		Cell	Pressure =	80.0	psi		Cell Pressure =	85.0	psi	
	Back Pressure =	70.0	psi			Pressure =	70.0	psi		Back Pressure =	70.0	psi	
	Confining Pressure =	4.0	psi	C	onfining	Pressure =	10.0	psi	(Confining Pressure =	15.0	psi	$a = b_{0}$
	Notes: Sample de	conintion		ND and SILT		fine to m	adium: da	rk brown					
	Atterberg I	-	LL =		PL=		PI =		(ACTN / D	4210			
	Percent fin			100.0%	No. 4 =		- FI No. 200 =		(ASTM D	422, refer to separate			
	Specimen		X	Intact	10.4-	Reconstitu		13 170	(ASTNL	422, refer to separate	: report for	gradation	curve)
	Moisture f			Cuttings	x	Entire spec							1.1.1.1
	Saturation		x	Wet	~	• •	imen						
	Failure crit		X	(o'1/o'3)max		Dry (o'1-o'1)max		1% strain					3
	Membrane		X	Corrected	_	Not Correct	tad	170 Suam					
	Wiembrane	eneci.	L	Conceteu		Inor Cone	lica						
	Golder 4	Associ	ates In	2.		Title:							
	Atlan	ta, Ge	orgia			CONE				ulti-Stage) - ASTM			DODT
		,	0		-	CONS	ULIDAI	ED UNDI		RIAXIAL COMPR		IESI RE	PURI
Job Sho	rt Title: FTN/ENTERO	Y WHE	FE BLUE	F/AR					SAMPLE	AND TEST DATA	-		
Sample:						Technicia	n:	Reviewed	1:01	Start Date:	Job Num	ber:	Figure:
						FT/P	WM	1	SIL				
								Approved	d:				
	B-5	UD 3.	0-5.0'			Check;	A			7/10/2018	1810	3173	1
			_				1					-	

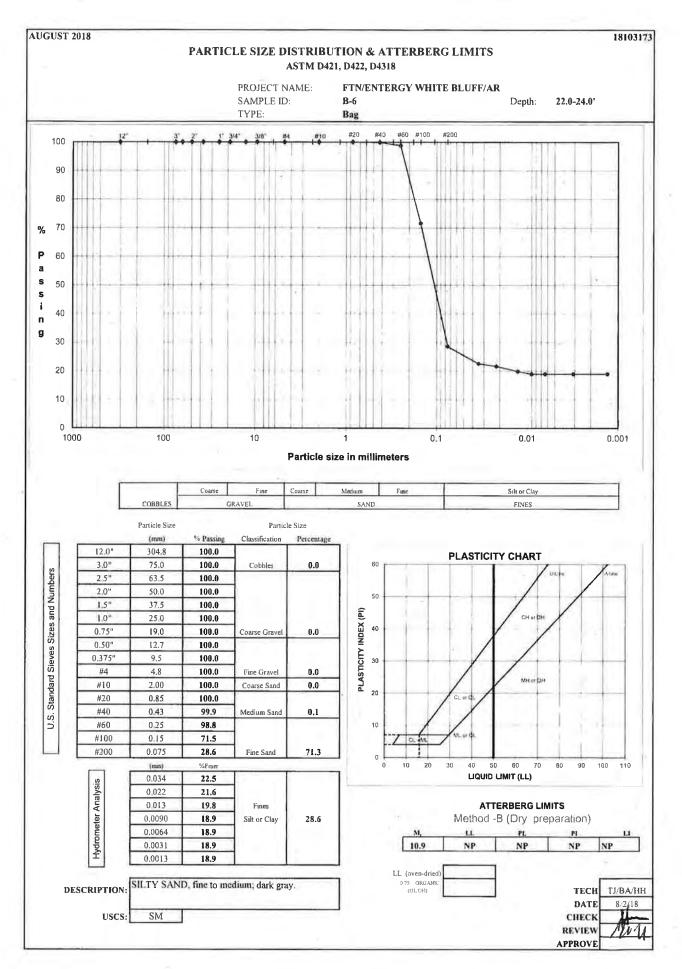


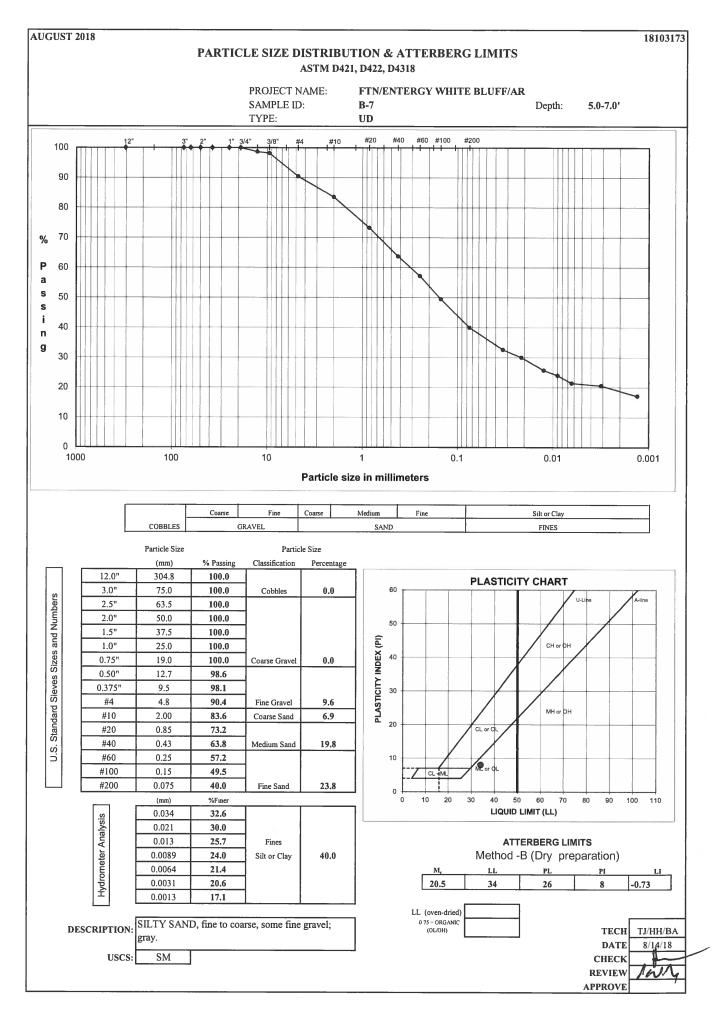




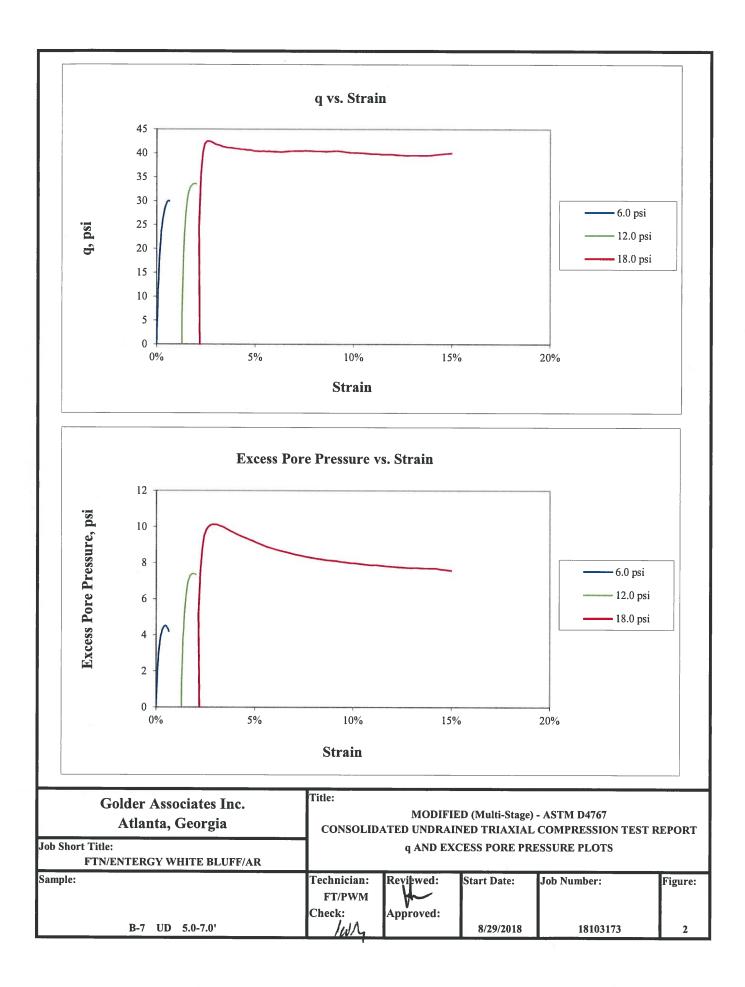

n	
3 8 8 8 9	Y X
л Хэ	х — х ¹⁰
्र संस्थ	
	~
	9 4

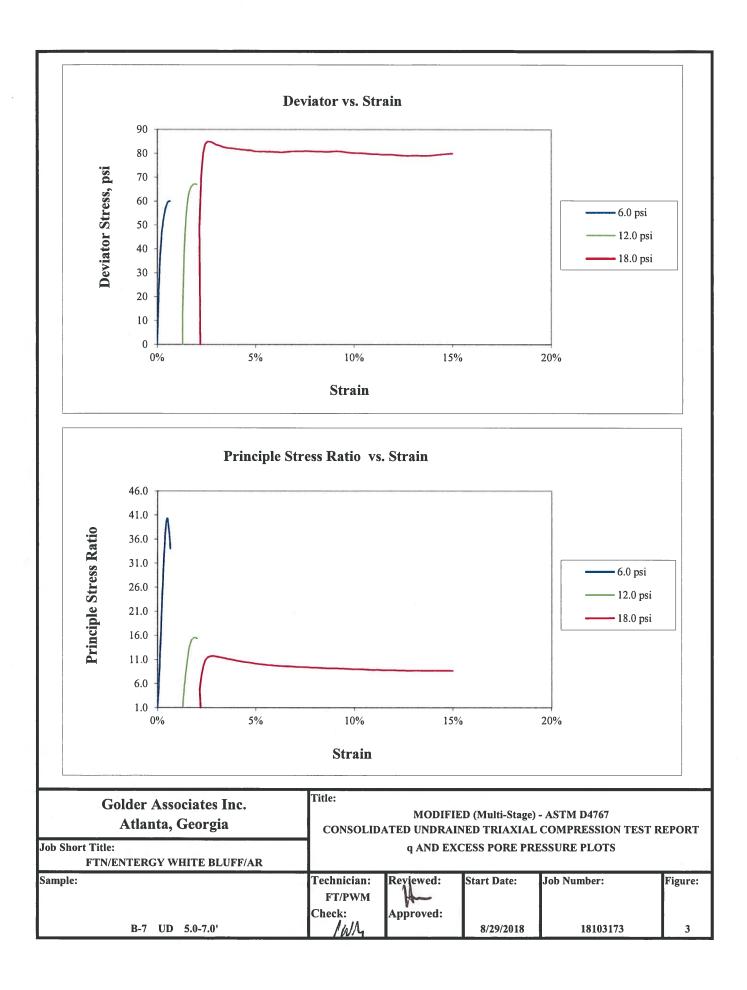


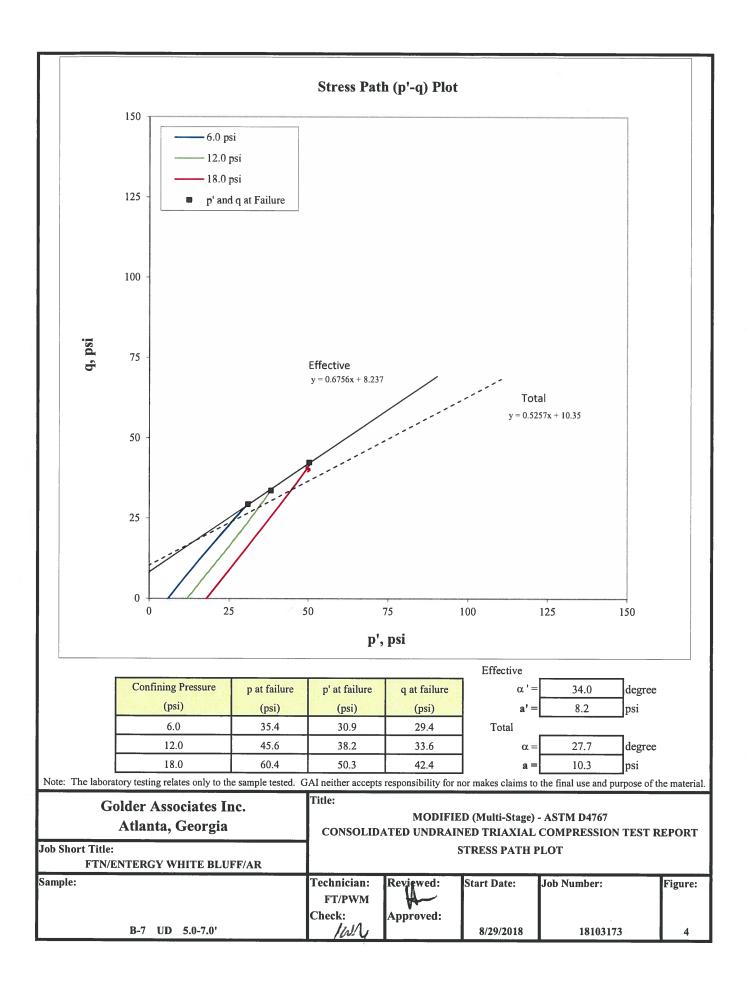


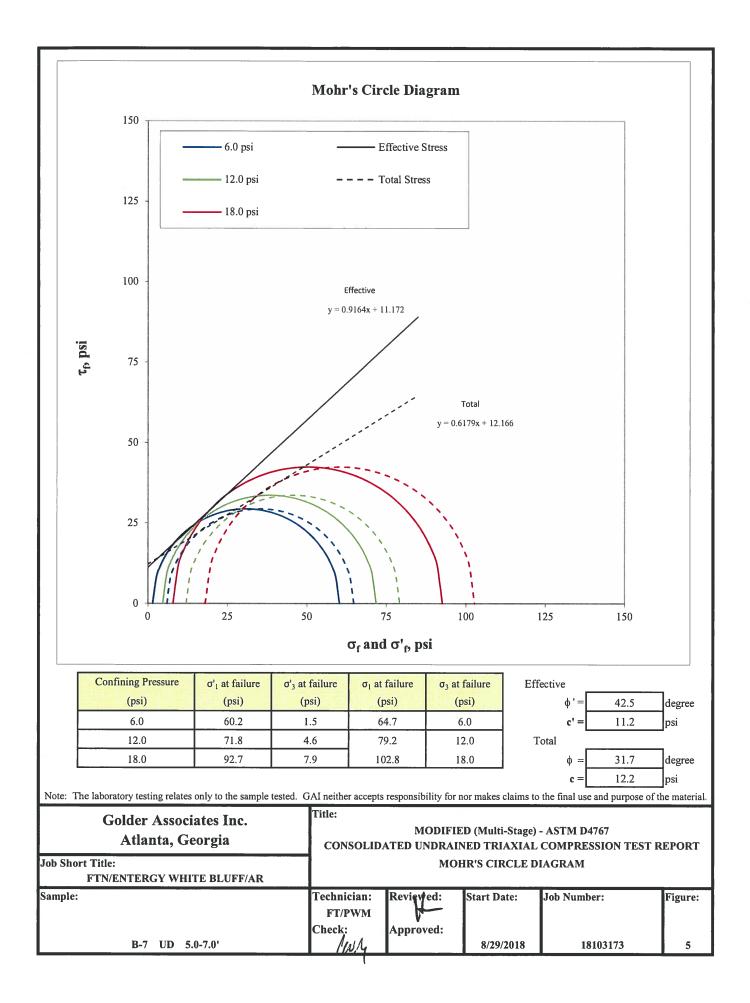


ROJECT NUMBER AMPLE ID B AMPLE TYPE U umple Data, Initial eight, inches iameter, inches rea, cm ²	18103173 8-5	B-Value, f	_	.R -12.0'	Flow P	AETHOD D Board # Flow Pump Cump Speed Technician	2 11	NT RATE (OF FLOW	-			
ROJECT NUMBER AMPLE ID B AMPLE TYPE U umple Data, Initial eight, inches iameter, inches rea, cm ²	18103173 3-5 JD 3.000 2.836	B-Value, f	10.0-		Flow P	Board # Flow Pump Jump Speed	8 2 11			-			
ROJECT NUMBER AMPLE ID B AMPLE TYPE U umple Data, Initial eight, inches iameter, inches rea, cm ²	18103173 3-5 JD 3.000 2.836	B-Value, f	10.0-		Flow P	Flow Pump ump Speed	2 11	c	OMMENTS				
AMPLE ID B AMPLE TYPE U umple Data, Initial eight, inches rea, cm ² olume, cm ³	3-5 JD 3.000 2.836	B-Value, f		-12.0'	Flow P	ump Speed	11						
AMPLE TYPE	3.000 2.836			-12.0']								
imple Data, Initial eight, inches iameter, inches rea, cm ² olume, cm ³	3.000 2.836		1.00		Sample Dat	Technician	FT	1		1.			
eight, inches iameter, inches rea, cm²	2.836		1.00		Sample Dat				1.1.1	1.000			
eight, inches iameter, inches rea, cm²	2.836		1.00	C 1	Sample Dat								
iameter, inches rea, cm ² plume, cm ³	2.836		1.00		-	ta, Final							2
rea, cm² blume, cm³		ICell Pres.		0	Height, inc		3.004					Sample	Samp
olume, cm ³	40.75	- C. C C C C C C C	88.0		Diameter, i	nches	2.898		WATER CO			Initial	Final
		Bot. Pres.	80.0		Area, cm ²	, 0	42.56		Wt Soil & T		g	663.16	756.6
	310.55	Top Pres.	80.0		Volume, cn	1 ⁷	324.70		Wt Soil & 1	fare, f	g	566.46	648.6
	663.16	Tot. B.P.	80.0		Mass, g		674.45		Wt Tare	_	g	0.00	82.40
oisture Content, %	17.07 113.82	Head, max. Head, min,	135.05 135.05		Moisture C		19.06		Wt Moistur		g	96.70	107.9
ec. Gravity (assumed)	2.700	Max. Grad.	135.05		Dry Density Volume Sol		108.86 209.80		Wt Dry Soil Water Cont		g %	566.46	566.29
		4 4						1	water Con	ent	70	17.07%	19.06%
	209.80	Min. Grad.	17.70		Volume Vo	ids, cm	114.90						
bid Ratio	0.48				Void Ratio		0.55	1	DECODIC				
-	96.0%				Saturation,	70	94.0%		DESCRIPT		ne to conver	sand, trace fine gravel; li	ight brown
FI	low Pumj	p Rate	1.18E-05	cm ³ /sec		USCS	CL	0					
	_												
		TIMI	FUNCTIO	NS SECO	NDS			ar	1		- 1		
DATE	DAY			NS, SECO		dt acc	dt	dP dt acc	Reading	Head	Gradient	Pormashility	
DATE	DAY	HOUR	E FUNCTIO MIN	ТЕМР	dt	dt,acc (min)	dt (sec)	dt,acc	Reading	Head	Gradient	Permeability	
		HOUR	MIN	TEMP (°C)	dt (min)	(min)	(sec)	dt,acc (sec)	(psi)	(cm)		(cm/sec)	
	DAY 43276 43276			TEMP (°C) 21.7	dt (min) 0	<u>(min)</u> 0	(sec) 0	dt,acc (sec) 0	(psi) 1.92	(cm) 135.05	17.70	(cm/sec) 1.5E-08	
06/25/18 06/25/18	43276	HOUR 12	MIN 0	TEMP (°C)	dt (min)	(min)	(sec)	dt,acc (sec)	(psi)	(cm)		(cm/sec)	
06/25/18 06/25/18 06/25/18	43276 43276	HOUR 12 12	MIN 0 5	TEMP (°C) 21.7 21.7	dt (min) 0 5	(min) 0 5	(sec) 0 300	dt,acc (sec) 0 300	(psi) 1.92 1.92	(cm) 135.05 135.05	17.70 17.70	(cm/sec) 1.5E-08 1.5E-08	
06/25/18 06/25/18 06/25/18	43276 43276 43276	HOUR 12 12 12	MIN 0 5 10	TEMP (°C) 21.7 21.7 21.7 21.7	dt (min) 0 5 5	(min) 0 5 10	(sec) 0 300 300	dt,acc (sec) 0 300 600	(psi) 1.92 1.92 1.92	(cm) 135.05 135.05 135.05	17.70 17.70 17.70	(cm/sec) 1.5E-08 1.5E-08 1.5E-08	
06/25/18 06/25/18 06/25/18 06/25/18 06/25/18	43276 43276 43276 43276	HOUR 12 12 12 12	MIN 0 5 10 15	TEMP (°C) 21.7 21.7 21.7 21.7 21.7	dt (min) 0 5 5 5 5	(min) 0 5 10 15	(sec) 0 300 300 300 300	dt,acc (sec) 0 300 600 900	(psi) 1.92 1.92 1.92 1.92 1.92	(cm) 135.05 135.05 135.05 135.05	17.70 17.70 17.70 17.70 17.70	(cm/sec) 1.5E-08 1.5E-08 1.5E-08 1.5E-08	+
06/25/18 06/25/18 06/25/18 06/25/18 06/25/18 06/25/18	43276 43276 43276 43276 43276 43276	HOUR 12 12 12 12 12 12	MIN 0 5 10 15 20	TEMP (°C) 21.7 21.7 21.7 21.7 21.7 21.7	dt (min) 0 5 5 5 5 5	(min) 0 5 10 15 20	(sec) 0 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	(psi) 1.92 1.92 1.92 1.92 1.92 1.92	(cm) 135.05 135.05 135.05 135.05 135.05	17.70 17.70 17.70 17.70 17.70	(cm/sec) 1.5E-08 1.5E-08 1.5E-08 1.5E-08 1.5E-08	* *

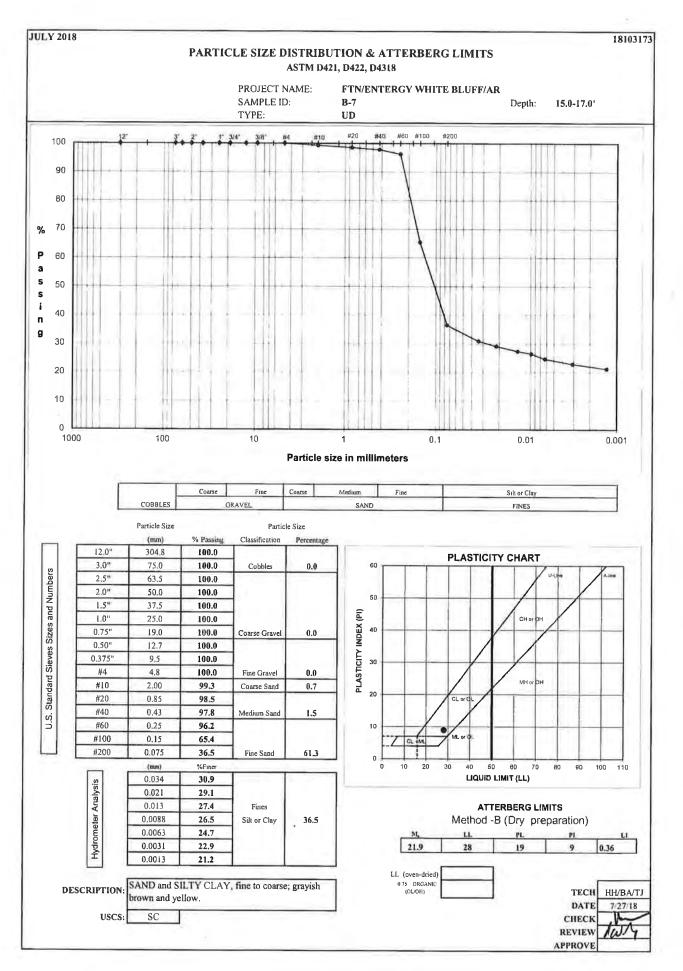




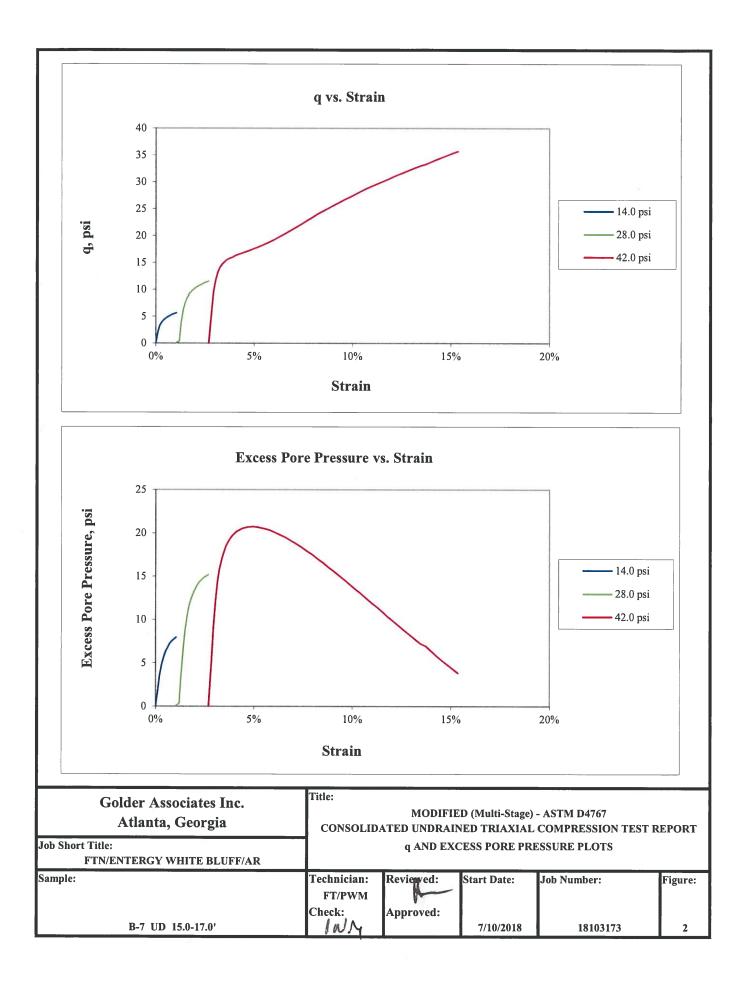


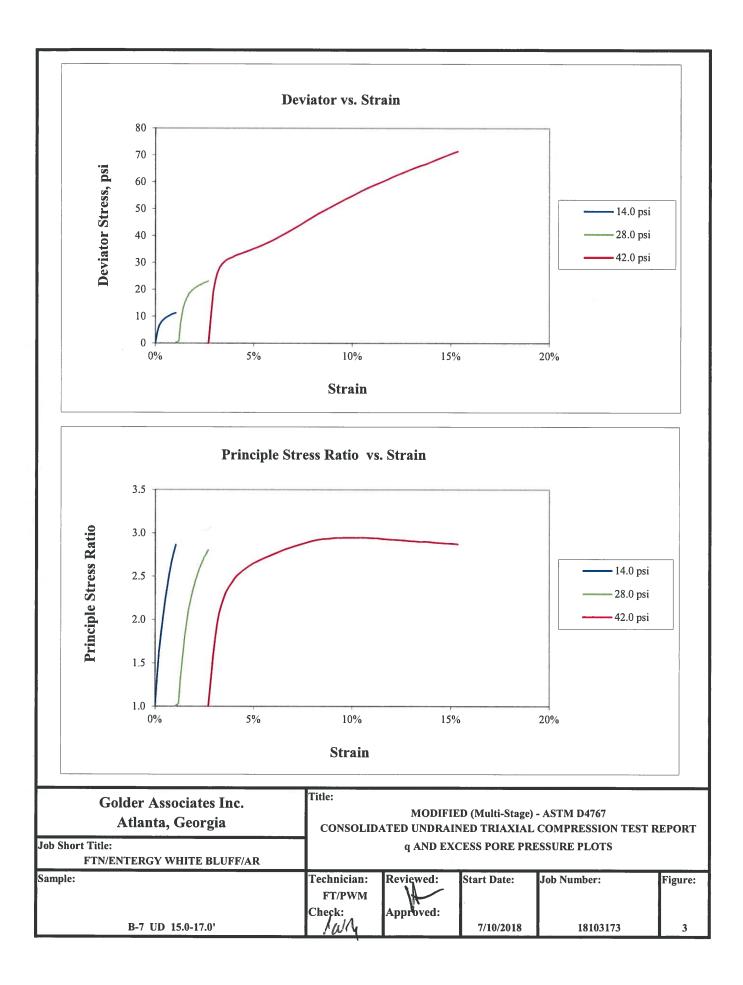

Boring or Test Pit: Sample:			Boring	or Test Pit: Sample:				Boring or Test Pit: Sample:			
-	5.0-7.0	ft		Depth:				Depth:			
Point No.:		it.		Point No.:				Point No.:			
	Initial										
Length =	6.041	in		Length =	6.023			Length =	5.966		
Diameter =	2.848	in	I	Diameter =	2.883			Diameter =	2.897		
Wet Mass =	2.811	lb	V	vet Mass =				Wet Mass =			
	6.370	in ²		Area =				Area =			
Volume =	38.484	in ³		Volume =				Volume =			
Specific Gravity =	2.66	(ASTM D854)	Specific	Gravity =				Specific Gravity =			
Dry Mass of Solids =	2.332	lb	Dry Mass	of Solids =			l	Dry Mass of Solids =			
Moisture Content =	20.5%		Moisture	Content =				Moisture Content =			
Wet Unit Weight =	126.2	pcf	Wet Uni	t Weight =				Wet Unit Weight =			
Dry Unit Weight =	104.7	pcf	Dry Uni	t Weight =				Dry Unit Weight =			
Void Ratio =	0.58			oid Ratio =				Void Ratio =			
Percent Saturation =	94%		Percent Sa	aturation =				Percent Saturation =			
After	· Consoli	dation		After	· Consoli	dation		After	r Consolio	dation	
Length =		in		Length =		in		Length =		in	
Diameter =		in	I	Diameter =				Diameter =		in	
	6.529		-		6.592	•••		Area =		in ² (Meth	nod B)
Volume =				Volume =				Volume =			iou D)
Moisture Content =			Moisture	Content =	0,1020			Moisture Content =		•••	
Wet Unit Weight =				t Weight =				Wet Unit Weight =		pcf	
Dry Unit Weight =				t Weight =				Dry Unit Weight =		pcf	
Void Ratio =				oid Ratio =				Void Ratio =	0.62	Per	
Percent Saturation =			Percent Sa	aturation =				Percent Saturation =	100%		
B Parameter =	0.96		DD								
Shear Rate =		min		arameter = lear Rate =	0.0870/	Imin		B Parameter = Shear Rate =	0.000%	Imin	
$t_{50} =$	1.2	min.	31	$t_{50} =$	0.08778	min.		$t_{50} =$	0.090%	min.	
Strain at Failure =			Strain a	t Failure =				Strain at Failure =			
					-07-00				21070		
Cell Pressure =	66.0	psi		Pressure =	72.0	psi		Cell Pressure =		psi	
Back Pressure =		psi		Pressure =		-		Back Pressure =		psi	
Confining Pressure =	6.0	psi	Confining	Pressure =	12.0	psi	(Confining Pressure =	18.0	psi	
Notes: Sample de Atterberg	-	: (SM) SILTY SAN LL = 34	ND, fine to co PL =		fine grav PI =		(ASTM E	04318)			
Percent fi		3/4 in. = 100.0%			No. 200 =		•	422, refer to separate	report for	r gradatior	1 curve)
Specimen		X Intact		Reconstitu			(1.0.1.1.1.2	iss, ioioi to sepurate	report to	Gradution	104110)
Moisture		Cutting	s X	Entire spe							
Saturation	method:		, <u> </u>	Dry							
Failure cr		\mathbf{X} $(\sigma'_1/\sigma'_3)_n$	nax	$(\sigma'_1 - \sigma'_3)_{max}$		% strain					
Membran	e effect:	X Correct		Not Corre	cted	-					
				ant it							
Golder	Associ	ates Inc.		Title:				-141 64- > + 0005 5	DARCE		
Atlar	ita, Ge	eorgia		CONS				ulti-Stage) - ASTM		TFOT DT	DODT
Job Short Title:		<u> </u>			ULIDAI	ED UND		TRIAXIAL COMPR AND TEST DATA		IEST RE	PORT
	GY WHI	TE BLUFF/AR									
Sample:			_	Technicia FT/P	XX/X/	Reviewe	d:	Start Date:	Job Num	ıber:	Figure:
				Check:		Approve	ed:				1
B-7	UD 5.	0-7.0'	2	Pu	14			8/29/2018	1810	03173	1

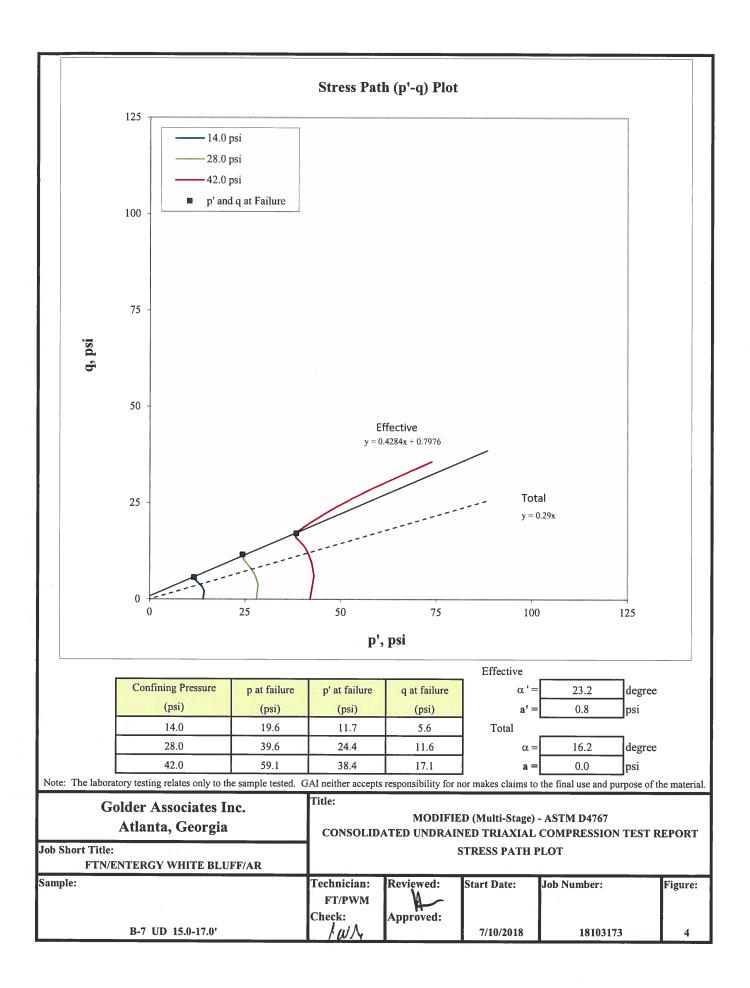
ſ

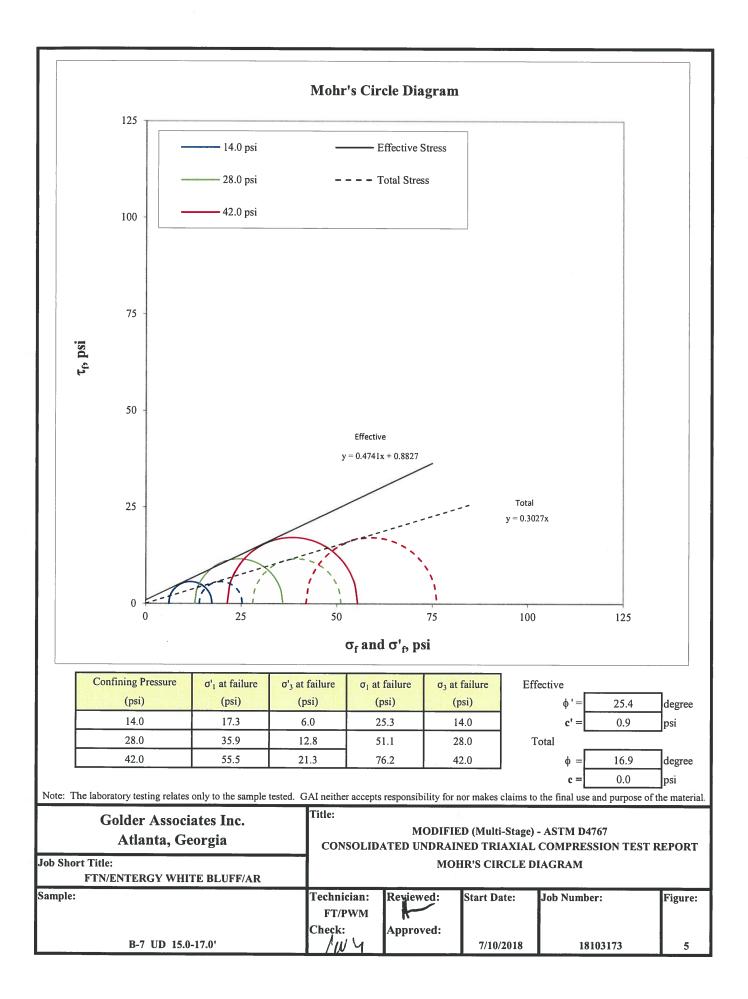


	Golder Associates Inc. Atlanta, Georgia	Tit		MODIFIED ()	Multi-Stage) - ASTM D4'		
Job Short Title:	FTN/ENTERGY WHITE BLUFF/AR			SPECIMEN PHO	TOGRAPH - Single Spec	imen	
Sample:		Tec	FT/PWM	Reviewed: Approved:	Start Date:	Job Number:	Figure:

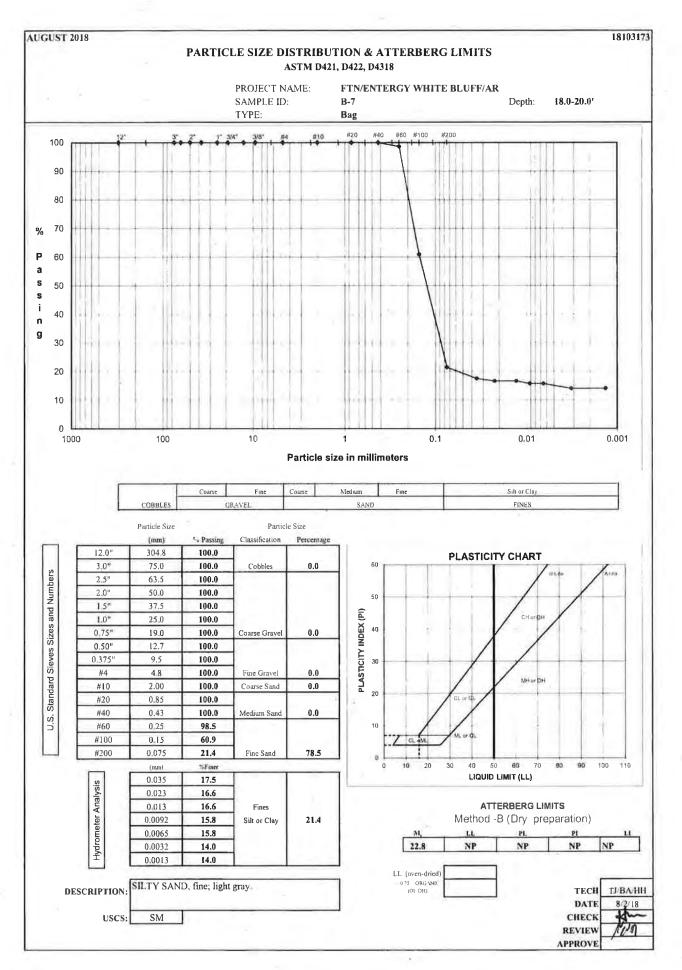


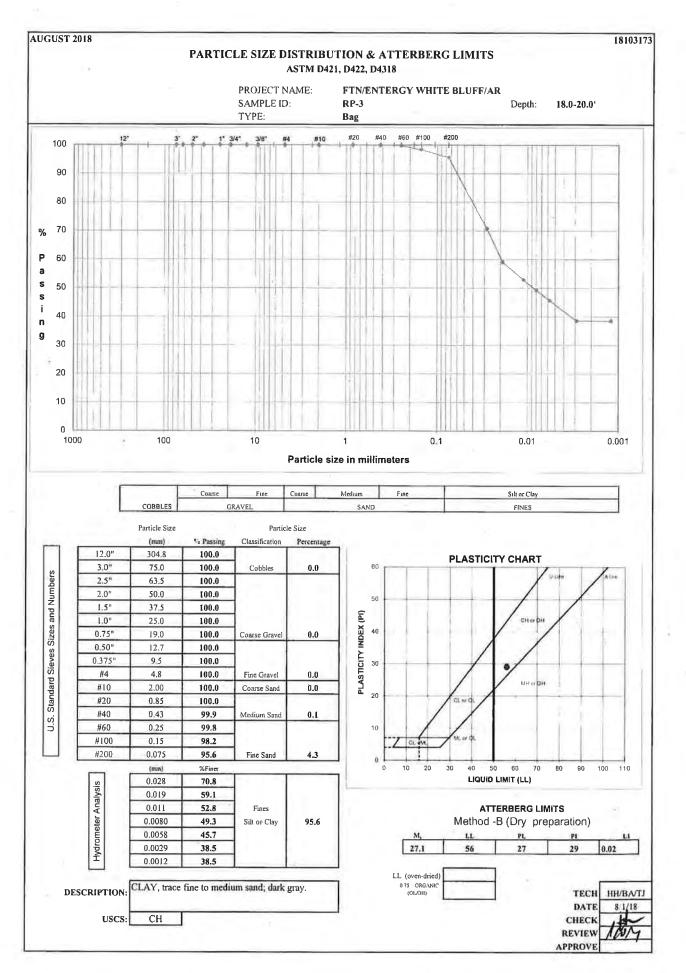

						FLEXIB	LE WALL		BILITY						
					,	METHOD I	ASTM E		OF FLOW						
						METHODI	, constra	NI KATE	OF FLOW						
PROJECT TITLE	FTN/ENT	ERGY WHIT	E BLUFF/A	R	1	Board #	15	1 0	OMMENTS	1					
PROJECT NUMBER	1810317	3			1	Flow Pump	2	1			1				
SAMPLE ID	B-7		7.0	-9.0'	Flow I	Pump Speed	7	1	1						
AMPLE TYPE	UD		_]	Technician	FT]						_	
										-			_		_
ample Data, Initial					Sample Da	ta, Final	_								
leight, inches	3.000	B-Value, f	0.98	0.1	Height, inc	hes	3.001					Sample			Sample
Diameter, inches	2.883	Cell Pres.	88.0	0	Diameter, i	inches	2.874		WATER C	ONTENTS	5	Initial			Final
Area, cm ²	42.12	Bot. Pres.	80.0	ł	Area, cm ²		41.85		Wt Soil & 7	l'are, i	g	614.74	(-		714.76
/olume, cm ³	320.92	Top Pres.	80.0		Volume, cr	n ³	319.03		Wt Soil & 1	l'are, f	g	504.72			586.83
Aass, g	614.74	Tot. B.P.	80.0		Mass, g		632.69		Wt Tare		g	0.00			82.29
Moisture Content, %	21.80	Head, max.	61.90		Moisture C		25.36		Wt Moistur		g	110.02			127.93
Dry Density, pcf spec. Gravity (assumed)	<u>98.14</u> 2,700	Head, min. Max. Grad.	61.90 8.12		Dry Densit Volume So		98.72		Wt Dry Soi		g	504.72			504.54
	-	Contraction of the					186.93		Water Cont	lent	%	21.80%			25.36%
/olume Solids, cm ³ /olume Voids, cm ³	186.93 133.99	Min. Grad.	8.12	1	Volume Vo		132.10								
		4			Void Ratio		0.71								
	0 73				C 4 41		01001		-						
	0.72	4			Saturation,	,%	96.9%	l i	DESCRIPT		ND. fine to r	nedium: vellow	ish hrown		
/oid Ratio aturation, %	0.72 82.1%	1			Saturation,	, %	96.9%	l			ND, fine to n	nedium; yellow	ish brown.		
	-	P Rate	2.38E-04	cm ³ /sec	Saturation,	,% USCS	96.9%	1			AND, fine to n	nedium; yellow	rish brown.		
	82.1%	p Rate	2.38E-04	cm ³ /sec	Saturation,			1			AND, fine to n	nedium; yellow	rish brown.		
	82.1%							 			ND, fine to n	nedium; yellow	rish brown.		
	82.1%	TIMI		cm ³ /sec DNS, SECO TEMP		USCS	CL	dP dt.acc		AY and SA]
aturation, %	82.1% Flow Pum		E FUNCTIO	ONS, SECO	NDS			dP dt,acc (sec)			ND, fine to n	Per	rmeability]
aturation, %	82.1% Flow Pum	TIMI	E FUNCTIO	DNS, SECO TEMP	NDS dt	USCS dt,acc	CL dt	dt,acc	SILTY CL/	AY and SA		Per (meability]
aturation, %	82.1% Flow Pum DAY	TIMI HOUR	E FUNCTIO MIN	DNS, SECO TEMP (°C)	NDS dt (min)	USCS dt,acc (min)	CL dt (sec)	dt,acc (sec)	SILTY CLA Reading (psi)	AY and SA Head (cm)	Gradient	Per (rmeability cm/sec)		
aturation, % DATE 06/08/18 06/08/18 06/08/18	82.1% Flow Pum DAY 43259 43259 43259	TIMI HOUR 14	E FUNCTIO MIN 30	DNS, SECO TEMP ([®] C) 21.8	NDS dt (min) 0	USCS dt,acc (min) 0	CL dt (sec) 0	dt,acc (sec) 0	SILTY CLA Reading (psi) 0.88	AY and SA Head (cm) 61.90	Gradient 8.12	Per (rmeability cm/sec) 6.7E-07		
aturation, % DATE 06/08/18 06/08/18	82.1% Flow Pum DAY 43259 43259	T1M1 HOUR 14 14	E FUNCTIO MIN 30 35	DNS, SECO TEMP (°C) 21.8 21.8	NDS dt (min) 0 5	USCS dt,acc (min) 0 5	CL dt (sec) 0 300	dt,acc (sec) 0 300	Reading (psi) 0.88 0.88	Head (cm) 61.90 61.90	Gradient 8.12 8.12	Per ((((rmeability cm/sec) 6.7E-07 6.7E-07	*	
aturation, % DATE 06/08/18 06/08/18 06/08/18	82.1% Flow Pum DAY 43259 43259 43259	T1MI HOUR 14 14 14	E FUNCTIC MIN 30 35 40	DNS, SECO TEMP (°C) 21.8 21.8 21.8	NDS dt (min) 0 5 5 5	USCS dt,acc (min) 0 5 10	CL dt (sec) 0 300 300	dt,acc (sec) 0 300 600	Reading (psi) 0.88 0.88 0.88	Head (cm) 61.90 61.90 61.90	Gradient 8.12 8.12 8.12 8.12	Per (((((((rmeability cm/sec) 6.7E-07 5.7E-07 5.7E-07 5.7E-07		
aturation, % DATE 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18	82.1% Flow Pum DAY 43259 43259 43259 43259 43259 43259 43259 43259	TIMI HOUR 14 14 14 14 14 14 14	E FUNCTIC MIN 30 35 40 45	DNS, SECO TEMP (°C) 21.8 21.8 21.8 21.8 21.8	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CL dt (sec) 0 300 300 300 300	dt,acc (sec) 0 300 600 900	SILTY CL/ Reading (psi) 0.88 0.88 0.88 0.88 0.88	Head (cm) 61.90 61.90 61.90 61.90 61.90	Gradient 8.12 8.12 8.12 8.12 8.12	Per ((((((rmeability cm/sec) 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07	*	
aturation, % DATE 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18	82.1% Flow Pum DAY 43259 43259 43259 43259 43259 43259 43259 43259 43259	TIMI HOUR 14 14 14 14 14 14 14 14 15	E FUNCTIO MIN 30 35 40 45 50 55 0	DNS, SECO TEMP (⁴ C) 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	NDS dt (min) 0 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20	CL dt (sec) 0 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	Reading (psi) 0.88 0.88 0.88 0.88 0.88 0.88	Head (cm) 61.90 61.90 61.90 61.90 61.90 61.90	Gradient 8.12 8.12 8.12 8.12 8.12 8.12	Per (((((((((((rmeability cm/sec) 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07	*	
aturation, % DATE 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18	82.1% Flow Pum DAY 43259 43259 43259 43259 43259 43259 43259 43259 43259	TIMI HOUR 14 14 14 14 14 14 14	E FUNCTIO MIN 30 35 40 45 50 55 0	DNS, SECO TEMP (⁴ C) 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CL dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	Head (cm) 61.90 61.90 61.90 61.90 61.90 61.90 61.90 61.90	Gradient 8.12 8.12 8.12 8.12 8.12 8.12 8.12	Per (((((((((((((((((((rmeability cm/sec) 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07	* *	
aturation, % DATE 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18	82.1% Flow Pum DAY 43259 43259 43259 43259 43259 43259 43259 43259 43259	TIMI HOUR 14 14 14 14 14 14 14 14 15	E FUNCTIO MIN 30 35 40 45 50 55 0	DNS, SECO TEMP (⁴ C) 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CL dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	Head (cm) 61.90 61.90 61.90 61.90 61.90 61.90 61.90 61.90	Gradient 8.12 8.12 8.12 8.12 8.12 8.12 8.12 8.12	Per (((((((((((((((((((rmeability cm/sec) 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07	* *	DATE
aturation, % DATE 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18	82.1% Flow Pum DAY 43259 43259 43259 43259 43259 43259 43259 43259 43259	TIMI HOUR 14 14 14 14 14 14 14 14 15	E FUNCTIO MIN 30 35 40 45 50 55 0	DNS, SECO TEMP (⁴ C) 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CL dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	Head (cm) 61.90 61.90 61.90 61.90 61.90 61.90 61.90 61.90	Gradient 8.12 8.12 8.12 8.12 8.12 8.12 8.12 8.12	Per (((((((((((((((((((rmeability cm/sec) 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07	* *	DATE
aturation, % DATE 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18 06/08/18	82.1% Flow Pum DAY 43259 43259 43259 43259 43259 43259 43259 43259 43259	TIMI HOUR 14 14 14 14 14 14 14 14 15	E FUNCTIO MIN 30 35 40 45 50 55 0	DNS, SECO TEMP (⁴ C) 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	NDS dt (min) 0 5 5 5 5 5 5 5 5	USCS dt,acc (min) 0 5 10 15 20 25	CL dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	Head (cm) 61.90 61.90 61.90 61.90 61.90 61.90 61.90 61.90	Gradient 8.12 8.12 8.12 8.12 8.12 8.12 8.12 8.12	Per (((((((((((((((((((rmeability cm/sec) 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07 5.7E-07	* *	1.1.1.1.1.1.1.1.1.1

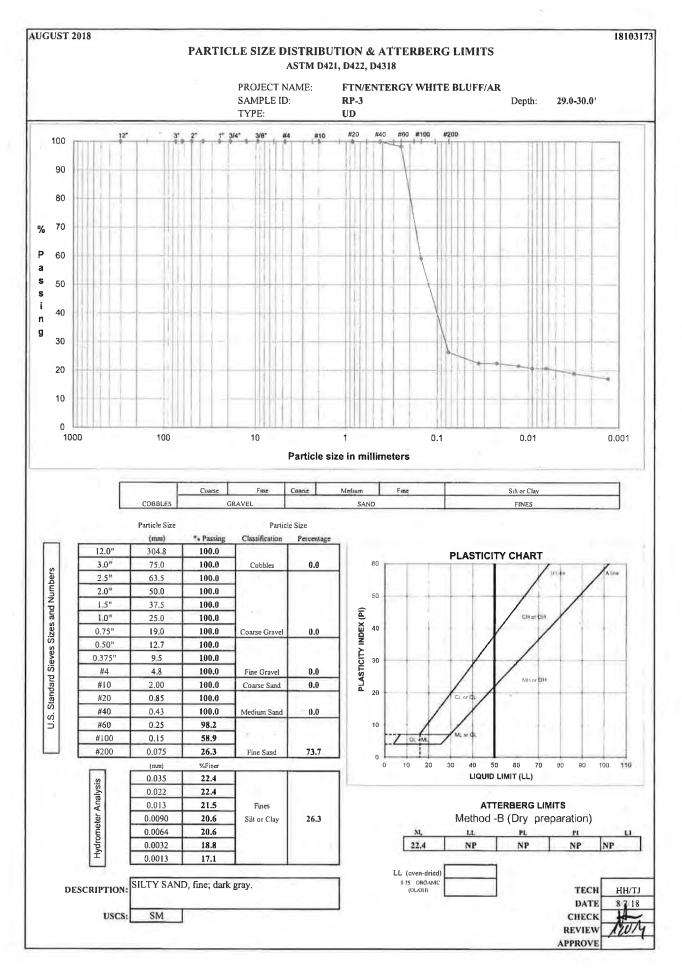


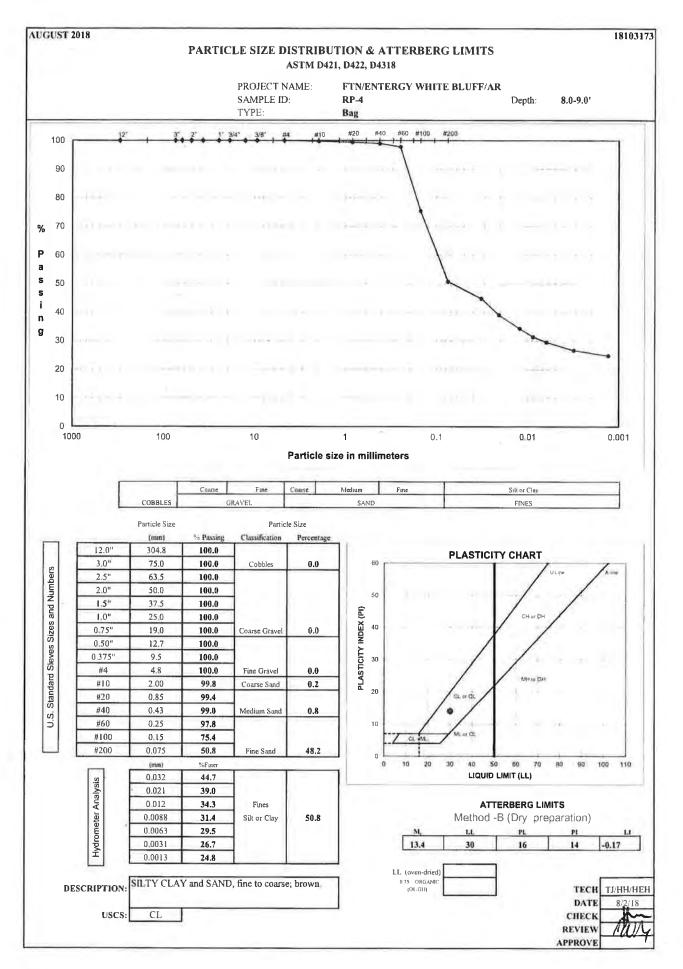

		CIFIC GRAVITY OF ASTM D-854 (CNOMETER METI		÷
PROJECT TITLE				
PROJECT MILLE PROJECT NUMBER		WHITE BLUFF/AR 03173	SAMPLE ID	B-7
I ROJECI NUMBER	101	03175	SAMPLE ID SAMPLE TYPE	UD
FESTED FOR		Gs	SAMPLE TYPE	15.0-17.0'
	OF MATERIAL PASSING			
Weight Soil and Tare, Init		166.2	24	
Weight Soil and Tare, Fin		165.1		
Weight Of Tare (gm)		42.9		
Weight Of Moisture (gm)		42.9		
Weight Of Dry Soil (gm)		122.2		
Hygroscopic Moisture In	(0/)			
Hygroscopic Moisture III	.70)	0.99	/0	
Test Method			Method - B	
Pycnometer Number			11	
rychometer Number	Weight Buggemeter Empty	(am)	159.54	
	Weight Pycnometer Empty Volume of Pycnometer (gm		499.57	
	Weight Pycnometer and W		658.13	
	Mass of Pycnometer and W			
	Observed Temperature (Tb			
Weight of Soil, Water & Temperature, C	Pycnometer (gm)		(B) 688.66 23.5	
	Density of water @ tested t	emperature (g/ml)	1.00	
Tare Number Weight of Dry Soil Slurr Weight of Tare	Weight of Dry Soil (gm)		(C)	
	Temperature Coefficient		0.9992	
	SPECIFIC GRAVIT G @ 20 ⁰ C = [C/(A-(B - C))]*(Y (G) (K)	2.620	
METHOD - A	WET METHO	DD	METHOD OF AIR REMOVA	AL
METHOD - B	OVEN-DRIEI	D METHOD	VACUUM	
		Recommended Mass for	Test Specimen	
	<u></u>		Specimen Dry Mass	
			when using 500 ml	
		Туре	Pycnometer	
		SP-SM	100	
		SM, SC	75 50	
		R CLAY	50	
				ECH FT
			D	ATE 7/31/18
				ECK A

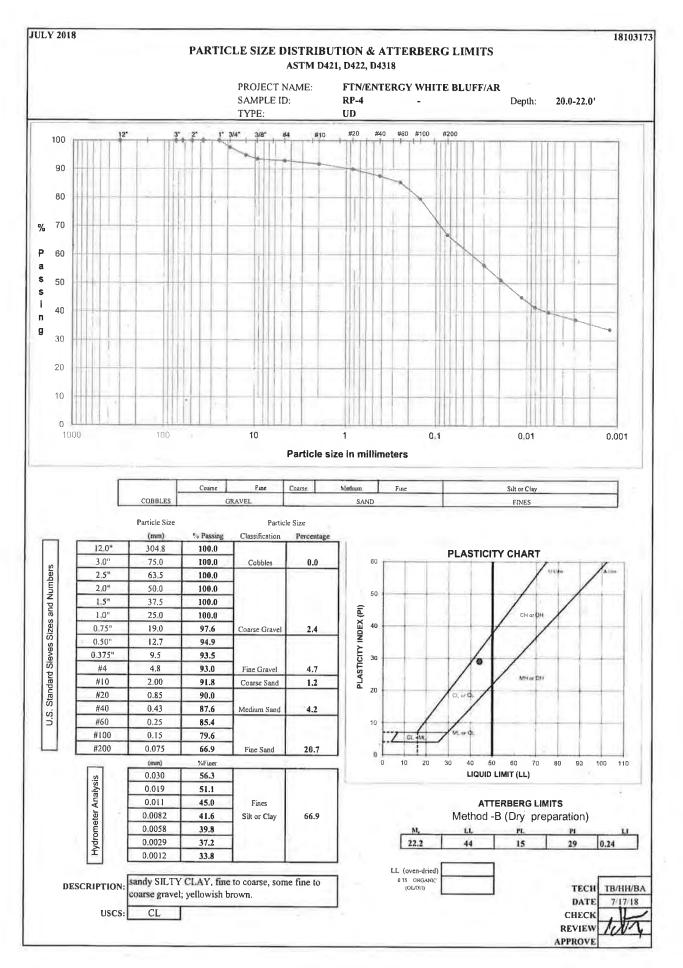
Boring or Test Pit: Sample: Depth: Point No.:	1 15.0-17.0) ft	E	st Pit: mple: Depth: t No.:				Boring or Test Pit: Sample: Depth: Point No.:			
Length = Diameter = Wet Mass = Area = Volume = Specific Gravity = Dry Mass of Solids = Moisture Content = Wet Unit Weight = Dry Unit Weight = Void Ratio = Percent Saturation =	2.877 2.817 6.501 39.083 2.62 2.311 21.9% 124.5 102.2 0.60	(ASTM D854) lb Dr pcf pcf	Diam Wet M A	eter = 2.8 Iass = 1 Iass = 1 Iass = 1 Ias	936 389			Length = Diameter = Wet Mass = Area = Volume = Specific Gravity = ry Mass of Solids = Moisture Content = Wet Unit Weight = Dry Unit Weight = Void Ratio = Percent Saturation =	5.798 2.923		
	6.556 38.914	in in	Diam A	Area = 6.7 ame = 38. tent = ight = atio =	798 923 712	ation in in		After Length = Diameter = Area = Volume = Moisture Content = Wet Unit Weight = Dry Unit Weight = Void Ratio = Percent Saturation =	2.947 6.822 38.914 22.5% 125.8	in in in ² (Metho	od B)
B Parameter = Shear Rate = t ₅₀ = Strain at Failure =	0.094% 1.0	/min. min.	B Param Shear F Strain at Fai	Rate = 0.10 $t_{50} = 0$		/min. min.		B Parameter = Shear Rate = t_{50} = Strain at Failure =	0.099% 0.8 4.7%	/min. min.	
Cell Pressure = Back Pressure = Confining Pressure =	50.0	psi psi psi Co	Cell Press Back Press onfining Press	sure = 5(psi psi psi	С	Cell Pressure = Back Pressure = onfining Pressure =	92.0 50.0 42.0	psi psi psi	
Atterberg Percent fi Specimer Moisture	limits: ner: type: from: n method: iterion:	$(SC) SAND and SILT LL = 28 3/4 in. = 100.0% X Intact Cuttings X Wet X (\sigma'_1/\sigma'_3)maxX Corrected$	PL = 19 No. 4 = 100 X Ent Dry (o'1-	.0% No. 2 constituted ire specime	PI = 200 =	9	(ASTM D4		report for	r gradation	curve)
Atla Job Short Title:	nta, Ge		Titl		DAT	ED UNDR	AINED T	llti-Stage) - ASTM I RIAXIAL COMPR AND TEST DATA		TEST RE	PORT
FTN/ENTER Sample:	<u>GY WHI</u>	TE BLUFF/AR		chnician: FT/PWM eck:	r I	Reviewed: Approved	-	Start Date:	Job Num	lber:	Figure:
B-7	UD 15.0	-17.0'		^{eck:} /WA	1	- ppi oreu	·	7/10/2018	181(03173	1

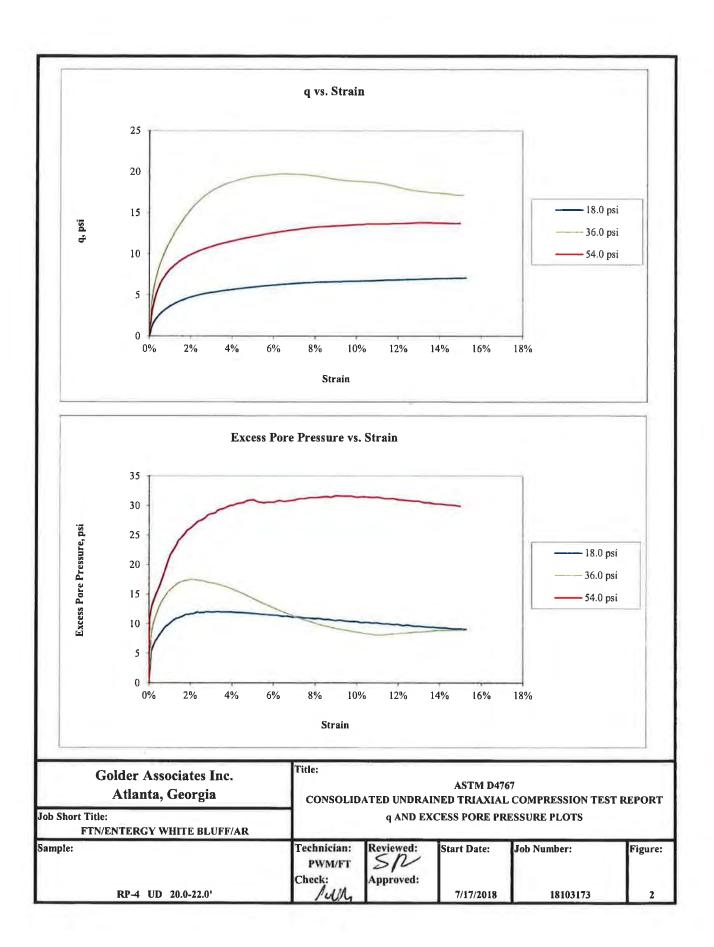


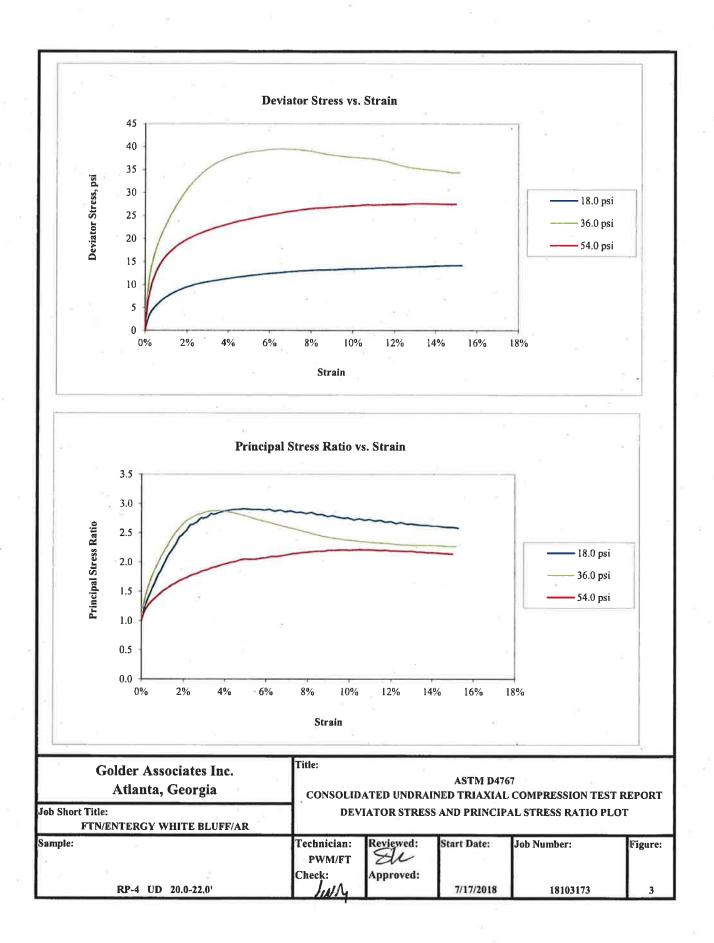


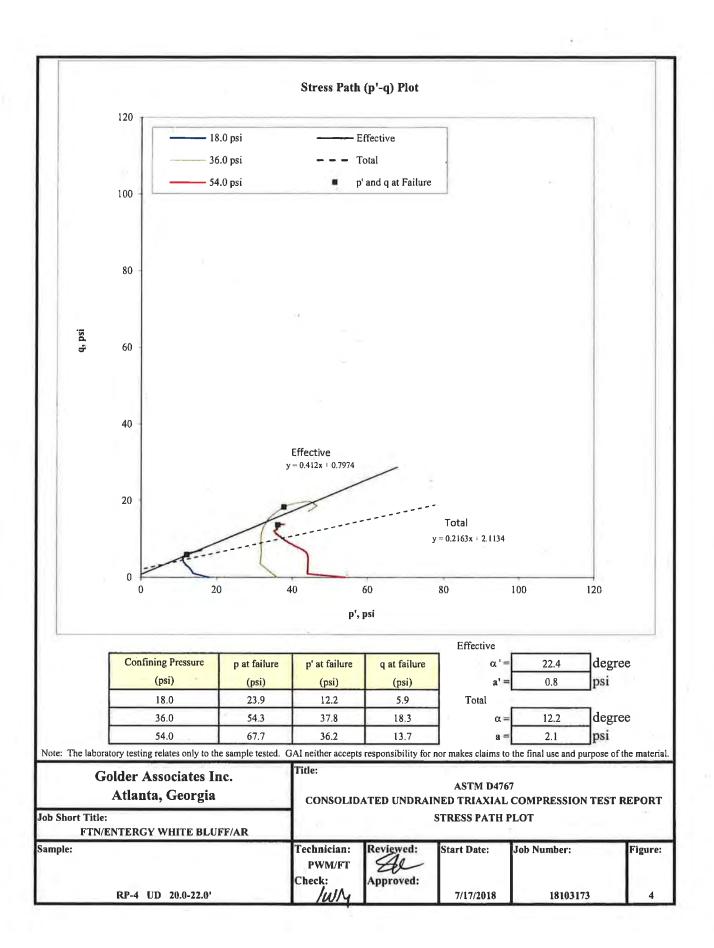


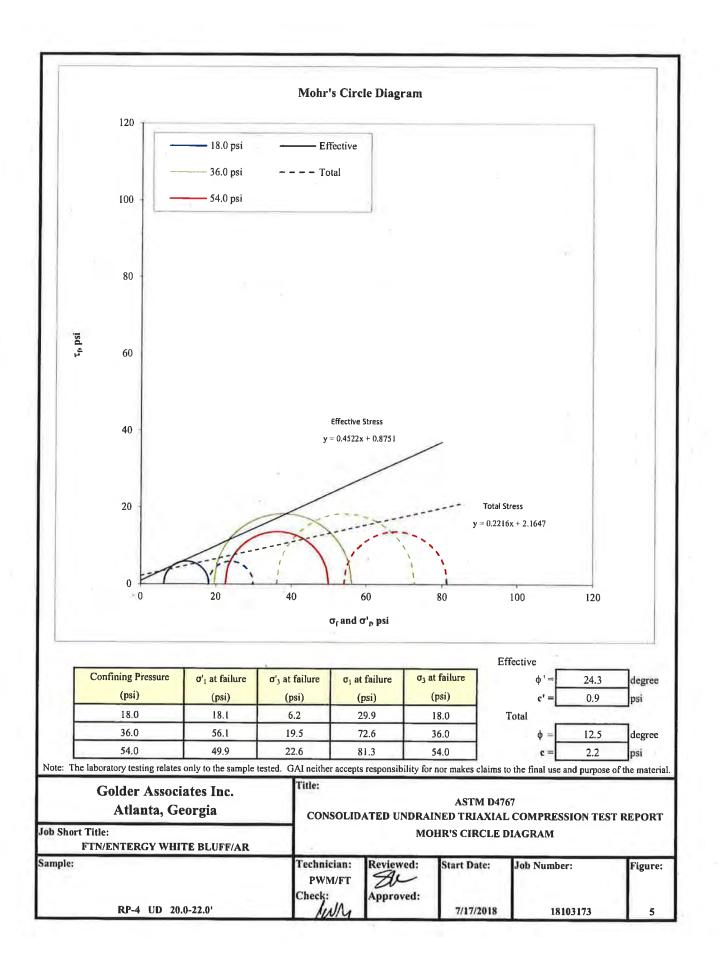


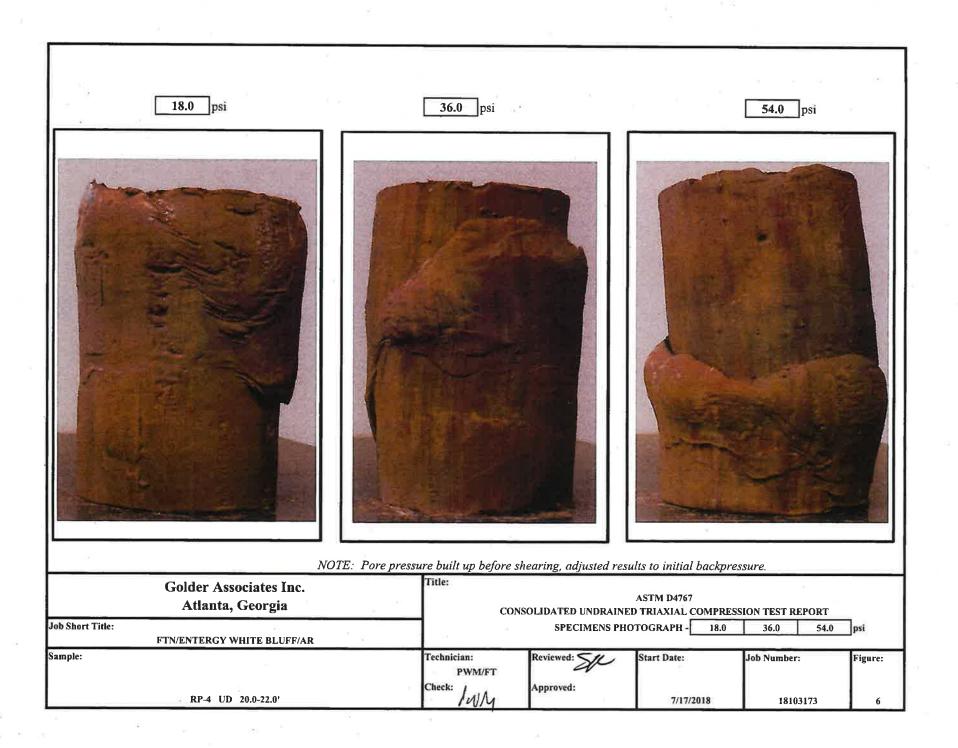

	Golder Associates Inc. Atlanta, Georgia	Title:	SOLIDATED UNDRA	IED (Multi-Stage) - ASTM NINED TRIAXIAL COMPR PHOTOGRAPH - Single S	ESSION TEST REPORT	
Job Short Title			BECHVIEN	1 110 1 00 tort n - single s	pecifici	
Job Short Title: Sample:	FTN/ENTERGY WHITE BLUFF/AR	Technician:	Reviewed:	Start Date:	Job Number:	Figure:

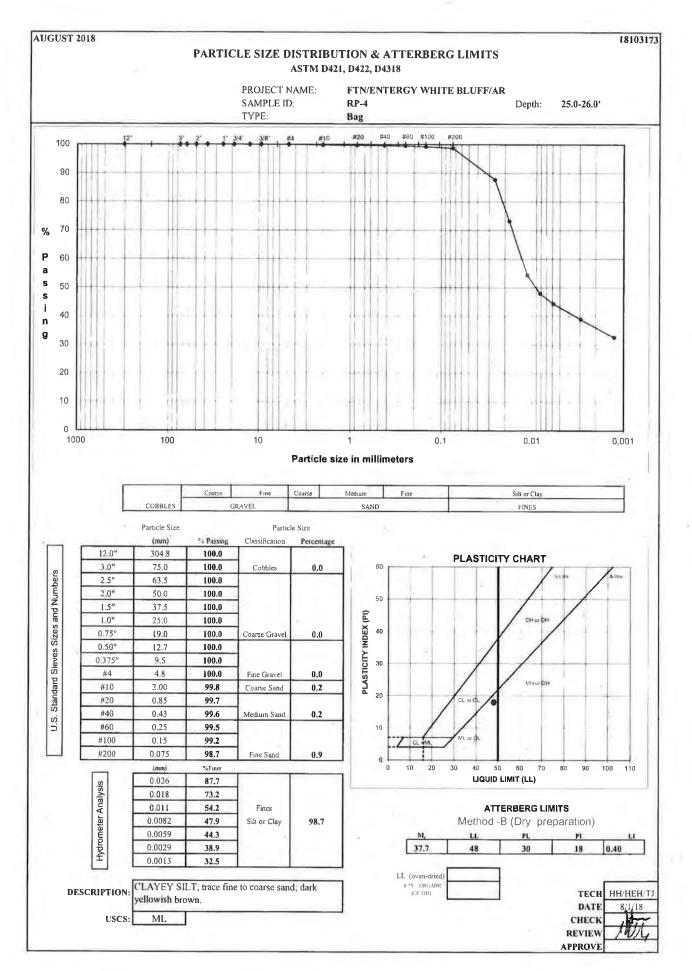


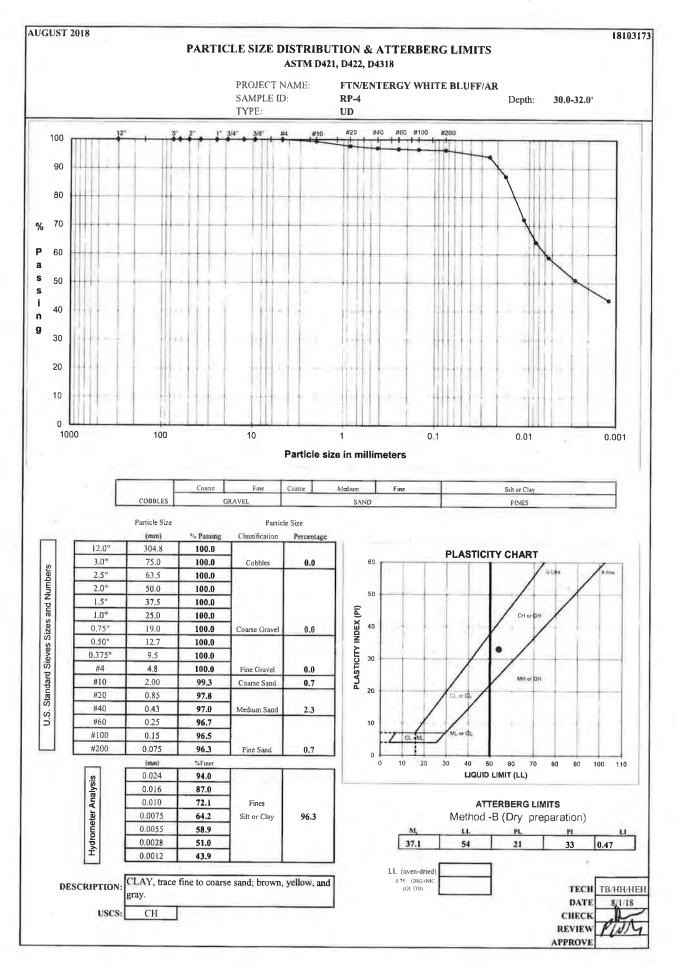


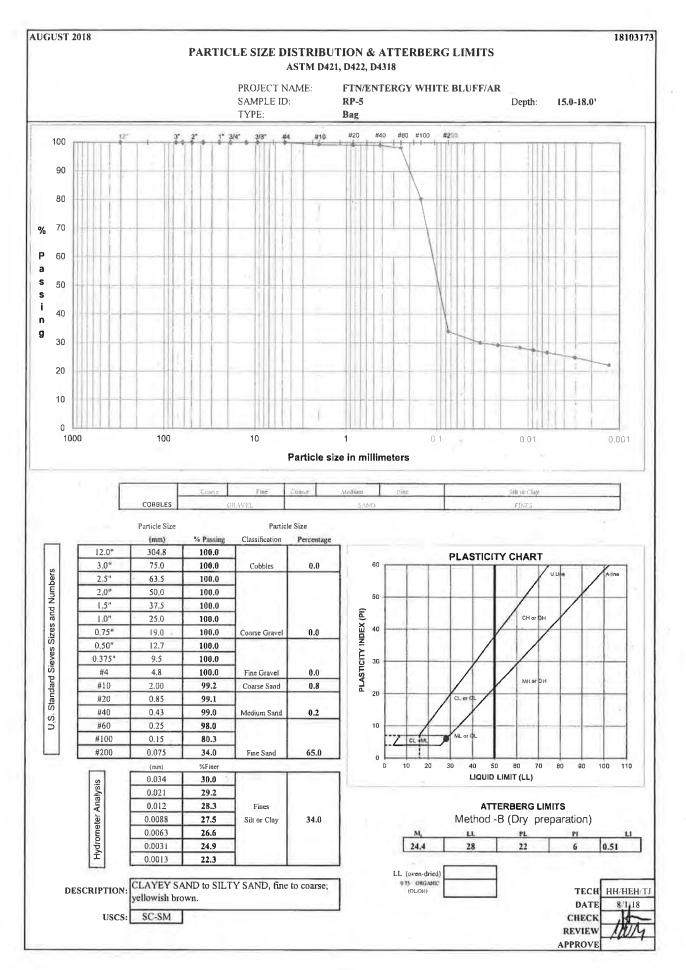


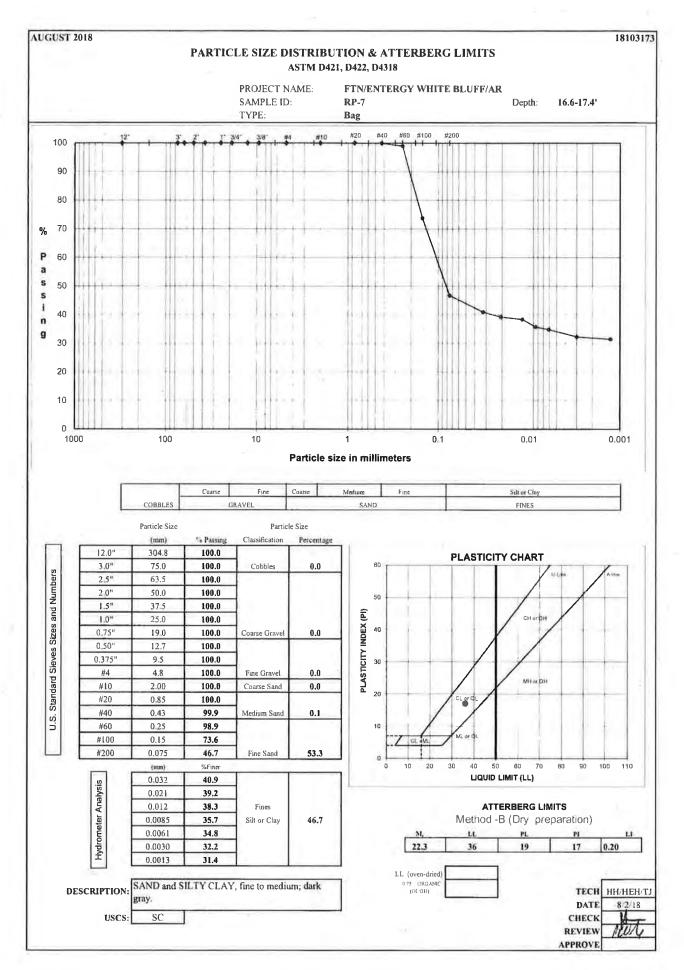

	SPECIFIC GRAVI ASTM D PYCNOMETER	-854		
PROJECT TITLE	FTN/ENTERGY WHITE BLUF 18103173		SAMPLE ID	RP-4 UD
TESTED FOR	Gs		SAMPLE DEPTH	20.0-22.0'
Weight Soil and Tare, Initial Weight Soil and Tare, Final (Weight Of Tare (gm) Weight Of Moisture (gm) Weight Of Dry Soil (gm) Hygroscopic Moisture In (%)	gm)	196.37 192.05 51.66 4.32 140.39 3.1%		
Vo W M	eight Pycnometer Empty (gm) plume of Pycnometer (gm) eight Pycnometer and Water (gm) ass of Pycnometer and Water at the test pserved Temperature (Tb), for (Mb) In I		Method - B 14 185.81 499.41 684.20 683.75 25.00	
Weight of Soil, Water & Py Temperature, C De	cnometer (gm) ensity of water @ tested temperature (g/	(B	714.40 25.0 1.00	
	lus Tare eight of Dry Soil (gm) nperature Coefficient	(C	- 48.92 0.00 48.92 0.9988	
	SPECIFIC GRAVITY (G) $20^{\circ} C = [C/(A-(B-C))]^*(K)$		2.674	
METHOD - A METHOD - B	WET METHOD OVEN-DRIED METHOD	MET	HOD OF AIR REMOV VACUUM	AL
	Recommended	Mass for Test Specim	en	
	Soil Type SP, SP-SM SP-SC, SM , SC SILT OR CLAY	Specimen I when using Pycnom 100 75 50	g 500 ml neter)	
4			D	

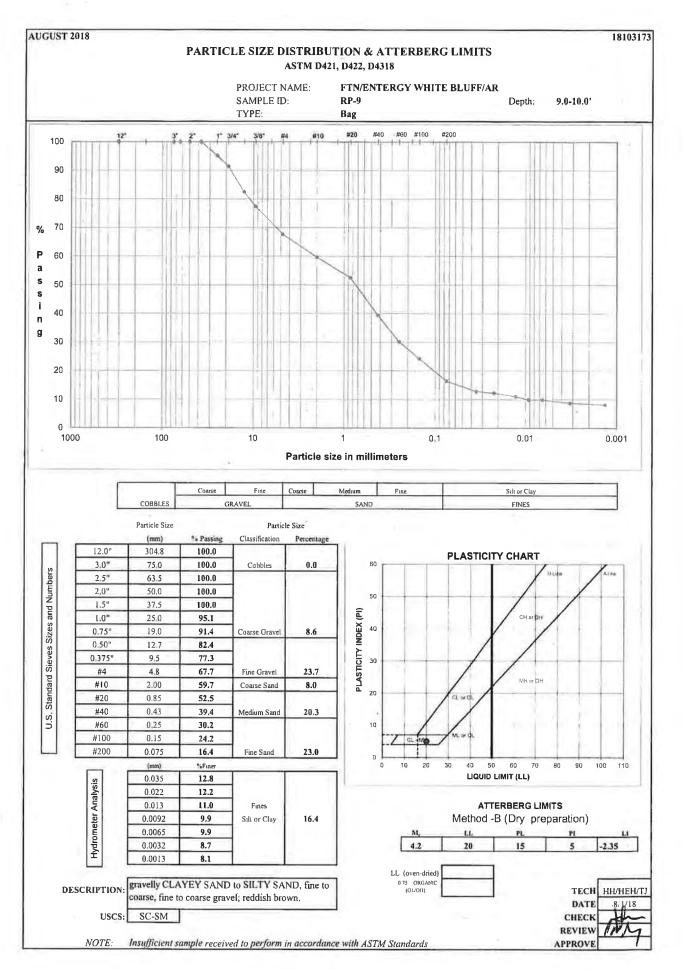

Sample: RP-4 UD 20.0-22.0'	Technician: Reviewed: Start Date: Job Number: Figure: PWM/FT Job Number: Figure: Figure: Check: Approved: 7/17/2018 18103173 1						
Golder Associates Inc. Atlanta, Georgia Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	Title: ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT SAMPLE AND TEST DATA						
Notes:Sample description:(CL) sandy SILTY CLAY, fin Atterberg limits:LL = 44PL = PL = Percent finer:Percent finer: $3/4$ in, = 100%No. 4 = Specimen type:Moisture from:XIntactSaturation method:XWetFailure criterion:X($\sigma'_1/\sigma'_3)_{max}$ Membrane effect:XCorrected	 93% No. 200 = 67% (ASTM D422, refer to separate report for gradation curve) Reconstituted Entire specimen Dry (σ'₁-σ'₁)_{max} % strain 						
Back Pressure = 50.0 psi Back	Pressure =86.0psiCell Pressure =104.0psiPressure =50.0psiBack Pressure =50.0psiPressure =36.0psiConfining Pressure =54.0psi						
Shear Rate = 0.009% /min. Sh $t_{50} = \frac{6.94}{1000}$ min.	Parameter = 0.98 B Parameter = 0.98 hear Rate = 0.009% /min. Shear Rate = 0.008% /min. t_{50} = 37.68 min. t_{50} = 30.90 min. at Failure = 3.5% Strain at Failure = 10.5%						
Area =6.431in² (Method B)Volume =37.424in³Moisture Content =22.3%MoistureWet Unit Weight =127.7pcfWet UniDry Unit Weight =104.4pcfDry UniVoid Ratio =0.60Voit	After ConsolidationAfter ConsolidationLength = 6.040 inLength = 6.119 inDiameter = 2.841 inDiameter = 2.814 inArea = 6.341 in ² (Method B)Area = 6.219 in ² (Method B)Volume = 38.298 in ³ Volume = 38.050 in ³ content = 21.5% Moisture Content = 23.5% it Weight = 128.6 pcfWet Unit Weight = 126.4 pcfit Weight = 105.8 pcfDry Unit Weight = 102.3 pcfoid Ratio = 0.57 Void Ratio = 0.63 aturation = 100% Percent Saturation = 100%						
InitialLength = 5.901 inDiameter = 2.881 inDiameter =Wet Mass = 2.777 lbVArea = 6.519 in ² Volume = 38.468 in ³ Specific Gravity = 2.67 (ASTM D854)SpecificDry Mass of Solids = 2.261 lbDry MassMoisture Content = 22.9% MoistureWet Unit Weight = 124.8 pcfWet UnitDry Unit Weight = 101.5 pcfDry UnitVoid Ratio = 0.64 Voit	InitialInitialLength = 6.114 inDiameter = 2.863 inDiameter = 2.863 inDiameter = 2.819 inWet Mass = 2.837 lbWet Mass = 2.765 lbArea = 6.438 in ² Volume = 39.360 in ³ c Gravity = 2.67 (ASTM D854)of Solids = 2.346 lbb Content = 20.9% it Weight = 124.5 pcfwet Unit Weight = 103.0 pcfDry Unit Weight = 103.0 pcfoid Ratio = 0.62 Void Ratio = 0.65 aturation = 91%						
Boring or Test Pit: RP-4 Boring Sample: UD Depth: 20.0-22.0 ft Point No.: 1	or Test Pit: RP-4 Sample: UD Sample: UD Depth: 20.0-22.0 ft Depth: 20.0-22.0 ft Point No.: 2 Point No.: 3						

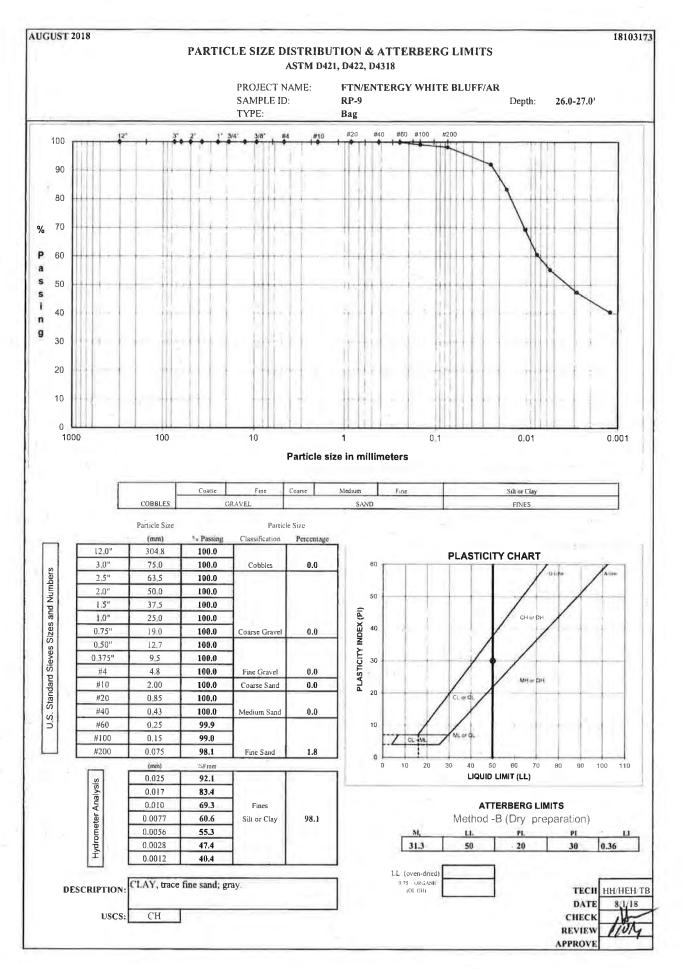


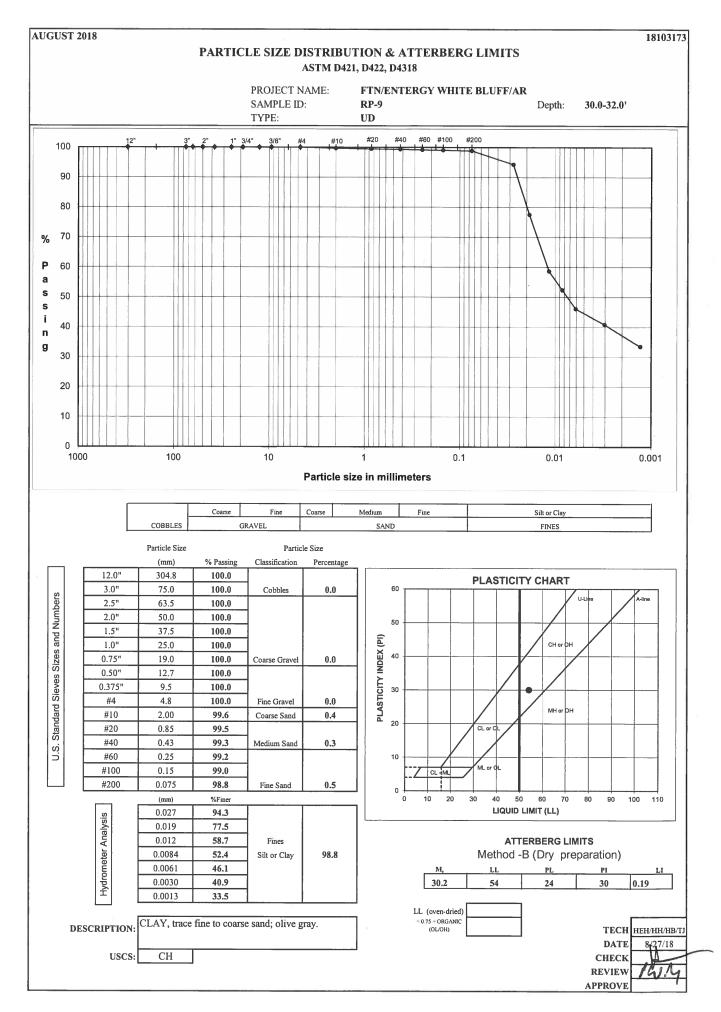


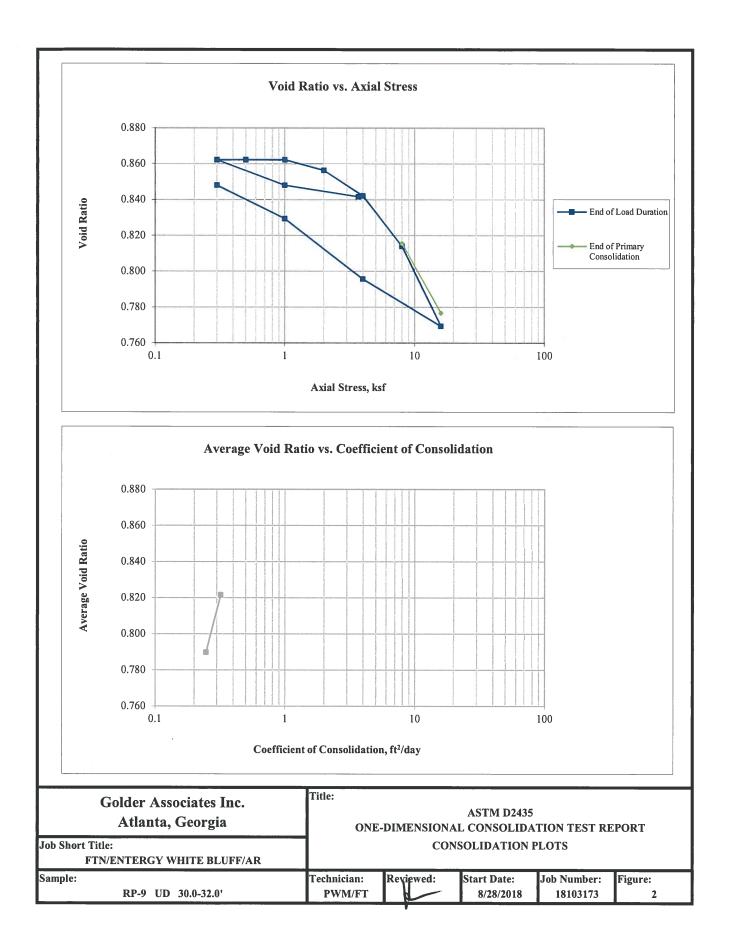


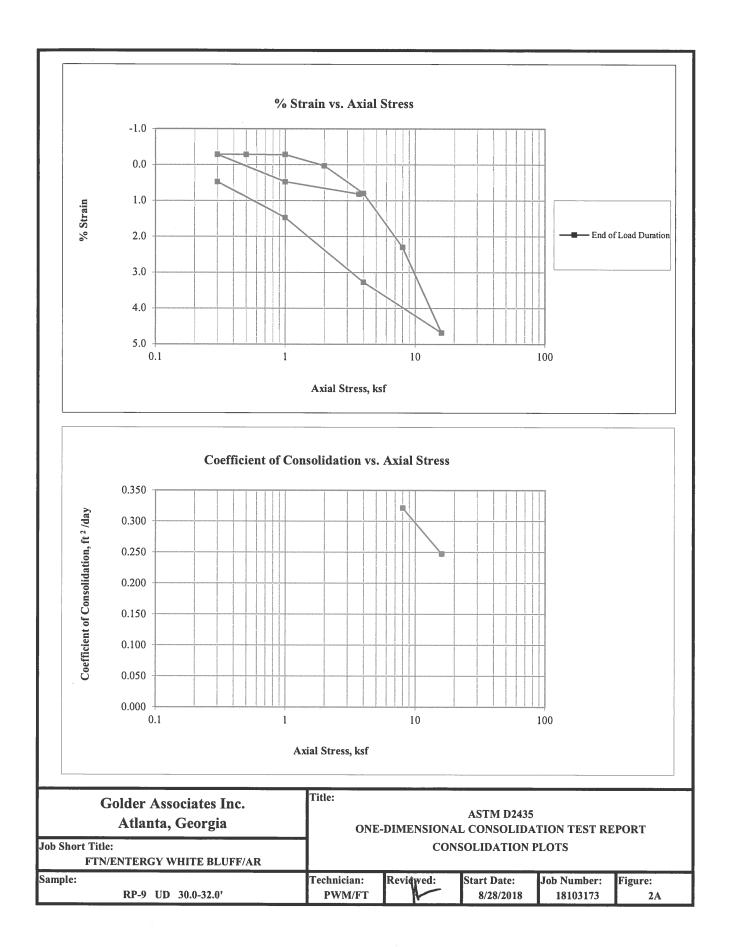


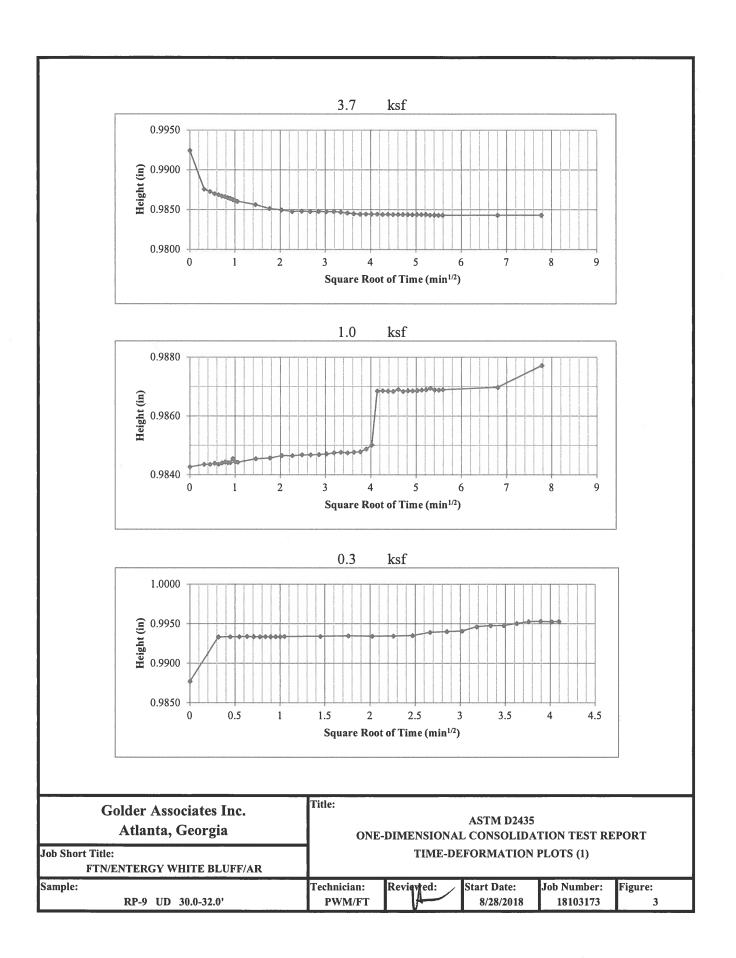

.CT

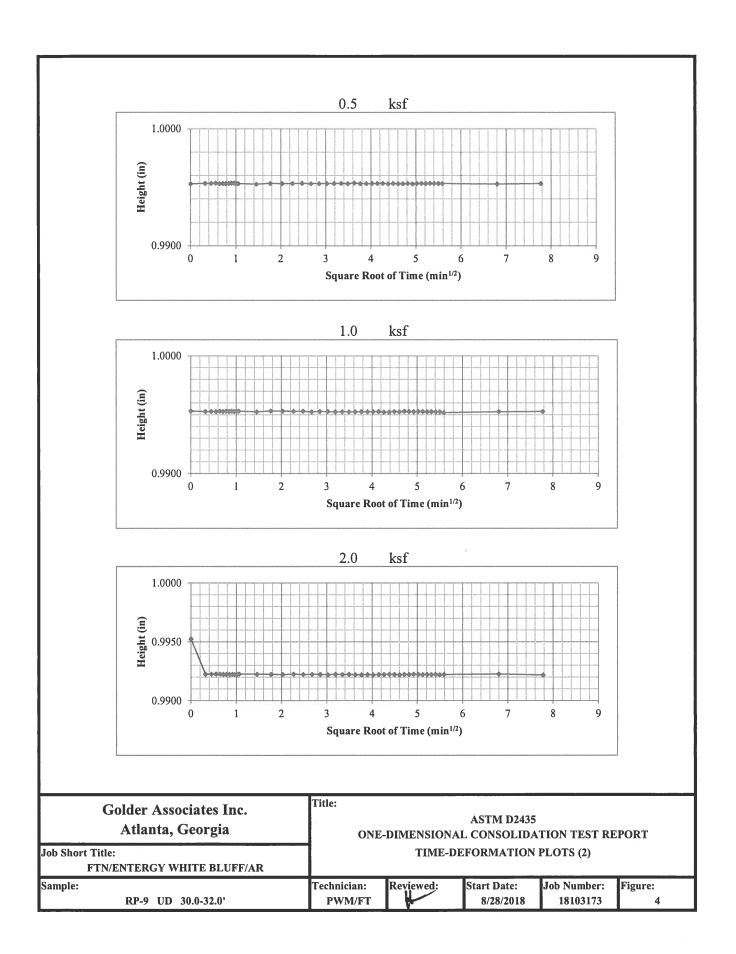


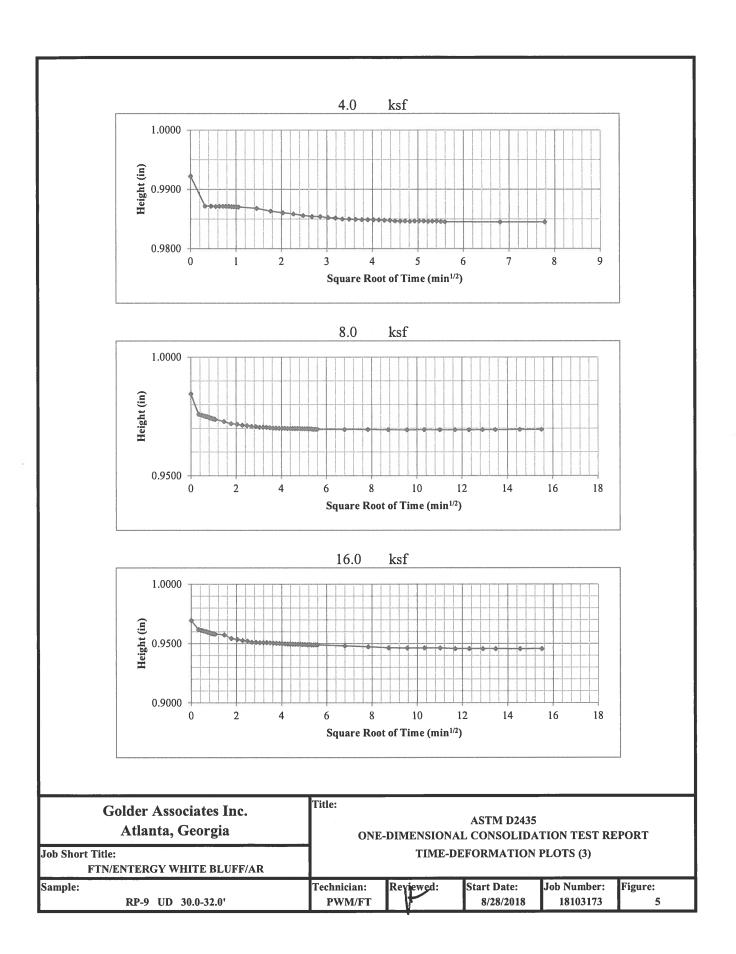

						FLEXIB	LE WALL ASTM D		BILITY					
					1	METHOD I), CONSTAL		OF FLOW					
ROJECT TITLE	ETAINA	EDOV WILLT			1			1			_		-	
ROJECT NUMBER	FTN/ENTERGY WHITE BLUFF/AR				4	Board #		c	COMMENTS					
AMPLE ID	18103173 RP-4 30.0-32.0'			-1	Flow Pump Pump Speed									
AMPLE TYPE	UD		FIOW I	Technician										
	100				1	recumeran								
1.0.4.1.11.1														
ample Data, Initial leight, inches	3.137	Towner	1.00	1	Sample Da			Ê. I						
lameter, inches		B-Value, f	1.00 90.0	0	Height, inc		3.135	1				Sample		Sample
rea, cm ²	2.879 42.00	Cell Pres. Bot. Pres.	90.0		Diameter, i	inches	2.878	1.1	WATER C			Initial		Final
olume, cm ³	334.65	Top Pres.	80.0		Area, cm ² Volume, cn	3	41.97 334.20		Wt Soil & 1		g	589.95		711.15
lass, g	589.95	Tot. B.P.	80.0		,		<u>334.20</u> 596.75		Wt Soil & 1 Wt Tare	i are, f	g	430.37		544.79
loisture Content, %	37.08	Head, max.	123.80	1 C	Mass, g Moisture Content, %		396.75	5 T		na l'act	g	0.00		114.47
ry Density, pcf	80.25	Head, min.	123.80	1	Dry Density, pcf		<u>38.00</u> 80.36		Wt Moisture Lostg159.58Wt Dry Soilg430.37			159.58		166.36 430.32
pec. Gravity (assumed)	2.700	Max. Grad.	15.55	1	Volume So		159.40		Water Con		5 %	37.08%		38.66%
olume Solids, cm ³	159.40	Min. Grad.	15.55	1	Volume Vo	ids. cm ³	174.81							
olume Voids, cm ³	175.25				Void Ratio	,	1.10							
oid Ratio	1.10	1			Saturation,	%	95.2%	in a	DESCRIPT	ION				
										IUN				
aturation, %	91.1%	1					-	1.1			arse sand; b	rown, yellow, and gr	ay.	
	91.1%	1									oarse sand; b	rown, yellow, and gra	ay.	
	-] p Rate	2.38E-04	cm ³ /sec		USCS	СН				parse sand; b	rown, yellow, and gra	ay.	
	91.1%] p Rate	2.38E-04	cm ³ /sec		USCS					parse sand; b	rown, yellow, and gr	ay.	
	91.1%		2.38E-04		NDS	USCS		dP			parse sand; b	rown, yellow, and gr	ay.	1
	91.1%				NDS dt	USCS dt,acc		dP dt,acc			Gradient	rown, yellow, and gr		7
aturation, %	91.1% Flow Pum DAY	TIM	E FUNCTIO MIN	DNS, SECO TEMP (°C)	dt (min)		Сн		CLAY, trac	ce fine to co			ility	
aturation, %	91.1% Flow Pum DAY 43314	TIMI HOUR 10	E FUNCTIO MIN 0	DNS, SECO TEMP (°C) 21.4	dt (min) 0	dt,acc (min) 0	CH dt (sec) 0	dt,acc	CLAY, trac	te fine to co		Permeab	ility c)	-
aturation, % DATE 08/02/18 08/02/18	91.1% Flow Pum DAY 43314 43314	TIMI HOUR 10 10	E FUNCTIO MIN 0 5	DNS, SECO TEMP (°C) 21.4 21.4	dt (min) 0 5	dt,acc (min) 0 5	CH dt (sec) 0 300	dt,acc (sec) 0 300	CLAY, trac Reading (psi) 1.76 1.76	Head (cm) 123.80 123.80	Gradient 15.55 15.55	Permeabi (cm/sec 3.5E-0 3.5E-0	ility c) 7 7	
aturation, % DATE 08/02/18 08/02/18 08/02/18	91.1% Flow Pum DAY 43314 43314 43314	TIM) HOUR 10 10 10	E FUNCTIO MIN 0 5 10	DNS, SECO TEMP (°C) 21.4 21.4 21.4	dt (min) 0 5 5	dt,acc (min) 0 5 10	CH dt (sec) 0 300 300	dt,acc (sec) 0 300 600	CLAY, trac Reading (psi) 1.76 1.76 1.76	Head (cm) 123.80 123.80 123.80	Gradient 15.55 15.55 15.55	Permeabi (cm/sec 3.5E-0 3.5E-0 3.5E-0 3.5E-0	ility c) 7 7 7	
aturation, % DATE 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18	91.1% Flow Pum DAY 43314 43314 43314 43314	TIM) HOUR 10 10 10 10	E FUNCTIO MIN 0 5 10 15	DNS, SECO TEMP (°C) 21.4 21.4 21.4 21.4 21.4	dt (min) 0 5 5 5 5	dt,acc (min) 0 5 10 15	CH dt (sec) 0 300 300 300 300	dt,acc (sec) 0 300 600 900	CLAY, trac Reading (psi) 1.76 1.76 1.76 1.76 1.76	Head (cm) 123.80 123.80 123.80 123.80	Gradient 15.55 15.55 15.55 15.55	Permeab (cm/sec 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0	ility c) 7 7 7 7 7 7 7 7 7	
aturation, % DATE 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18	91.1% Flow Pum DAY 43314 43314 43314 43314 43314	TIM) HOUR 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20	DNS, SECO TEMP (°C) 21.4 21.4 21.4 21.4 21.4 21.4	dt (min) 0 5 5 5 5 5	dt,acc (min) 0 5 10 15 20	CH dt (sec) 0 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	CLAY, trac Reading (psi) 1.76 1.76 1.76 1.76 1.76 1.76	Head (cm) 123.80 123.80 123.80 123.80 123.80	Gradient 15.55 15.55 15.55 15.55 15.55	Permeabi (cm/sec 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0	ility c) 7 7 7 7 7 7 7 7 7 7	
aturation, % DATE 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18	91.1% Flow Pum DAY 43314 43314 43314 43314 43314 43314	TIM) HOUR 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25	DNS, SECO TEMP (°C) 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	dt (min) 0 5 5 5 5 5 5 5	dt,acc (min) 0 5 10 15 20 25	CH dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	CLAY, trac Reading (psi) 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	Head (cm) 123.80 123.80 123.80 123.80 123.80 123.80 123.80	Gradient 15.55 15.55 15.55 15.55 15.55 15.55 15.55	Permeabi (cm/see 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0	ility c) 7 7 7 7 7 7 7 7 7 7	
aturation, % DATE 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18	91.1% Flow Pum DAY 43314 43314 43314 43314 43314 43314 43314	TIM) HOUR 10 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	dt (min) 0 5 5 5 5 5	dt,acc (min) 0 5 10 15 20	CH dt (sec) 0 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200	Reading (psi) 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	Head (cm) 123.80 123.80 123.80 123.80 123.80 123.80 123.80 123.80	Gradient 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55	Permeabi (cm/see 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0	ility c) 7 7 7 7 7 7 7 7 7 7 7	
aturation, % DATE 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18	91.1% Flow Pum DAY 43314 43314 43314 43314 43314 43314 43314	TIM) HOUR 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	dt (min) 0 5 5 5 5 5 5 5	dt,acc (min) 0 5 10 15 20 25	CH dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	Head (cm) 123.80 123.80 123.80 123.80 123.80 123.80 123.80 123.80	Gradient 15.55 15.55 15.55 15.55 15.55 15.55 15.55	Permeabi (cm/see 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0	ility c) 7 7 7 7 7 7 7 7 7 7	
aturation, % DATE 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18	91.1% Flow Pum DAY 43314 43314 43314 43314 43314 43314 43314	TIM) HOUR 10 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	dt (min) 0 5 5 5 5 5 5 5	dt,acc (min) 0 5 10 15 20 25	CH dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	Head (cm) 123.80 123.80 123.80 123.80 123.80 123.80 123.80 123.80	Gradient 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55	Permeabi (cm/see 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0	ility c) 7 7 7 7 7 7 7 7 7 7 7	DATE
Aturation, % DATE 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18 08/02/18	91.1% Flow Pum DAY 43314 43314 43314 43314 43314 43314 43314	TIM) HOUR 10 10 10 10 10 10 10	E FUNCTIO MIN 0 5 10 15 20 25 30	DNS, SECO TEMP (°C) 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	dt (min) 0 5 5 5 5 5 5 5	dt,acc (min) 0 5 10 15 20 25	CH dt (sec) 0 300 300 300 300 300 300	dt,acc (sec) 0 300 600 900 1200 1500	Reading (psi) 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	Head (cm) 123.80 123.80 123.80 123.80 123.80 123.80 123.80 123.80	Gradient 15.55 15.55 15.55 15.55 15.55 15.55 15.55 15.55	Permeabi (cm/see 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0 3.5E-0	ility c) 7 7 7 7 7 7 7 7 7 7 7	

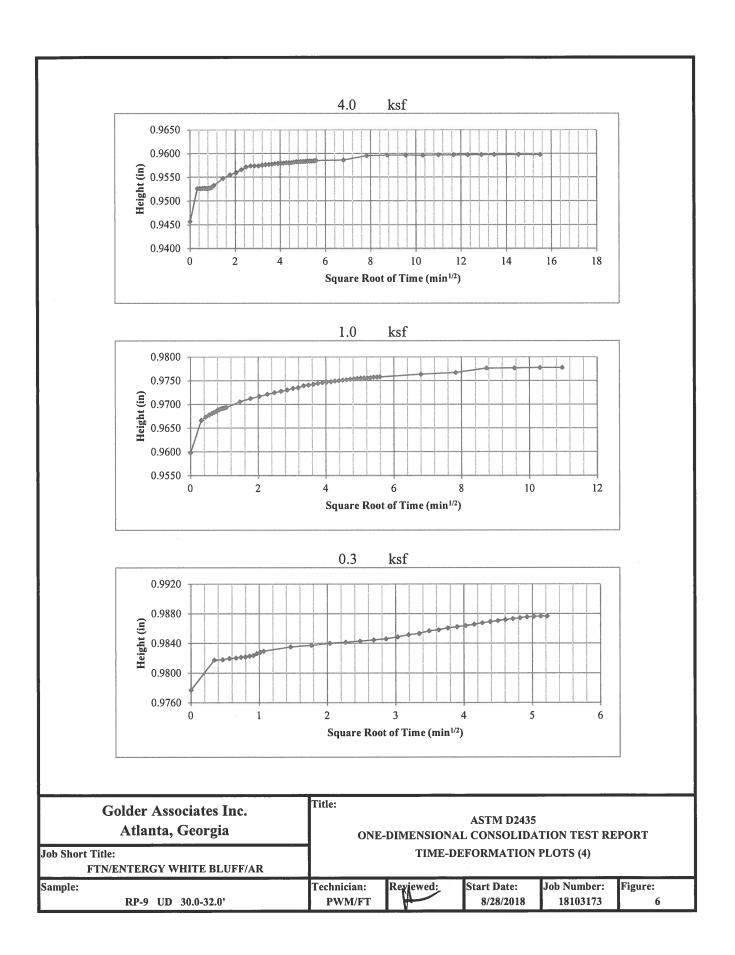







	I	nitial	1	Final	Notes						
Height =	1.000	in	0.988	in	Visual description (Golder procedure):	(CH) CLAY, tra	ace fine to coar	se sand; olive gra	ay.		
Diameter =	2.500	in	2.500	in	Atterberg Limits (ASTM D4318):	LL =	54	PL =	24	$\mathbf{PI} =$	30
Area =	4.909	in ²	4.909	in ²	Percent Finer (ASTM D422):	3/4 in. =	100%	No. 4 =	100%	No. 200 =	99%
Volume =	4.909	in ³	4.848	in ³	Specimen Type:	Х	Intact		Reconstituted		
Water Content =	30.2%		34.0%		Remold Targets:		-		•		
Specific Gravity =	2.67	(ASTM D854)	2.67	(ASTM D854)) Water Content of Trimmings (ASTM D2216):	-					
Height of Solids =	0.5345	in	0.5345	in	Trimming Procedure:	Trimming ring					
Void Ratio =	0.871		0.848		Inundation:		Not inundated	Х	Inundated at	1.70 k	sf
Degree of Saturation =	92.5%		100.0%		Test Method:		A	Х	в		
Wet Mass =	0.329	lb	0.338	lb	Apparatus:	GeoTac automa	ted consolidom	neter			
Dry Mass =	0.253	lb	0.253	lb	Final Water Content Specimen:	X	Entire		Partial		
Wet Unit Weight =	115.7	pcf	120.6	pcf	Final Differential Height:	0.0000	in	<u> </u>	-		
Dry Unit Weight =	88.9	pcf	90.0	pcf	Estimated Preconsolidation Stress:		ksf				


			1	At End of Prima	ry Consolidation	n		At End of Lo	ad Duration		Time			
	Axial Stress (ksf)	Load Duration (min)	Deformation (in)	Specimen Height (in)	Axial Strain (%)	Void Ratio	Deformation (in)	Specimen Height (in)	Axial Strain (%)	Void Ratio	Deformation Method	Average Void Ratio		Time to 50% Consolidation (min)
Seating*	1.70	60	(9				0.0000	0.9925	0.00	0.857			(((), (())))	
1	3.7	60					0.0082	0.9843	0.82	0.842				
2	1.0	60					0.0047	0.9877	0.47	0.848				
3	0.3	17					-0.0028	0.9953	-0.28	0.862				
4	0.5	60					-0.0029	0.9953	-0.29	0.862				
5	1.0	60					-0.0028	0.9953	-0.28	0.862				
6	2.0	60					0.0003	0.9922	0.03	0.856				
7	4.0	60					0.0080	0.9845	0.80	0.842				
8	8.0	240	0.0221	0.9704	2.21	0.816	0.0230	0.9695	2.30	0.814	2 (Root time)	0.822	0.322	1.3
9	16.0	240	0.0429	0.9496	4.29	0.777	0.0468	0.9457	4.68	0.769	2 (Root time)	0.790	0.247	1.8
10	4.0	240					0.0327	0.9597	3.27	0.796				
11	1.0	120					0.0147	0.9777	1.47	0.829				
12	0.3	27					0.0048	0.9877	0.48	0.848				
l														
						771 - 1								
	G	older Ass	ociates In	c.		Title:				1.0773.6	2425			
		Atlanta,	Georgia					0	NE-DIMENSIO	ASTM I		FST REPORT		
Job Short Title	P:			····· · ···				0		IMEN AND SI				
	5 SNORT THUE: FTN/ENTERGY WHITE BLUFF/AR								51 EC		STRUCTURE DA			
Sample: RP-9 UD 30.0-32.0'				Technician: PWN		Checked:	Reviewed:	Approved:	Start Date: 8/28/2018	Job Number: 1810		Figure: 1		



Appendix G Static and Seismic Slope Stability Model Outputs

Slope stability analysis

Input data

Project

Task :Slope Stability AnalysisDescription :Composite Slope Encompassing the Worst-Case GeometryAuthor :ERM - AnnapolisDate :12/10/2018

Settings

Standard - safety factors **Stability analysis**

Earthquake analysis : Standard Verification methodology : Safety factors (ASD)

Safety factors							
	Seismic design situation						
Safety factor :	SF _s =	1.00	[-]				

Interface

No.	Interface location		Coord	inates of inte	rface poin	ts [ft]	
NO.	Interface location	x	z	x	z	x	z
1		-480.00	281.00	-396.00	281.00	-372.12	269.00
		-352.68	260.06	-346.00	257.00	-106.00	257.00
		-100.00	258.00	-95.63	259.96	-75.60	268.96
		-56.00	277.75	-32.48	281.00	0.00	281.00
		14.18	278.00	40.68	267.00	40.70	266.99
		57.43	260.06	72.00	254.00	272.00	254.00
		292.00	255.00	300.00	256.00	309.46	259.91
		326.60	267.00	358.00	280.00	363.00	281.00
		387.00	281.00	400.00	280.00	411.00	279.50
		441.00	269.00	640.00	269.00		
2		-372.12	269.00	-75.60	268.96		
3		40.68	267.00	40.70	267.00	326.60	267.00
4		-480.00	260.00	-352.68	260.06		
5		-95.63	259.96	57.43	260.06		
6		309.46	259.91	640.00	259.88		
7	$ \longrightarrow $	-480.00	253.00	640.00	253.00		

Soil parameters - effective stress state

No.	Name	Pattern	Фef [°]	c _{ef} [psf]	γ [pcf]
1	Clay with high or very high plasticity (CH, CV, CE), soft consistency		17.00	302.4	96.1
2	Silty sand (SM)		27.10	1180.0	95.2

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

No.	Name	Pattern	Φef [°]	c _{ef} [psf]	γ [pcf]
3	Ash		38.00	0.0	100.0

Soil parameters - uplift

No.	Name	Pattern	γsat [pcf]	γ _s [pcf]	n [-]
1	Clay with high or very high plasticity (CH, CV, CE), soft consistency		96.1		
2	Silty sand (SM)		95.2		
3	Ash		100.0		

Soil parameters

Clay with high or very high plasticity (CH, CV, CE), soft consistency

Unit weight :	γ = 96.1 pcf
Stress-state :	effective
Angle of internal friction :	_{φef} = 17.00 °
Cohesion of soil :	$c_{ef} = 302.4 \text{ psf}$
Saturated unit weight :	γ_{sat} = 96.1 pcf
Silty sand (SM)	
Unit weight :	γ = 95.2 pcf
Stress-state :	effective
Angle of internal friction :	_{φef} = 27.10 °
Cohesion of soil :	c _{ef} = 1180.0 psf
Saturated unit weight :	γ_{sat} = 95.2 pcf
Ash	

Unit weight :	γ =	100.0 pcf
Stress-state :	effectiv	/e
Angle of internal friction :	φ_{ef} =	38.00 °
Cohesion of soil :	c _{ef} =	0.0 psf
Saturated unit weight :	γ _{sat} =	100.0 pcf

Assigning and surfaces

		Coordi	nates of su	Irface points	[ft]	Assigned
No.	Surface position	x	z	x	Z	soil
1		-352.68	260.06	-372.12	269.00	Clay with high or very high
		-396.00	281.00	-480.00	281.00	plasticity (CH, CV, CE), soft consistency
		-480.00	260.00			
2		57.43	260.06	40.70	266.99	Clay with high or very high plasticity (CH, CV, CE), soft
		40.68	267.00	14.18	278.00	consistency
		0.00	281.00	-32.48	281.00	
		-56.00	277.75	-75.60	268.96	
		-95.63	259.96			
3		640.00	259.88	640.00	269.00	Clay with high or very high
		441.00	269.00	411.00	279.50	plasticity (CH, CV, CE), soft consistency
		400.00	280.00	387.00	281.00	
		363.00	281.00	358.00	280.00	
		326.60	267.00	309.46	259.91	
4		-372.12	269.00	-352.68	260.06	
		-346.00	257.00	-106.00	257.00	Ash
		-100.00	258.00	-95.63	259.96	
		-75.60	268.96			
5		40.70	267.00	40.68	267.00	Ach
		40.70	266.99	57.43	260.06	Ash
		72.00	254.00	272.00	254.00	
		292.00	255.00	300.00	256.00	
		309.46	259.91	326.60	267.00	
6		640.00	253.00	640.00	259.88	
		309.46	259.91	300.00	256.00	Silty sand (SM)
		292.00	255.00	272.00	254.00	· · · · · · · · ·
		72.00	254.00	57.43	260.06	
		-95.63	259.96	-100.00	258.00	
		-106.00	257.00	-346.00	257.00	
		-352.68	260.06	-480.00	260.00	
		-480.00	253.00			
7		-480.00	253.00	-480.00	243.00	Clay with high or very high
		640.00	243.00	640.00	253.00	plasticity (CH, CV, CE), soft consistency
						CONSISTENCY

Water

Water type : No water

Tensile crack

Tensile crack not input.

3

Earthquake

Horizontal seismic coefficient : $K_h = 0.20$ Vertical seismic coefficient : $K_v = 0.00$

Settings of the stage of construction

Design situation : seismic

Results (Stage of construction 1)

Analysis 1 (stage 1)

Circular slip surface

Slip surface parameters							
Center :	x =	26.92	[ft]	Angles :	α ₁ =	-49.42 [°]	
Center.	z =	320.00	[ft]		α ₂ =	27.86 [°]	
Radius :	R =	59.95	[ft]				
The slip surface after optimization.							

Segments restricting slip surface

No.	First	point	Second point		
NO.	x [ft]	z [ft]	x [ft]	z [ft]	
1	-479.92	243.25	640.00	243.01	

The restrictions of points of circular slip surface

Slope stability verification (Bishop)							
Sum of active forces :	F _a =	26644.3	lbf/ft				
Sum of passive forces :	F _p =	44149.8	lbf/ft				
Sliding moment :	M _a =	1597323.5	lbfft/ft				
Resisting moment :	M _p =	2646779.2	lbfft/ft				
Factor of safety = 1.66 > 1.00							
OLANDA ALL HIGH ADDED	TADL						

Slope stability ACCEPTABLE

Optimization of circular slip surface (Bishop)

No.	Cer	nter	Radius	FS	Verification
NO.	x [ft]	z [ft]	R [ft]	гэ	vernication
1	-118.69	518.21	261.94	554.35	ACCEPTABLE
2	-118.69	518.21	261.94	554.35	ACCEPTABLE
3	-118.69	518.21	261.94	554.35	ACCEPTABLE
4	-130.16	549.06	294.82	4.05	ACCEPTABLE
5	62.16	694.36	441.24	6.14	ACCEPTABLE
6	-130.16	549.06	294.82	4.05	ACCEPTABLE
7	-105.52	1237.11	990.73	2.77	ACCEPTABLE
8	43.59	1236.66	990.28	2.81	ACCEPTABLE
9	-245.34	1236.30	989.92	3.54	ACCEPTABLE
10	-100.89	334.27	87.88	3.97	ACCEPTABLE
11	-204.74	896.06	629.16	3.91	ACCEPTABLE
12	-55.58	896.06	629.16	2.47	ACCEPTABLE
13	175.29	1032.22	763.89	3.91	ACCEPTABLE
14	125.63	536.52	268.22	3.91	ACCEPTABLE
15	-204.74	896.06	629.16	3.91	ACCEPTABLE
16	-55.58	896.06	629.16	2.47	ACCEPTABLE
17	-55.58	896.06	629.16	2.47	ACCEPTABLE
18	125.73	595.54	328.04	3.92	ACCEPTABLE
19	-55.58	896.06	629.16	2.47	ACCEPTABLE

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

ERM - Annapolis

No	Cer	iter	Radius	50	Mariffert
No.	x [ft]	z [ft]	R [ft]	FS	Verification
20	-117.13	745.93	479.20	176.36	ACCEPTABLE
21	-55.58	896.06	629.16	2.47	ACCEPTABLE
22	-92.29	658.89	392.34	3.99	ACCEPTABLE
23	-59.73	370.10	115.14	3.53	ACCEPTABLE
24	-7.32	292.18	23.36	2.89	ACCEPTABLE
25	-55.58	896.06	629.16	2.47	ACCEPTABLE
26	-77.56	658.89	392.34	2.82	ACCEPTABLE
27	-6.42	283.60	34.45	3.92	ACCEPTABLE
28	-54.47	454.08	191.69	2.14	ACCEPTABLE
29	-63.81	807.89	544.42	2.36	ACCEPTABLE
30	-54.36	637.09	376.90	2.19	ACCEPTABLE
31	-22.77	493.49	230.73	1.99	ACCEPTABLE
32	-14.27	1160.83	897.59	2.55	ACCEPTABLE
33	-13.02	1044.11	781.55	2.50	ACCEPTABLE
34	23.06	636.31	372.84	2.97	ACCEPTABLE
35	-6.63	284.66	34.75	3.88	ACCEPTABLE
36	-54.47	454.09	191.70	2.14	ACCEPTABLE
37	-46.07	379.58	123.26	3.19	ACCEPTABLE
38	-13.13	318.27	55.44	1.91	ACCEPTABLE
39	-24.08	509.46	246.19	2.02	ACCEPTABLE
40	-15.61	405.66	147.80	3.19	ACCEPTABLE
41	-44.32	322.26	59.65	2.16	ACCEPTABLE
	-44.32 -22.78	493.55	230.78	1.99	ACCEPTABLE
42 43	-13.13	318.27	55.44	1.99	
					ACCEPTABLE
44	-22.73	431.07	167.60	1.91	ACCEPTABLE
45	-15.85	370.67	111.53	2.65	ACCEPTABLE
46	13.83	307.97	44.51	3.53	ACCEPTABLE
47	-8.46	305.89	62.18	2.48	ACCEPTABLE
48	-34.57	321.61	59.03	1.75	ACCEPTABLE
49	-43.72	418.60	155.13	1.97	ACCEPTABLE
50	-35.98	360.79	102.22	2.85	ACCEPTABLE
51	-13.14	318.28	55.45	1.91	ACCEPTABLE
52	-28.51	305.00	61.31	2.29	ACCEPTABLE
53	-53.63	327.00	64.26	3.22	ACCEPTABLE
54	-48.33	297.19	41.38	4.71	ACCEPTABLE
55	-41.34	400.79	138.37	1.90	ACCEPTABLE
56	-12.42	314.59	52.49	1.91	ACCEPTABLE
57	-34.57	321.61	59.03	1.75	ACCEPTABLE
58	-18.18	306.25	46.92	2.51	ACCEPTABLE
59	-41.03	382.92	119.51	1.90	ACCEPTABLE
60	-13.24	283.22	34.68	3.34	ACCEPTABLE
61	-35.70	348.08	88.07	1.91	ACCEPTABLE
62	-21.48	321.61	59.03	1.73	ACCEPTABLE
63	-0.29	290.30	36.04	5.22	ACCEPTABLE
64	-27.81	384.10	120.68	1.81	ACCEPTABLE
65	1.01	281.50	33.46	4.93	ACCEPTABLE
66	-22.55	349.04	88.97	1.70	ACCEPTABLE
67	-7.78	346.69	87.49	2.74	ACCEPTABLE
68	-45.78	434.85	167.87	2.26	ACCEPTABLE

	Ce	nter	Radius	Radius	
No.	x [ft]	z [ft]	R [ft]	FS	Verification
69	-26.09	419.33	158.55	1.82	ACCEPTABLE
70	-1.81	300.88	54.02	2.93	ACCEPTABLE
71	-23.18	390.55	132.15	2.90	ACCEPTABLE
72	-8.76	354.19	93.99	1.87	ACCEPTABLE
73	-16.99	329.47	81.98	2.38	ACCEPTABLE
74	-19.17	310.87	50.35	1.73	ACCEPTABLE
75	-95.36	737.65	471.33	3.44	ACCEPTABLE
76	-35.74	348.34	88.29	1.74	ACCEPTABLE
77	-20.57	289.43	42.76	2.70	ACCEPTABLE
78	-12.98	282.00	34.35	3.36	ACCEPTABLE
79	-30.04	311.11	59.57	2.78	ACCEPTABLE
80	-16.40	297.94	41.38	3.35	ACCEPTABLE
81	-27.81	296.52	51.55	2.45	ACCEPTABLE
82	-33.38	332.91	75.43	3.02	ACCEPTABLE
83	-18.88	309.52	49.32	1.74	ACCEPTABLE
84	-25.19	410.42	150.27	1.80	ACCEPTABLE
85	-9.42	359.24	98.47	1.87	ACCEPTABLE
86	-22.55	349.04	88.97	1.70	ACCEPTABLE
87	-13.87	356.02	95.43	1.79	ACCEPTABLE
88	-31.64	381.64	115.84	1.94	ACCEPTABLE
89	-57.20	672.69	405.78	2.40	ACCEPTABLE
90	-41.24	555.86	288.94	2.25	ACCEPTABLE
91	-25.16	394.10	133.41	1.77	ACCEPTABLE
92	-8.02	313.33	61.35	3.09	ACCEPTABLE
93	-23.09	376.09	117.12	2.69	ACCEPTABLE
94	-13.37	352.37	92.22	1.78	ACCEPTABLE
95	-18.19	333.49	81.72	2.81	ACCEPTABLE
96	-20.81	324.44	63.65	1.70	ACCEPTABLE
97	-11.48	324.11	63.17	1.86	ACCEPTABLE
98	-26.00	335.88	69.71	1.90	ACCEPTABLE
99	-55.25	566.72	299.72	2.41	ACCEPTABLE
100	-34.83	454.51	187.08	2.20	ACCEPTABLE
101	-24.23	360.21	98.79	1.73	ACCEPTABLE
102	-6.51	296.36	43.84	3.75	ACCEPTABLE
103	-21.74	343.64	84.34	2.46	ACCEPTABLE
104	-11.43	323.80	62.92	1.86	ACCEPTABLE
105	-17.28	313.97	61.49	3.04	ACCEPTABLE
106	-18.06	302.65	41.19	1.82	ACCEPTABLE
107	-43.17	396.46	130.19	2.13	ACCEPTABLE
108	-35.97	377.54	110.11	2.14	ACCEPTABLE
109	-29.54	324.44	63.65	1.67	ACCEPTABLE
110	-21.11	326.00	64.94	1.70	ACCEPTABLE
111	-35.81	337.84	71.92	1.96	ACCEPTABLE
112	-63.25	556.41	289.42	2.61	ACCEPTABLE
113	-46.56	460.43	193.44	2.27	ACCEPTABLE
114	-33.07	359.43	98.01	1.75	ACCEPTABLE
115	-15.56	296.73	44.17	3.34	ACCEPTABLE
116	-30.54	342.91	83.65	2.48	ACCEPTABLE
117	-20.81	324.44	63.65	1.70	ACCEPTABLE

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

Slope Stability Analysis

	Cer	nter	Radius		
No.	x [ft]	z [ft]	R [ft]	FS	Verification
118	-26.08	313.76	61.28	3.03	ACCEPTABLE
119	-27.36	303.75	42.26	1.69	ACCEPTABLE
120	-51.90	396.46	130.19	2.49	ACCEPTABLE
121	-47.43	384.71	117.72	2.44	ACCEPTABLE
122	-38.27	324.44	63.65	1.79	ACCEPTABLE
123	-27.47	288.51	36.50	3.26	ACCEPTABLE
124	-22.30	283.34	30.65	3.83	ACCEPTABLE
125	-34.44	304.23	48.61	3.43	ACCEPTABLE
126	-25.19	294.97	36.24	2.76	ACCEPTABLE
127	-32.40	293.44	42.52	2.98	ACCEPTABLE
128	-36.64	315.85	56.83	2.71	ACCEPTABLE
129	-26.84	301.65	40.72	1.69	ACCEPTABLE
130	-32.14	353.33	92.62	1.72	ACCEPTABLE
131	-21.60	328.62	67.13	1.71	ACCEPTABLE
132	-29.54	324.44	63.65	1.67	ACCEPTABLE
133	-24.52	328.66	67.16	1.69	ACCEPTABLE
134	-33.24	332.99	68.37	1.81	ACCEPTABLE
135	-42.50	411.62	146.03	2.05	ACCEPTABLE
136	-33.64	376.81	111.20	1.92	ACCEPTABLE
137	-31.97	347.25	85.96	1.72	ACCEPTABLE
138	-19.93	304.42	48.73	3.31	ACCEPTABLE
139	-30.28	336.88	77.07	2.11	ACCEPTABLE
140	-23.72	324.44	63.65	1.68	ACCEPTABLE
141	-26.89	316.19	60.89	3.26	ACCEPTABLE
142	-28.33	311.10	49.65	1.67	ACCEPTABLE
143	-42.10	360.06	95.33	1.99	ACCEPTABLE
144	-36.41	347.09	81.43	1.93	ACCEPTABLE
145	-35.36	324.44	63.65	1.73	ACCEPTABLE
146	-27.60	296.89	41.90	3.44	ACCEPTABLE
147	-24.19	292.68	37.23	3.48	ACCEPTABLE
148	-33.05	312.26	54.15	2.91	ACCEPTABLE
149	-26.75	304.06	44.37	2.21	ACCEPTABLE
150	-30.92	300.96	46.57	3.51	ACCEPTABLE
151	-34.35	319.10	59.36	2.24	ACCEPTABLE
152	-27.76	308.57	47.69	1.67	ACCEPTABLE
153	-31.28	343.02	82.29	1.70	ACCEPTABLE
154	-24.36	327.83	66.47	1.68	ACCEPTABLE
155	-29.54	324.44	63.65	1.67	ACCEPTABLE
156	-26.42	328.43	66.97	1.68	ACCEPTABLE
157	-31.82	329.93	66.43	1.74	ACCEPTABLE
158	-36.35	369.46	105.35	1.85	ACCEPTABLE
159	-30.86	351.93	87.78	1.79	ACCEPTABLE
160	-31.20	339.41	78.24	1.70	ACCEPTABLE
161	-22.97	310.23	52.68	2.95	ACCEPTABLE
162	-30.06	332.80	72.64	1.68	ACCEPTABLE
163	-25.66	324.44	63.65	1.67	ACCEPTABLE
164	-22.54	328.43	66.97	1.70	ACCEPTABLE
165	-27.94	329.93	66.43	1.73	ACCEPTABLE
166	-32.47	369.46	105.35	1.82	ACCEPTABLE

7

Slope Stability Analysis

Center Radius					
No.	x [ft]	z [ft]	R [ft]	FS	Verification
167	-26.98	351.93	87.78	1.79	ACCEPTABLE
168	-27.32	339.41	78.24	1.69	ACCEPTABLE
169	-19.09	310.23	52.68	3.00	ACCEPTABLE
170	-26.18	332.80	72.64	1.67	ACCEPTABLE
171	-21.78	324.44	63.65	1.69	ACCEPTABLE
172	-23.70	318.29	61.13	2.99	ACCEPTABLE
173	-24.93	315.69	54.41	1.67	ACCEPTABLE
174	-33.43	344.99	81.47	1.77	ACCEPTABLE
175	-29.25	336.14	71.96	1.76	ACCEPTABLE
176	-29.54	324.44	63.65	1.67	ACCEPTABLE
177	-24.04	303.97	47.02	3.09	ACCEPTABLE
178	-21.77	300.76	43.50	3.08	ACCEPTABLE
179	-28.13	316.97	57.70	2.44	ACCEPTABLE
180	-23.84	310.55	50.40	1.67	ACCEPTABLE
181	-26.26	307.12	50.52	3.12	ACCEPTABLE
182	-28.90	321.07	60.92	1.66	ACCEPTABLE
183	-25.65	324.40	63.62	1.67	ACCEPTABLE
184	-30.87	325.43	62.51	1.72	ACCEPTABLE
185	-34.99	361.57	98.04	1.81	ACCEPTABLE
186	-29.62	345.36	81.80	1.75	ACCEPTABLE
187	-30.44	335.02	74.50	1.68	ACCEPTABLE
188	-22.54	307.95	51.09	3.08	ACCEPTABLE
189	-29.44	329.16	69.65	2.32	ACCEPTABLE
190	-25.02	321.07	60.92	1.66	ACCEPTABLE
191	-27.15	315.78	59.29	3.11	ACCEPTABLE
192	-28.15	312.60	51.97	1.66	ACCEPTABLE
193	-36.25	339.40	76.46	1.79	ACCEPTABLE
194	-32.00	330.77	67.17	1.75	ACCEPTABLE
195	-32.78	321.07	60.92	1.69	ACCEPTABLE
196	-27.54	302.10	45.80	3.22	ACCEPTABLE
197	-25.27	298.97	42.38	3.19	ACCEPTABLE
198	-31.50	314.30	55.67	2.71	ACCEPTABLE
199	-27.20	308.08	48.56	2.32	ACCEPTABLE
200	-29.77	305.15	49.21	3.27	ACCEPTABLE
201	-32.21	318.05	58.53	2.35	ACCEPTABLE
202	-27.77	310.77	50.56	1.66	ACCEPTABLE
203	-30.01	332.51	72.41	1.68	ACCEPTABLE
204	-25.43	323.24	62.67	1.66	ACCEPTABLE
205	-28.90	321.07	60.92	1.66	ACCEPTABLE
206	-26.82	323.75	63.09	1.67	ACCEPTABLE
207	-30.16	323.95	61.89	1.69	ACCEPTABLE
208	-32.51	344.78	82.35	1.74	ACCEPTABLE
209	-29.04	335.45	72.99	1.71	ACCEPTABLE
210	-29.95	330.27	69.85	1.67	ACCEPTABLE
211	-24.59	311.95	53.92	2.85	ACCEPTABLE
212	-29.28	326.50	66.76	2.16	ACCEPTABLE
213	-26.31	321.07	60.92	1.66	ACCEPTABLE
214	-24.23	323.75	63.09	1.67	ACCEPTABLE
215	-27.57	323.95	61.89	1.68	ACCEPTABLE

Slope Stability Analysis

	Center Radius					
No.	x [ft]	z [ft]	R [ft]	FS	Verification	
216	-29.92	344.78	82.35	1.72	ACCEPTABLE	
217	-26.45	335.45	72.99	1.71	ACCEPTABLE	
218	-27.36	330.27	69.85	1.67	ACCEPTABLE	
219	-22.00	311.95	53.92	2.86	ACCEPTABLE	
220	-26.69	326.50	66.76	2.16	ACCEPTABLE	
221	-23.72	321.07	60.92	1.67	ACCEPTABLE	
222	-25.05	317.25	59.53	2.90	ACCEPTABLE	
223	-25.84	315.48	54.98	1.66	ACCEPTABLE	
224	-31.05	332.44	70.38	1.70	ACCEPTABLE	
225	-28.14	326.75	64.26	1.70	ACCEPTABLE	
226	-28.90	321.07	60.92	1.66	ACCEPTABLE	
227	-25.25	307.41	49.82	2.93	ACCEPTABLE	
228	-23.74	305.13	47.34	2.92	ACCEPTABLE	
229	-28.10	316.87	57.62	2.44	ACCEPTABLE	
230	-25.19	312.29	52.52	2.12	ACCEPTABLE	
231	-26.74	309.66	52.28	2.99	ACCEPTABLE	
232	-28.53	319.14	59.39	2.15	ACCEPTABLE	
233	-25.56	314.07	53.89	1.66	ACCEPTABLE	
234	-27.05	328.57	68.45	1.66	ACCEPTABLE	
235	-24.02	322.62	62.17	1.67	ACCEPTABLE	
236	-26.31	321.07	60.92	1.66	ACCEPTABLE	
237	-24.96	323.05	62.51	1.67	ACCEPTABLE	
238	-27.13	322.98	61.52	1.67	ACCEPTABLE	
239	-28.56	335.69	74.01	1.69	ACCEPTABLE	
240	-26.28	330.00	68.30	1.69	ACCEPTABLE	
241	-27.01	327.16	66.82	1.66	ACCEPTABLE	
242	-23.40	314.80	56.04	2.64	ACCEPTABLE	
243	-26.57	324.70	64.82	2.00	ACCEPTABLE	
244	-24.59	321.07	60.92	1.66	ACCEPTABLE	
245	-25.43	318.38	59.84	2.69	ACCEPTABLE	
246	-26.01	317.36	56.98	1.66	ACCEPTABLE	
247	-29.41	328.32	66.88	1.68	ACCEPTABLE	
248	-27.44	324.57	62.85	1.68	ACCEPTABLE	
249	-28.03	321.07	60.92	1.66	ACCEPTABLE	
250	-25.52	311.45	52.99	2.72	ACCEPTABLE	
251	-24.51	309.83	51.25	2.70	ACCEPTABLE	
252	-27.53	318.42	58.82	2.25	ACCEPTABLE	
253	-25.57	315.17	55.26	1.95	ACCEPTABLE	
254	-26.52	313.05	54.73	2.77	ACCEPTABLE	
255	-27.80	319.82	59.93	1.99	ACCEPTABLE	
256	-25.81	316.35	56.18	1.66	ACCEPTABLE	
257	-24.45	318.19	57.64	1.67	ACCEPTABLE	
258	-26.56	317.89	56.43	1.67	ACCEPTABLE	
259	-28.00	330.00	68.30	1.68	ACCEPTABLE	
260	-25.72	324.57	62.85	1.68	ACCEPTABLE	
261	-26.52	322.15	61.79	1.66	ACCEPTABLE	
262	-22.94	310.57	51.79	2.64	ACCEPTABLE	
263	-26.08	319.82	59.93	1.99	ACCEPTABLE	
264	-24.09	316.35	56.18	1.67	ACCEPTABLE	

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

	Cei	nter	Radius		
No.	x [ft]	z [ft]	R [ft]	FS	Verification
265	-24.97	314.01	55.45	2.70	ACCEPTABLE
266	-25.50	312.80	52.39	1.66	ACCEPTABLE
267	-28.85	322.98	61.53	1.68	ACCEPTABLE
268	-26.88	319.40	57.66	1.68	ACCEPTABLE
269	-27.53	316.35	56.18	1.66	ACCEPTABLE
270	-25.06	307.40	48.93	2.73	ACCEPTABLE
271	-24.05	305.86	47.25	2.70	ACCEPTABLE
272	-27.03	313.83	54.23	2.26	ACCEPTABLE
273	-25.07	310.74	50.81	1.93	ACCEPTABLE
274	-26.06	308.93	50.60	2.77	ACCEPTABLE
275	-27.30	315.17	55.26	1.96	ACCEPTABLE
276	-25.30	311.86	51.66	1.66	ACCEPTABLE
277	-26.31	321.07	60.92	1.66	ACCEPTABLE
278	-24.29	317.36	56.98	1.67	ACCEPTABLE
279	-25.81	316.35	56.18	1.66	ACCEPTABLE
280	-24.92	317.66	57.21	1.66	ACCEPTABLE
281	-26.31	317.38	56.33	1.67	ACCEPTABLE
282	-27.21	325.01	63.82	1.67	ACCEPTABLE
283	-25.70	321.60	60.39	1.67	ACCEPTABLE
284	-26.28	320.19	59.89	1.66	ACCEPTABLE
285	-23.88	312.42	53.16	2.44	ACCEPTABLE
286	-25.99	318.67	58.68	1.83	ACCEPTABLE
287	-24.66	316.35	56.18	1.66	ACCEPTABLE
288	-25.23	314.72	55.62	2.50	ACCEPTABLE
289	-25.61	313.99	53.66	1.66	ACCEPTABLE
290	-27.81	320.66	59.62	1.67	ACCEPTABLE
291	-26.49	318.29	57.06	1.67	ACCEPTABLE
292	-26.96	316.35	56.18	1.66	ACCEPTABLE
293	-25.27	310.15	51.10	2.54	ACCEPTABLE
294	-24.60	309.07	49.94	2.51	ACCEPTABLE
295	-26.64	314.74	54.93	2.08	ACCEPTABLE
296	-25.32	312.59	52.57	1.68	ACCEPTABLE
297	-25.94	311.21	52.26	2.58	ACCEPTABLE
298	-26.81	315.58	55.58	1.77	ACCEPTABLE
299	-25.47	313.33	53.14	1.66	ACCEPTABLE
300	-26.14	319.47	59.32	1.66	ACCEPTABLE
301	-24.80	317.04	56.73	1.67	ACCEPTABLE
302	-25.81	316.35	56.18	1.66	ACCEPTABLE
303	-25.22	317.26	56.89	1.66	ACCEPTABLE
304	-26.14	317.04	56.28	1.66	ACCEPTABLE
305	-26.72	321.95	61.09	1.67	ACCEPTABLE
306	-25.72	319.75	58.89	1.67	ACCEPTABLE
307	-26.13	318.90	58.64	1.66	ACCEPTABLE
308	-24.52	313.69	54.12	2.27	ACCEPTABLE
309	-25.93	317.90	57.85	1.66	ACCEPTABLE
310	-25.34	318.81	58.57	1.66	ACCEPTABLE
311	-26.26	318.63	57.99	1.66	ACCEPTABLE
312	-26.84	323.59	62.86	1.67	ACCEPTABLE
313	-25.84	321.37	60.62	1.67	ACCEPTABLE

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

No. x [ft] z [ft] R [ft] FS 314 -26.24 320.48 60.34 1.66 315 -24.64 315.18 55.74 2.34 316 -26.05 319.48 59.54 1.91 317 -25.16 317.90 57.85 1.66	ACCEPTABLE ACCEPTABLE
315 -24.64 315.18 55.74 2.34 316 -26.05 319.48 59.54 1.91	
316 -26.05 319.48 59.54 1.91	
317 -25.16 317.90 57.85 1.66	ACCEPTABLE
-20.10 011.00 01.00 1.00	ACCEPTABLE
318 -25.53 316.75 57.41 2.40	ACCEPTABLE
319 -25.80 316.31 56.15 1.66	ACCEPTABLE
320 -27.26 320.79 60.16 1.66	ACCEPTABLE
321 -26.37 319.19 58.44 1.66	ACCEPTABLE
322 -26.70 317.90 57.85 1.66	ACCEPTABLE
323 -26.11 318.81 58.57 1.66	ACCEPTABLE
324 -27.03 318.63 57.99 1.66	ACCEPTABLE
325 -27.61 323.59 62.86 1.66	ACCEPTABLE
326 -26.61 321.37 60.62 1.66	ACCEPTABLE
327 -27.01 320.48 60.34 1.66	ACCEPTABLE
328 -25.41 315.18 55.74 2.34	ACCEPTABLE
329 -26.82 319.48 59.54 1.91	ACCEPTABLE
330 -25.93 317.90 57.85 1.66	ACCEPTABLE
331 -26.30 316.75 57.41 2.40	ACCEPTABLE
<u>332</u> -26.57 <u>316.31</u> <u>56.15</u> <u>1.66</u>	ACCEPTABLE
333 -28.03 320.79 60.16 1.66	ACCEPTABLE
334 -27.14 319.19 58.44 1.66	ACCEPTABLE
335 -27.47 317.90 57.85 1.66	ACCEPTABLE
<u>336</u> -26.33 <u>313.57</u> <u>54.27</u> <u>2.42</u>	ACCEPTABLE
337 -25.88 312.83 53.47 2.39	ACCEPTABLE
338 -27.26 316.85 57.03 2.07	ACCEPTABLE
339 -26.38 315.35 55.40 1.89	ACCEPTABLE
340 -26.77 314.32 55.08 2.45	ACCEPTABLE
341 -27.37 317.39 57.45 1.91	ACCEPTABLE
342 -26.48 315.85 55.79 1.66	ACCEPTABLE
343 -26.92 320.00 59.95 1.66	ACCEPTABLE
344 -26.33 320.94 60.70 1.66	ACCEPTABLE
345 -27.26 320.80 60.15 1.66	ACCEPTABLE
346 -27.84 325.87 65.13 1.67	ACCEPTABLE
347 -26.84 323.60 62.85 1.67	ACCEPTABLE
348 -27.23 322.64 62.50 1.66	ACCEPTABLE
349 -25.62 317.18 57.73 2.35	ACCEPTABLE
350 -27.04 321.61 61.67 1.91	ACCEPTABLE
351 -26.15 320.00 59.95 1.66	ACCEPTABLE
352 -26.51 318.77 59.44 2.40	ACCEPTABLE
353 -26.79 318.38 58.22 1.66	ACCEPTABLE
354 -28.26 323.01 62.37 1.66	ACCEPTABLE
355 -27.37 321.38 60.62 1.67	ACCEPTABLE
356 -27.69 320.00 59.95 1.66	ACCEPTABLE
357 -26.54 315.53 56.23 2.41	ACCEPTABLE
358 -26.09 314.77 55.41 2.40	ACCEPTABLE
359 -27.48 318.93 59.10 2.06	ACCEPTABLE
360 -26.60 317.40 57.45 1.89	ACCEPTABLE
361 -26.98 316.29 57.05 2.43	ACCEPTABLE
362 -27.59 319.48 59.54 1.91	ACCEPTABLE

ERM - Annapolis	Slope Stability Analysis
Name : Stage 1	Stage - analysis : 2 - 1
Description : Seismic Peak Rotational	
	y
1	

 ERM - Annapolis

 Name : Stage 1

 Description : Polygonal

No.	Center		Radius	FS	Verification
NO.	x [ft]	z [ft]	R [ft]	гэ	vernication
363	-26.70	317.90	57.84	1.66	ACCEPTABLE
364	-27.14	322.14	62.10	1.66	ACCEPTABLE
365	-26.25	320.49	60.34	1.66	ACCEPTABLE
366	-26.92	320.00	59.95	1.66	ACCEPTABLE

Analysis 2 (stage 1)

Polygonal slip surface

	Coordinates of slip surface points [ft]										
x	z	x	z	x	z	x	z	x	z		
-25.20	281.00	-22.39	279.22	19.46	247.80	97.67	252.65	99.69	253.86		
123.28	267.00										
	The slip surface after optimization.										

Segments restricting slip surface

No	First point			Second point			
NO	<i>.</i>	x [ft]	z [ft]	x [ft]	z [ft]		
1		639.99	243.01	-480.00	243.02		

Slope stability verification (Janbu) Factor of safety = 2.22 > 1.00 Slope stability ACCEPTABLE

Input data (Stage of construction 2)

Assigning and surfaces

No.	Surface position	Coordi	nates of s	urface points	; [ft]	Assigned
NO.		x	z	x	z	soil
1		-352.68	260.06	-372.12	269.00	Clay with high or very high plasticity (CH, CV, CE), soft
		-396.00	281.00	-480.00	281.00	consistency
		-480.00	260.00			
2		57.43	260.06	40.70	266.99	Clay with high or very high
		40.68	267.00	14.18	278.00	plasticity (CH, CV, CE), soft consistency
		0.00	281.00	-32.48	281.00	
		-56.00	277.75	-75.60	268.96	
		-95.63	259.96			「 <u>_</u>
3		640.00	259.88	640.00	269.00	Clay with high or very high plasticity (CH, CV, CE), soft
		441.00	269.00	411.00	279.50	consistency
		400.00	280.00	387.00	281.00	
		363.00	281.00	358.00	280.00	
		326.60	267.00	309.46	259.91	
4		-372.12	269.00	-352.68	260.06	
		-346.00	257.00	-106.00	257.00	Ash
		-100.00	258.00	-95.63	259.96	
		-75.60	268.96			

ERM - Annapolis

No.	Surface position	Coordi	nates of si	urface points	[ft]	Assigned
NO.	Surface position	x	z	x	z	soil
5		40.70	267.00	40.68	267.00	Ash
		40.70	266.99	57.43	260.06	ASIT
		72.00	254.00	272.00	254.00	
		292.00	255.00	300.00	256.00	
		309.46	259.91	326.60	267.00	
6		640.00	253.00	640.00	259.88	Silty sand (SM)
		309.46	259.91	300.00	256.00	Silty Salid (Sivi)
		292.00	255.00	272.00	254.00	。 <i>*</i> ° ′′ °/ °′ °
		72.00	254.00	57.43	260.06	
		-95.63	259.96	-100.00	258.00	
		-106.00	257.00	-346.00	257.00	
		-352.68	260.06	-480.00	260.00	
		-480.00	253.00			
7		-480.00	253.00	-480.00	243.00	Clay with high or very high plasticity (CH, CV, CE), soft
		640.00	243.00	640.00	253.00	consistency

Water

Water type : GWT

No.	GWT location	Coordinates of GWT points [ft]							
		x	z	x	z	x	z		
		-480.00	278.00	-160.00	278.00	-48.02	278.00		
1		40.26	267.00	327.32	267.00	420.32	276.00		
		640.00	276.00						

Tensile crack

Tensile crack not input.

Earthquake

Horizontal seismic coefficient : $K_h = 0.20$ Vertical seismic coefficient : $K_v = 0.00$

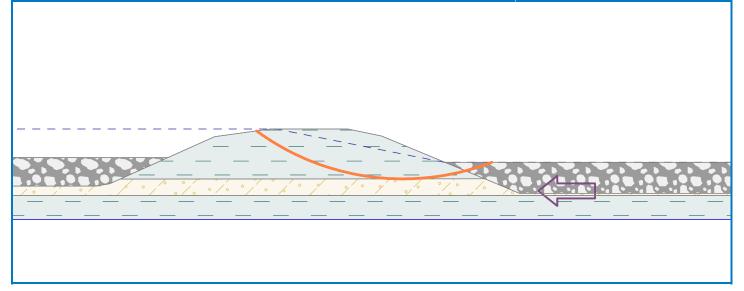
Settings of the stage of construction

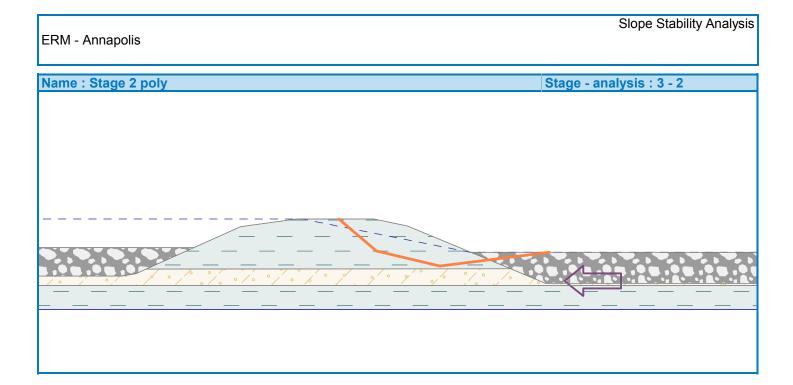
Design situation : seismic

Results (Stage of construction 2)

Analysis 1 (stage 2)

Circular slip surface


Slip surface parameters							
Center :	x =	27.67	[ft]	Angles :	α ₁ =	-33.02 [°]	
Center.	z =	420.89	[ft]	Angles .	α ₂ =	30.05 [°]	
Radius :	Radius : R = 177.78 [ft]						
The slip surface after optimization.							


Segments restricting slip surface

13

Name : Stage 2 rotational

Stage - analysis : 3 - 1

No.	First	point	Second point		
NO.	x [ft] z [ft]		x [ft]	z [ft]	
1	639.92	243.08	-479.98	243.10	

The restrictions of points of circular slip surface

Slope stability verification (Bishop)

Sum of active forces : $F_a = 99390.5$ lbf/ft Sum of passive forces : $F_p = 126362.9$ lbf/ft

Sliding moment : $M_a = 17669643.0$ lbfft/ft Resisting moment : $M_p = 22464794.9$ lbfft/ft Factor of safety = 1.27 > 1.00 Slope stability ACCEPTABLE

Analysis 2 (stage 2)

Polygonal slip surface

	Coordinates of slip surface points [ft]									
x	x z x z x z x z x z									
-12.35	-12.35 281.00 4.05 265.99 10.62 264.92 31.40 260.13 61.25 267.00									
	The slip surface after optimization.									

Segments restricting slip surface

No.	First	point	Second point		
NO.	x [ft] z [ft]		x [ft]	z [ft]	
1	-480.00	243.03	639.88	243.15	

Slope stability verification (Janbu) Factor of safety = 1.34 > 1.00

Slope stability ACCEPTABLE

Input data (Stage of construction 3)

Assigning and surfaces

No.	Surface position	Coordi	nates of su	urface points	; [ft]	Assigned
NO.	Surface position	x	z	x	z	soil
1		-352.68	260.06	-372.12	269.00	Clay with high or very high
		-396.00	281.00	-480.00	281.00	plasticity (CH, CV, CE), soft consistency
		-480.00	260.00			
2		57.43	260.06	40.70	266.99	Clay with high or very high
		40.68	267.00	14.18	278.00	plasticity (CH, CV, CE), soft consistency
		0.00	281.00	-32.48	281.00	
		-56.00	277.75	-75.60	268.96	
		-95.63	259.96			
3		640.00	259.88	640.00	269.00	Clay with high or very high
		441.00	269.00	411.00	279.50	plasticity (CH, CV, CE), soft consistency
		400.00	280.00	387.00	281.00	
		363.00	281.00	358.00	280.00	
		326.60	267.00	309.46	259.91	

No.	Surface position	Coordi	nates of su	urface points	[ft]	Assigned
NO.	Surface position	x	z	x	z	soil
4		-372.12	269.00	-352.68	260.06	Ash
		-346.00	257.00	-106.00	257.00	ASII
		-100.00	258.00	-95.63	259.96	
		-75.60	268.96			
5		40.70	267.00	40.68	267.00	Ash
		40.70	266.99	57.43	260.06	A911
		72.00	254.00	272.00	254.00	
		292.00	255.00	300.00	256.00	
		309.46	259.91	326.60	267.00	
6		640.00	253.00	640.00	259.88	Cilture and (CM)
		309.46	259.91	300.00	256.00	Silty sand (SM)
		292.00	255.00	272.00	254.00	。
		72.00	254.00	57.43	260.06	
		-95.63	259.96	-100.00	258.00	
		-106.00	257.00	-346.00	257.00	
		-352.68	260.06	-480.00	260.00	
		-480.00	253.00			
7		-480.00	253.00	-480.00	243.00	Clay with high or very high
		640.00	243.00	640.00	253.00	plasticity (CH, CV, CE), soft consistency

Water

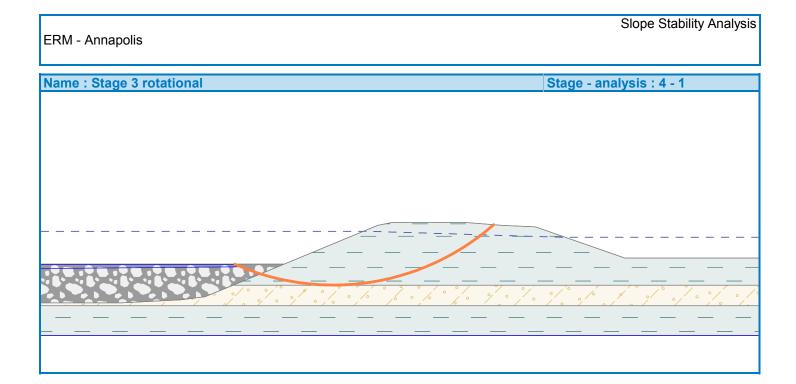
Water type : GWT

No.	GWT location	Coordinates of GWT points [ft]						
NO.	GWT location	x	z	x	z	x	z	
	1	-480.00	280.00	-397.22	281.00	-30.17	281.00	
1		40.38	267.00	329.40	267.00	416.23	276.00	
			276.00	640.00	276.00			

Tensile crack

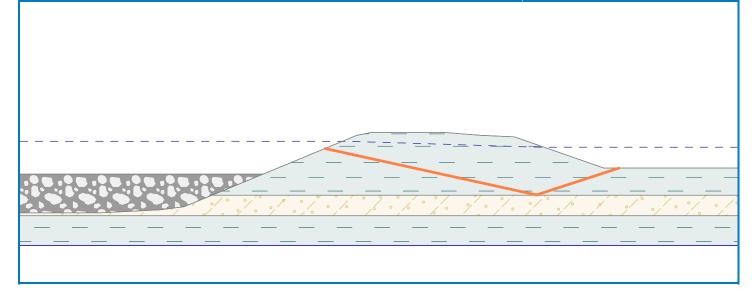
Tensile crack not input.

Earthquake


Settings of the stage of construction

Design situation : seismic

Results (Stage of construction 3)


Analysis 1 (stage 3)

Circular slip surface

Name : Stage 3 polygonal

Stage - analysis : 4 - 2

Slip surface parameters								
Center :	x =	23.09 [ft]	Angles :	α ₁ =	-36.31 [°]			
Center .	z =	363.82 [ft]	Allyles .	α ₂ =	21.10 [°]			
Radius :	Radius : R = 103.78 [ft]							
The slip surface after optimization.								

Segments restricting slip surface

No.	First	point	Second point		
NO.	x [ft]	z [ft]	x [ft]	z [ft]	
1	639.89	243.09	-479.99	243.04	

The restrictions of points of circular slip surface

Slope stability verification (Bishop)

Sum of active forces :	F _a =	34886.5	lbf/ft
Sum of passive forces :	F _p =	43321.0	lbf/ft
Sliding moment :	M _a =	3620519.1	lbfft/ft
Resisting moment :	M _p =	4495852.8	lbfft/ft
Factor of safety = 1.24 >	· 1.00		
Slope stability ACCEP	TABL	E	

Analysis 2 (stage 3)

Polygonal slip surface

	Coordinates of slip surface points [ft]								
x	x z x z x z x z x z								
-14.76	281.00	1.05	267.56	27.70	261.24	73.69	267.00		
	The slip surface after optimization.								

Segments restricting slip surface

No.	First	point	Second point		
NO .	x [ft]	z [ft]	x [ft]	z [ft]	
1	-479.99	243.02	640.00	243.00	

Slope stability verification (Janbu) Factor of safety = 1.42 > 1.00 Slope stability ACCEPTABLE

Input data (Stage of construction 4)

Assigning and surfaces

No.	Surface position	Coordi	nates of s	; [ft]	Assigned	
NO.		x	z	x	z	soil
1		-352.68	260.06	-372.12	269.00	Clay with high or very high
		-396.00	281.00	-480.00	281.00	plasticity (CH, CV, CE), soft consistency
		-480.00	260.00			

ERM - Annapolis

		Coordi	nates of su	Irface points	[ft]	Assigned
No.	Surface position	x	z	X	Z	soil
2		57.43	260.06	40.70	266.99	Clay with high or very high
_		40.68	267.00	14.18	278.00	plasticity (CH, CV, CE), soft consistency
		0.00	281.00	-32.48	281.00	Consistency
		-56.00	277.75	-75.60	268.96	
		-95.63	259.96			
0			050.00	0.40.00	000.00	Clay with high or very high
3		640.00	259.88	640.00	269.00	plasticity (CH, CV, CE), soft
		441.00	269.00	411.00	279.50	consistency
		400.00	280.00	387.00	281.00	
		363.00	281.00	358.00	280.00	
		326.60	267.00	309.46	259.91	
4		-372.12	269.00	-352.68	260.06	Ash
		-346.00	257.00	-106.00	257.00	ASII
		-100.00	258.00	-95.63	259.96	
		-75.60	268.96			
5		40.70	267.00	40.68	267.00	
		40.70	266.99	57.43	260.06	Ash
		72.00	254.00	272.00	254.00	
		292.00	255.00	300.00	256.00	
		309.46	259.91	326.60	267.00	
6		640.00	253.00	640.00	259.88	
		309.46	259.91	300.00	256.00	Silty sand (SM)
		292.00	255.00	272.00	254.00	
		72.00	254.00	57.43	260.06	
		-95.63	259.96	-100.00	258.00	
		-106.00	257.00	-346.00	257.00	
		-352.68	260.06	-480.00	260.00	
		-480.00	253.00			
7		-480.00	253.00	-480.00	243.00	Clay with high or very high
		640.00	243.00	640.00	253.00	plasticity (CH, CV, CE), soft consistency
			I			001010101

Water

Water type : GWT

No.	GWT location	Coordinates of GWT points [ft]						
NO.	GWT location	x	z	x	z	x	z	
	1	-480.00	278.00	-397.22	278.00	354.92	278.00	
1		420.00	276.00	453.08	276.00	640.00	276.00	

Tensile crack

Tensile crack not input.

Earthquake

Horizontal seismic coefficient : $K_h = 0.20$

Vertical seismic coefficient : $K_v = 0.00$

Settings of the stage of construction

Design situation : seismic

Results (Stage of construction 4)

Analysis 1 (stage 4)

Circular slip surface

Slip surface parameters							
Center :	x =	343.14	[ft]		α ₁ =	-23.99 [°]	
Center.	z =	341.54	[ft]	Angles :	α ₂ =	41.29 [°]	
Radius : R = 81.59 [ft]							
The slip surface after optimization.							

Segments restricting slip surface

No.	First	point	Second point			
NO.	x [ft]	z [ft]	x [ft]	z [ft]		
1	640.00	243.00	-479.99	243.01		
2	203.77	266.86	309.93	266.86		
3	65.71	263.92	310.73	266.04		

The restrictions of points of circular slip surface

Slope stability verification (Bishop)

Sum of active forces :	F _a =	24067.4	lbf/ft
Sum of passive forces :	F _p =	37012.9	lbf/ft
Sliding moment :	M _a =	1963662.4	lbfft/ft
Resisting moment :	M _p =	3019881.4	lbfft/ft
Factor of safety = 1.54 >	1.00		
Slope stability ACCEP	TABL	E	

Analysis 2 (stage 4)

Polygonal slip surface

	Coordinates of slip surface points [ft]									
x z x z x z x z x z										
347.38	347.38 275.60 418.37 259.97 446.12 269.00									
	The slip surface after optimization.									

Segments restricting slip surface

No.	First	point	Second point			
NO.	x [ft]	z [ft]	x [ft]	z [ft]		
1	-159.78	250.98	109.70	250.98		
2	-480.00	243.01	640.00	243.00		
3	-162.89	268.92	-87.44	269.14		
4	59.32	266.96	146.07	266.96		

Slope stability verification (Janbu) Factor of safety = 1.69 > 1.00 Slope stability ACCEPTABLE

Input data (Stage of construction 5)

Assigning and surfaces

No.	Surface position	Coordi	nates of su	Irface points	[ft]	Assigned
NO.	Surface position	x	z	x	z	soil
1		-352.68	260.06	-372.12	269.00	Clay with high or very high
		-396.00	281.00	-480.00	281.00	plasticity (CH, CV, CE), soft consistency
		-480.00	260.00			
						[
2	2 ¹¹⁻¹⁰	57.43	260.06	40.70	266.99	Clay with high or very high
		40.68	267.00	14.18	278.00	plasticity (CH, CV, CE), soft consistency
		0.00	281.00	-32.48	281.00	
		-56.00	277.75	-75.60	268.96	
		-95.63	259.96			
3		640.00	259.88	640.00	269.00	Clay with high or very high
		441.00	269.00	411.00	279.50	plasticity (CH, CV, CE), soft consistency
		400.00	280.00	387.00	281.00	
		363.00	281.00	358.00	280.00	
		326.60	267.00	309.46	259.91	
4		-372.12	269.00	-352.68	260.06	A . I.
		-346.00	257.00	-106.00	257.00	Ash
		-100.00	258.00	-95.63	259.96	
		-75.60	268.96			
5		40.70	267.00	40.68	267.00	Ach
		40.70	266.99	57.43	260.06	Ash
		72.00	254.00	272.00	254.00	
		292.00	255.00	300.00	256.00	
		309.46	259.91	326.60	267.00	
6		640.00	253.00	640.00	259.88	
		309.46	259.91	300.00	256.00	Silty sand (SM)
		292.00	255.00	272.00	254.00	0 0 0 1 0 0 0
		72.00	254.00	57.43	260.06	
		-95.63	259.96	-100.00	258.00	· / · · · · / · / ·
		-106.00	257.00	-346.00	257.00	
		-352.68	260.06	-480.00	260.00	
		-480.00	253.00			
7		-480.00	253.00	-480.00	243.00	Clay with high or very high
	¥	640.00	243.00	640.00	253.00	plasticity (CH, CV, CE), soft
		0-10.00	2-10.00	0-10.00	200.00	consistency

Water Water type : GWT

19

No	No. GWT location		Соо	rdinates of G	WT points	[ft]	
110.		x	Z	x	z	X	z
		-480.00	281.00	-397.22	281.00	363.96	281.00
1		418.69	276.00	640.00	276.00		

Tensile crack

Tensile crack not input.

Earthquake

Horizontal seismic coefficient : $K_h = 0.20$ Vertical seismic coefficient : $K_v = 0.00$

Settings of the stage of construction

Design situation : seismic

Results (Stage of construction 5)

Analysis 1 (stage 5)

Circular slip surface

Slip surface parameters								
Center :	x =	406.56	[ft]		α ₁ =	-33.65 [°]		
Center.	z =	361.21	[ft]	Angles :	α ₂ =	24.48 [°]		
Radius :	Radius : R = 101.32 [ft]							
The slip surface after optimization.								

Segments restricting slip surface

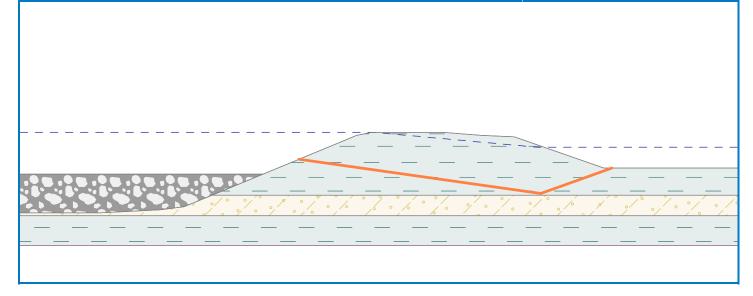
No.	First	point	Second point			
NO.	x [ft]	z [ft]	x [ft]	z [ft]		
1	-159.58	250.78	109.90	251.38		
2	106.95	266.86	290.40	267.28		
3	639.76	244.48	58.61	245.20		
4	294.71	264.84	101.63	263.47		

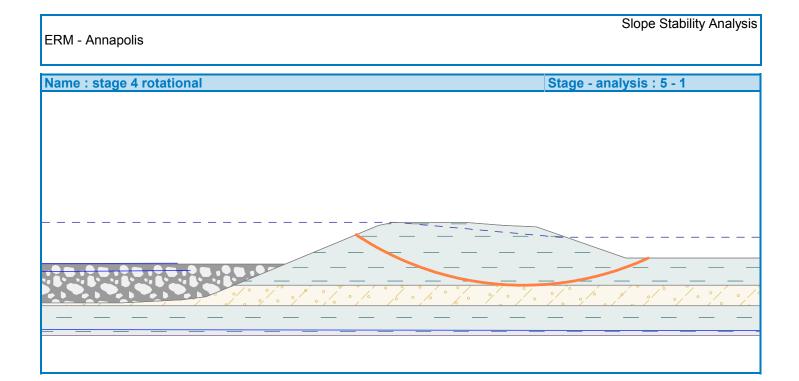
The restrictions of points of circular slip surface

Slope stability verification (Bishop)

Sum of active forces :	F _a =	31599.2	lbf/ft	
Sum of passive forces :	F _p =	46107.7	lbf/ft	
Sliding moment :	M _a =	3201627.9	lbfft/ft	
Resisting moment :	M _p =	4671634.7	lbfft/ft	
Factor of safety = 1.46 >	1.00			
Class stability ACCED		-		

Slope stability ACCEPTABLE


Optimization of circular slip surface (Bishop)


No.	Center		Radius	FS	Verification
NO.	x [ft]	z [ft]	R [ft]	15	Vernication
1	-406.56	-406.56 361.21 10		1.46	ACCEPTABLE
2	2 -406.56 361.21		101.32	1.46	ACCEPTABLE
3	-406.56 361.21 -366.93 4391.41	101.32	1.46	ACCEPTABLE	
4		4131.40	5.32	ACCEPTABLE	
5	-406.56	361.21	101.32	1.46	ACCEPTABLE
6	-548.64	400.37	140.23	3.38	ACCEPTABLE
7	-406.56	361.21	101.32	1.46	ACCEPTABLE
8	-498.92	400.37	140.23	3.38	ACCEPTABLE
9	-201.44	641.35	393.76	1.73	ACCEPTABLE

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

Name : Stage 4 Polygonal

Stage - analysis : 5 - 2

N	Center		Radius	50	Varification
No.	x [ft]	z [ft]	R [ft]	FS	Verification
10	-406.56	361.21	101.32	1.46	ACCEPTABLE
11	-473.22	359.17	99.31	3.61	ACCEPTABLE
12	-764.59	1616.84	1384.40	13.39	ACCEPTABLE
13	-406.56	361.21	101.32	1.46	ACCEPTABLE
14	-452.57	351.15	91.44	2.75	ACCEPTABLE
15	-962.92	3985.79	3752.22	4.22	ACCEPTABLE
16	-406.56	361.21	101.32	1.46	ACCEPTABLE
17	-438.09	349.76	90.09	2.22	ACCEPTABLE
18	-433.43	311.67	61.71	2.40	ACCEPTABLE
19	-406.56	361.21	101.32	1.46	ACCEPTABLE
20	-400.43	284.29	30.55	4.84	ACCEPTABLE
21	-428.27	349.76	90.09	2.03	ACCEPTABLE
22	-400.18	282.39	30.15	4.43	ACCEPTABLE
23	-425.63	328.18	72.90	3.07	ACCEPTABLE
24	-401.79	294.56	34.50	2.00	ACCEPTABLE
25	-406.56	361.21	101.32	1.46	ACCEPTABLE
26	-386.76	344.41	88.14	3.19	ACCEPTABLE
27	-416.93	400.71	131.09	2.24	ACCEPTABLE
28	-403.08	452.99	193.09	1.51	ACCEPTABLE
29	-386.57	305.50	59.87	2.34	ACCEPTABLE
30	-402.90	443.90	184.50	2.23	ACCEPTABLE
31	-386.92	374.55	114.41	1.61	ACCEPTABLE
32	-400.90	342.01	94.98	1.90	ACCEPTABLE
33	-403.96	307.99	48.63	2.32	ACCEPTABLE
34	-453.75	611.65	342.74	2.74	ACCEPTABLE
35	-432.97	515.43	244.50	2.80	ACCEPTABLE
36	-421.72	349.76	90.09	1.95	ACCEPTABLE
37	-408.52	292.64	46.49	2.28	ACCEPTABLE
38	-400.65	284.30	37.28	3.00	ACCEPTABLE
39	-417.78	317.52	65.41	2.59	ACCEPTABLE
40	-403.04	301.36	44.45	3.14	ACCEPTABLE
41	-420.20	337.28	79.87	2.72	ACCEPTABLE
42	-404.20	309.71	49.79	1.65	ACCEPTABLE
43	-403.15	456.83	196.73	1.52	ACCEPTABLE
44 45	-386.88 -406.56	367.37 361.21	107.97 101.32	2.31 1.46	ACCEPTABLE
	-400.56 -394.44				ACCEPTABLE ACCEPTABLE
46 47	-394.44 -414.02	365.55	106.31	2.25	ACCEPTABLE
		383.19	116.66	1.80	
48 49	-426.68 -409.83	1010.83 759.32	742.46 490.82	2.25 2.00	ACCEPTABLE ACCEPTABLE
49 50	-409.83	418.67	490.82	1.49	ACCEPTABLE
50	-392.69	320.81	69.73	2.51	ACCEPTABLE
52	-392.09	410.30	150.80	2.09	ACCEPTABLE
53	-404.00	373.42	113.35	1.51	ACCEPTABLE
53 54	-402.24	346.08	94.71	2.33	ACCEPTABLE
55	-402.24 -406.25	325.29	65.19	1.52	ACCEPTABLE
		525.23	00.19	1.02	AUGLETADLE

Radius

180.63

143.19

91.88

2.08

1.94

1.87

447.24

410.89

351.60

ACCEPTABLE

ACCEPTABLE

ACCEPTABLE

Slope Stability Analysis

ERM - Annapolis

56

57

58

-427.97

-417.73

-417.03

x (n) x (n) x (n) x (n) x (n) 59 4407.74 305.59 54.81 2.43 ACCEPTABLE 60 4402.66 288.48 47.18 2.71 ACCEPTABLE 61 414.90 33.01 76.77 2.84 ACCEPTABLE 62 4405.25 317.84 59.50 2.23 ACCEPTABLE 63 412.53 312.29 62.26 2.23 ACCEPTABLE 64 4416.18 344.16 85.67 2.45 ACCEPTABLE 66 400.88 417.83 157.79 1.49 ACCEPTABLE 66 404.88 417.83 157.79 1.47 ACCEPTABLE 69 -399.11 369.73 100.77 1.47 ACCEPTABLE 70 -411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.52 264.87 1.82 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACC		Cer	nter	Radius		
59 407.74 305.59 54.81 243 ACCEPTABLE 60 402.66 298.48 47.18 2.71 ACCEPTABLE 61 414.90 33.301 76.77 2.84 ACCEPTABLE 62 405.25 317.84 59.50 2.58 ACCEPTABLE 63 412.53 312.29 62.26 2.23 ACCEPTABLE 64 416.18 344.16 85.67 2.45 ACCEPTABLE 66 400.60 32.366 64.07 1.77 ACCEPTABLE 66 404.88 417.83 157.79 1.49 ACCEPTABLE 68 -406.56 361.21 101.32 1.46 ACCEPTABLE 69 -399.11 369.73 109.77 1.47 ACCEPTABLE 71 -412.34 530.52 264.87 1.82 ACCEPTABLE 72 -405.14 478.09 212.45 1.72 ACCEPTABLE 73 -405.75 397.89 137.76 1.	No.				FS	Verification
61 -414.90 333.01 76.77 2.84 ACCEPTABLE 62 -405.25 317.84 69.50 2.58 ACCEPTABLE 63 -412.53 312.29 62.26 2.23 ACCEPTABLE 64 -416.18 344.16 85.67 2.45 ACCEPTABLE 66 -404.88 417.83 157.79 1.49 ACCEPTABLE 66 -404.88 417.83 157.79 1.49 ACCEPTABLE 67 -394.73 373.12 110.08 1.51 ACCEPTABLE 68 -400.56 361.21 101.32 1.46 ACCEPTABLE 70 -411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.52 2.64.87 1.82 ACCEPTABLE 72 -405.74 478.09 212.45 1.72 ACCEPTABLE 73 -405.45 391.75 1.24 1.98 ACCEPTABLE 74 -397.05 332.53 78.25	59			54.81	2.43	ACCEPTABLE
62 -405.25 317.84 95.00 2.58 ACCEPTABLE 63 -412.53 312.29 62.26 2.23 ACCEPTABLE 64 -416.18 344.16 85.67 2.45 ACCEPTABLE 66 -406.06 323.86 64.07 1.77 ACCEPTABLE 66 -404.88 417.83 157.79 1.49 ACCEPTABLE 67 -394.73 373.12 110.88 1.61 ACCEPTABLE 68 -406.56 361.21 101.32 1.46 ACCEPTABLE 69 -399.11 399.73 100.77 1.47 ACCEPTABLE 71 -411.51 375.35 110.84 1.64 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.63 78.25 3.11 ACCEPTABLE 76 -399.13 370.10 110.10	60	-402.66	298.48	47.18	2.71	ACCEPTABLE
63 4412.53 312.29 62.26 2.23 ACCEPTABLE 64 4416.18 344.16 85.67 2.45 ACCEPTABLE 66 406.06 523.86 64.07 1.77 ACCEPTABLE 66 404.88 417.83 157.79 1.49 ACCEPTABLE 67 -394.73 373.12 113.08 1.51 ACCEPTABLE 68 406.56 361.21 101.32 1.46 ACCEPTABLE 69 -399.11 369.73 109.77 1.47 ACCEPTABLE 70 411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.52 266.87 1.82 ACCEPTABLE 73 405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 75 -405.45 391.75 1.32.14 1.96 ACCEPTABLE 76 -400.36 349.74 95.50	61	-414.90	333.01	76.77	2.84	ACCEPTABLE
64 -416.18 344.16 85.67 2.45 ACCEPTABLE 65 -406.06 323.86 64.07 1.77 ACCEPTABLE 66 -404.88 4417.83 157.79 1.49 ACCEPTABLE 67 -394.73 373.12 113.08 1.51 ACCEPTABLE 68 -406.56 361.21 101.32 1.46 ACCEPTABLE 69 -399.11 396.73 109.77 1.47 ACCEPTABLE 70 -411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.52 264.87 1.82 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 74 -397.05 332.53 78.55 3.12 ACCEPTABLE 75 -405.45 391.75 132.14 1.96 ACCEPTABLE 76 -399.13 370.10 110.10	62	-405.25	317.84	59.50	2.58	ACCEPTABLE
65 -406.06 323.86 64.07 1.77 ACCEPTABLE 66 -404.88 417.83 157.79 1.49 ACCEPTABLE 67 -394.73 373.12 113.08 1.51 ACCEPTABLE 68 -406.56 361.21 101.32 1.46 ACCEPTABLE 69 -399.11 369.73 109.77 1.47 ACCEPTABLE 70 -411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.52 264.87 1.82 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 76 -405.45 391.75 132.14 1.96 ACCEPTABLE 77 -403.36 349.74 95.50 3.02 ACCEPTABLE 78 -406.92 336.75 76.63 1.48 ACCEPTABLE 79 -413.67 354.95 120.75	63	-412.53	312.29	62.26	2.23	ACCEPTABLE
66 -404.88 417.83 157.79 1.49 ACCEPTABLE 67 -394.73 373.12 113.08 1.51 ACCEPTABLE 68 -406.65 361.21 101.32 1.46 ACCEPTABLE 69 -399.11 369.73 109.77 1.47 ACCEPTABLE 70 -411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.62 264.87 1.82 ACCEPTABLE 72 -405.14 478.09 212.45 1.72 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 76 -399.33 370.10 110.10 1.47 ACCEPTABLE 77 -403.36 349.74 95.50 3.02 ACCEPTABLE 79 -419.20 406.85 142.27	64	-416.18	344.16	85.67	2.45	ACCEPTABLE
67 -394.73 373.12 113.08 1.51 ACCEPTABLE 68 -406.56 311.21 101.32 1.46 ACCEPTABLE 69 -399.11 350.73 109.77 1.47 ACCEPTABLE 70 -411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.52 264.87 1.82 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 77 -403.36 349.74 95.50 3.02 ACCEPTABLE 79 -419.20 406.85 142.27 1.75 ACCEPTABLE 79 -419.20 406.85 142.27	65	-406.06	323.86	64.07	1.77	ACCEPTABLE
68 -406.56 361.21 101.32 1.46 ACCEPTABLE 69 -399.11 399.73 109.77 1.47 ACCEPTABLE 70 -411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.52 264.87 1.82 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -337.05 332.53 76.25 3.11 ACCEPTABLE 75 -405.45 391.75 132.14 1.96 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 76 -403.36 349.74 95.50 3.02 ACCEPTABLE 78 -406.92 336.75 76.63 1.48 ACCEPTABLE 79 -419.20 406.85 142.27 1.75 ACCEPTABLE 80 -412.77 354.05 94.29 1.78 ACCEPTABLE 81 -413.67 354.05 94.29	66	-404.88	417.83	157.79	1.49	ACCEPTABLE
69 -399.11 369.73 109.77 1.47 ACCEPTABLE 70 -411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.52 264.87 1.82 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 75 -405.45 391.75 132.14 1.96 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 76 -406.92 336.75 76.63 1.48 ACCEPTABLE 79 -419.20 406.85 142.27 1.75 ACCEPTABLE 80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 83 -403.99 312.07 57.93	67	-394.73	373.12	113.08	1.51	ACCEPTABLE
70 -411.51 375.35 110.84 1.64 ACCEPTABLE 71 -412.34 530.52 264.87 1.82 ACCEPTABLE 72 -405.14 478.09 212.45 1.72 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 77 -403.36 349.74 95.50 3.02 ACCEPTABLE 78 -406.92 336.75 76.63 1.48 ACCEPTABLE 78 -406.92 36.75 76.63 1.48 ACCEPTABLE 80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 83 -400.24 317.71 63.86	68	-406.56	361.21	101.32	1.46	ACCEPTABLE
71 4412.34 530.52 264.87 1.82 ACCEPTABLE 72 4405.14 478.09 212.45 1.72 ACCEPTABLE 73 4405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 75 -405.45 391.75 132.14 1.96 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 77 -403.36 349.74 95.50 3.02 ACCEPTABLE 78 -406.92 336.75 76.63 1.48 ACCEPTABLE 80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 -407.24 317.71 63.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 <td>69</td> <td>-399.11</td> <td>369.73</td> <td>109.77</td> <td>1.47</td> <td>ACCEPTABLE</td>	69	-399.11	369.73	109.77	1.47	ACCEPTABLE
72 -405.14 478.09 212.45 1.72 ACCEPTABLE 73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 75 -405.45 391.75 132.14 1.96 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 78 -406.92 336.75 76.63 1.48 ACCEPTABLE 78 -406.92 336.75 76.63 1.48 ACCEPTABLE 80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 -407.24 317.71 63.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.26 ACCEPTABLE 85 -406.22 330.86 77.83	70	-411.51	375.35	110.84	1.64	ACCEPTABLE
73 -405.75 397.89 137.75 1.48 ACCEPTABLE 74 -397.05 332.53 78.25 3.11 ACCEPTABLE 75 -405.45 391.75 132.14 1.96 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 77 -403.36 349.74 95.50 3.02 ACCEPTABLE 78 -406.92 336.75 76.63 1.48 ACCEPTABLE 79 -419.20 406.85 142.27 1.75 ACCEPTABLE 80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 -407.24 317.71 65.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.26 ACCEPTABLE 85 -406.22 330.86 71.83	71	-412.34	530.52	264.87	1.82	ACCEPTABLE
74 -397.05 332.53 78.25 3.11 ACCEPTABLE 75 -405.45 391.75 132.14 1.96 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 77 -403.36 349.74 95.50 3.02 ACCEPTABLE 78 -406.92 336.75 76.63 1.48 ACCEPTABLE 79 -419.20 406.85 142.27 1.75 ACCEPTABLE 80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 -407.24 317.71 63.66 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.56 ACCEPTABLE 85 -406.22 330.86 71.83 2.28 ACCEPTABLE 86 -406.70 334.87 75.08	72	-405.14	478.09	212.45	1.72	ACCEPTABLE
75 -405.45 391.75 132.14 1.96 ACCEPTABLE 76 -399.13 370.10 110.10 1.47 ACCEPTABLE 77 -403.36 349.74 95.50 3.02 ACCEPTABLE 78 406.92 336.75 76.63 1.48 ACCEPTABLE 79 -419.20 406.85 142.27 1.75 ACCEPTABLE 80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 407.24 317.71 63.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.56 ACCEPTABLE 85 -406.22 330.86 71.83 2.28 ACCEPTABLE 86 -401.45 323.26 69.81 3.06 ACCEPTABLE 87 -413.20 349.56 90.47 <	73	-405.75	397.89	137.75	1.48	ACCEPTABLE
76 -399.13 370.10 110.10 1.47 ACCEPTABLE 77 4403.36 349.74 95.50 3.02 ACCEPTABLE 78 406.92 336.75 76.63 1.48 ACCEPTABLE 79 419.20 406.85 142.27 1.75 ACCEPTABLE 80 412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 -407.24 317.71 63.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 412.54 343.20 85.18 2.26 ACCEPTABLE 85 -406.22 33.86 71.83 2.28 ACCEPTABLE 86 -410.45 323.26 69.81 3.06 ACCEPTABLE 88 -406.70 334.87 75.08 1.74 ACCEPTABLE 89 -405.67 366.20 136.21	74	-397.05	332.53	78.25	3.11	ACCEPTABLE
77 -403.36 349.74 95.50 3.02 ACCEPTABLE 78 -406.92 336.75 76.63 1.48 ACCEPTABLE 79 -419.20 406.85 142.27 1.75 ACCEPTABLE 80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 -407.24 317.71 63.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.56 ACCEPTABLE 85 -406.22 330.86 71.83 2.28 ACCEPTABLE 86 -410.45 323.26 69.81 3.06 ACCEPTABLE 87 -413.20 349.56 90.47 2.26 ACCEPTABLE 88 -406.70 334.87 75.08 1.74 ACCEPTABLE 89 -405.67 396.20 136.21	75	-405.45	391.75	132.14	1.96	ACCEPTABLE
78 -406.92 336.75 76.63 1.48 ACCEPTABLE 79 -419.20 406.85 142.27 1.75 ACCEPTABLE 80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 -407.24 317.71 63.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.56 ACCEPTABLE 85 -406.22 330.86 71.83 2.28 ACCEPTABLE 86 -410.45 323.26 69.81 3.06 ACCEPTABLE 87 -413.20 349.56 90.47 2.26 ACCEPTABLE 88 -406.70 334.87 75.08 1.74 ACCEPTABLE 89 -405.67 396.20 136.21 1.48 ACCEPTABLE 90 -399.21 371.42 111.29	76	-399.13	370.10	110.10	1.47	ACCEPTABLE
79-419.20406.85142.271.75ACCEPTABLE80-412.77385.97120.751.69ACCEPTABLE81-413.67354.0594.291.78ACCEPTABLE82-407.24317.7163.863.09ACCEPTABLE83-403.99312.0757.933.16ACCEPTABLE84-412.54343.2085.182.56ACCEPTABLE85-406.22330.8671.832.28ACCEPTABLE86-410.45323.2669.813.06ACCEPTABLE87-413.20349.5690.472.26ACCEPTABLE88-406.70334.8775.081.74ACCEPTABLE89-405.67396.20136.211.48ACCEPTABLE90-399.21371.42111.321.46ACCEPTABLE91-406.56361.21101.321.46ACCEPTABLE92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49-411.46177.721.64ACCEPTABLE95-404.85-417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTA	77	-403.36	349.74	95.50	3.02	ACCEPTABLE
80 -412.77 385.97 120.75 1.69 ACCEPTABLE 81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 -407.24 317.71 63.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.56 ACCEPTABLE 85 -406.22 330.86 71.83 2.28 ACCEPTABLE 86 -410.45 323.26 69.81 3.06 ACCEPTABLE 87 -413.20 349.65 90.47 2.26 ACCEPTABLE 88 -406.70 334.87 75.08 1.74 ACCEPTABLE 89 -405.67 396.20 136.21 1.48 ACCEPTABLE 90 -399.21 371.42 111.29 1.48 ACCEPTABLE 91 -406.56 361.21 101.32 1.46 ACCEPTABLE 92 -401.74 368.37 108.25	78	-406.92	336.75	76.63	1.48	ACCEPTABLE
81 -413.67 354.05 94.29 1.78 ACCEPTABLE 82 -407.24 317.71 63.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.56 ACCEPTABLE 85 -406.22 330.86 71.83 2.28 ACCEPTABLE 86 -410.45 323.26 69.81 3.06 ACCEPTABLE 87 -413.20 349.56 90.47 2.26 ACCEPTABLE 88 -406.70 334.87 75.08 1.74 ACCEPTABLE 89 -405.67 396.20 136.21 1.48 ACCEPTABLE 90 -399.21 371.42 111.29 1.48 ACCEPTABLE 91 -406.56 361.21 101.32 1.46 ACCEPTABLE 92 -401.74 368.37 108.25 1.47 ACCEPTABLE 93 -409.60 370.26 107.16	79	-419.20	406.85	142.27	1.75	ACCEPTABLE
82 -407.24 317.71 63.86 3.09 ACCEPTABLE 83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.56 ACCEPTABLE 85 -406.22 330.86 71.83 2.28 ACCEPTABLE 86 -410.45 323.26 69.81 3.06 ACCEPTABLE 87 -413.20 349.56 90.47 2.26 ACCEPTABLE 88 -406.70 334.87 75.08 1.74 ACCEPTABLE 89 -405.67 396.20 136.21 1.48 ACCEPTABLE 90 -399.21 371.42 111.29 1.48 ACCEPTABLE 91 -406.56 361.21 101.32 1.46 ACCEPTABLE 92 -401.74 368.37 108.25 1.47 ACCEPTABLE 93 -409.60 370.26 107.16 1.57 ACCEPTABLE 94 -409.49 -441.46 177.72	80	-412.77	385.97	120.75	1.69	ACCEPTABLE
83 -403.99 312.07 57.93 3.16 ACCEPTABLE 84 -412.54 343.20 85.18 2.56 ACCEPTABLE 85 -406.22 330.86 71.83 2.28 ACCEPTABLE 86 -410.45 323.26 69.81 3.06 ACCEPTABLE 87 -413.20 349.56 90.47 2.26 ACCEPTABLE 88 -406.70 334.87 75.08 1.74 ACCEPTABLE 89 -405.67 396.20 136.21 1.48 ACCEPTABLE 90 -399.21 371.42 111.29 1.48 ACCEPTABLE 91 -406.56 361.21 101.32 1.46 ACCEPTABLE 92 -401.74 368.37 108.25 1.47 ACCEPTABLE 93 -409.60 370.26 107.16 1.57 ACCEPTABLE 94 -409.49 441.46 177.72 1.64 ACCEPTABLE 95 -404.85 4417.06 153.32	81	-413.67	354.05	94.29	1.78	ACCEPTABLE
84-412.54343.2085.182.56ACCEPTABLE85-406.22330.8671.832.28ACCEPTABLE86-410.45323.2669.813.06ACCEPTABLE87-413.20349.5690.472.26ACCEPTABLE88-406.70334.8775.081.74ACCEPTABLE89-405.67396.20136.211.48ACCEPTABLE90-399.21371.42111.291.48ACCEPTABLE91-406.56361.21101.321.46ACCEPTABLE92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49441.46177.721.64ACCEPTABLE95-404.85417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE90-404.25352.8096.662.85ACCEPTABLE	82	-407.24	317.71	63.86	3.09	ACCEPTABLE
85-406.22330.8671.832.28ACCEPTABLE86-410.45323.2669.813.06ACCEPTABLE87-413.20349.5690.472.26ACCEPTABLE88-406.70334.8775.081.74ACCEPTABLE89-405.67396.20136.211.48ACCEPTABLE90-399.21371.42111.291.48ACCEPTABLE91-406.56361.21101.321.46ACCEPTABLE92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49441.46177.721.64ACCEPTABLE95-404.85417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE100-404.25352.8096.662.85ACCEPTABLE	83	-403.99	312.07	57.93	3.16	ACCEPTABLE
86-410.45323.2669.813.06ACCEPTABLE87-413.20349.5690.472.26ACCEPTABLE88-406.70334.8775.081.74ACCEPTABLE89-405.67396.20136.211.48ACCEPTABLE90-399.21371.42111.291.48ACCEPTABLE91-406.56361.21101.321.46ACCEPTABLE92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49441.46177.721.64ACCEPTABLE95-404.85417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE100-404.25352.8096.662.85ACCEPTABLE	84	-412.54	343.20	85.18	2.56	ACCEPTABLE
87-413.20349.5690.472.26ACCEPTABLE88-406.70334.8775.081.74ACCEPTABLE89-405.67396.20136.211.48ACCEPTABLE90-399.21371.42111.291.48ACCEPTABLE91-406.56361.21101.321.46ACCEPTABLE92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49441.46177.721.64ACCEPTABLE95-404.85417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE100-404.25352.8096.662.85ACCEPTABLE	85	-406.22	330.86	71.83	2.28	ACCEPTABLE
88-406.70334.8775.081.74ACCEPTABLE89-405.67396.20136.211.48ACCEPTABLE90-399.21371.42111.291.48ACCEPTABLE91-406.56361.21101.321.46ACCEPTABLE92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49441.46177.721.64ACCEPTABLE95-404.85417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE100-404.25352.8096.662.85ACCEPTABLE	86	-410.45	323.26	69.81	3.06	ACCEPTABLE
89-405.67396.20136.211.48ACCEPTABLE90-399.21371.42111.291.48ACCEPTABLE91-406.56361.21101.321.46ACCEPTABLE92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49441.46177.721.64ACCEPTABLE95-404.85417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE100-404.25352.8096.662.85ACCEPTABLE	87	-413.20	349.56	90.47	2.26	ACCEPTABLE
90-399.21371.42111.291.48ACCEPTABLE91-406.56361.21101.321.46ACCEPTABLE92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49441.46177.721.64ACCEPTABLE95-404.85417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE100-404.25352.8096.662.85ACCEPTABLE	88	-406.70	334.87	75.08	1.74	ACCEPTABLE
91-406.56361.21101.321.46ACCEPTABLE92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49441.46177.721.64ACCEPTABLE95-404.85417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE100-404.25352.8096.662.85ACCEPTABLE	89	-405.67	396.20	136.21	1.48	ACCEPTABLE
92-401.74368.37108.251.47ACCEPTABLE93-409.60370.26107.161.57ACCEPTABLE94-409.49441.46177.721.64ACCEPTABLE95-404.85417.06153.321.61ACCEPTABLE96-406.15384.95124.841.47ACCEPTABLE97-399.99340.9384.682.89ACCEPTABLE98-405.90380.71121.011.88ACCEPTABLE99-401.65366.91106.951.47ACCEPTABLE100-404.25352.8096.662.85ACCEPTABLE	90	-399.21	371.42	111.29	1.48	ACCEPTABLE
93 -409.60 370.26 107.16 1.57 ACCEPTABLE 94 -409.49 441.46 177.72 1.64 ACCEPTABLE 95 -404.85 417.06 153.32 1.61 ACCEPTABLE 96 -406.15 384.95 124.84 1.47 ACCEPTABLE 97 -399.99 340.93 84.68 2.89 ACCEPTABLE 98 -405.90 380.71 121.01 1.88 ACCEPTABLE 99 -401.65 366.91 106.95 1.47 ACCEPTABLE 100 -404.25 352.80 96.66 2.85 ACCEPTABLE	91	-406.56	361.21	101.32	1.46	ACCEPTABLE
94 -409.49 441.46 177.72 1.64 ACCEPTABLE 95 -404.85 417.06 153.32 1.61 ACCEPTABLE 96 -406.15 384.95 124.84 1.47 ACCEPTABLE 97 -399.99 340.93 84.68 2.89 ACCEPTABLE 98 -405.90 380.71 121.01 1.88 ACCEPTABLE 99 -401.65 366.91 106.95 1.47 ACCEPTABLE 100 -404.25 352.80 96.66 2.85 ACCEPTABLE	92	-401.74	368.37	108.25	1.47	ACCEPTABLE
94 -409.49 441.46 177.72 1.64 ACCEPTABLE 95 -404.85 417.06 153.32 1.61 ACCEPTABLE 96 -406.15 384.95 124.84 1.47 ACCEPTABLE 97 -399.99 340.93 84.68 2.89 ACCEPTABLE 98 -405.90 380.71 121.01 1.88 ACCEPTABLE 99 -401.65 366.91 106.95 1.47 ACCEPTABLE 100 -404.25 352.80 96.66 2.85 ACCEPTABLE	93	-409.60	370.26	107.16		ACCEPTABLE
95 -404.85 417.06 153.32 1.61 ACCEPTABLE 96 -406.15 384.95 124.84 1.47 ACCEPTABLE 97 -399.99 340.93 84.68 2.89 ACCEPTABLE 98 -405.90 380.71 121.01 1.88 ACCEPTABLE 99 -401.65 366.91 106.95 1.47 ACCEPTABLE 100 -404.25 352.80 96.66 2.85 ACCEPTABLE		-409.49	441.46		1.64	
96 -406.15 384.95 124.84 1.47 ACCEPTABLE 97 -399.99 340.93 84.68 2.89 ACCEPTABLE 98 -405.90 380.71 121.01 1.88 ACCEPTABLE 99 -401.65 366.91 106.95 1.47 ACCEPTABLE 100 -404.25 352.80 96.66 2.85 ACCEPTABLE	95	-404.85	417.06		1.61	ACCEPTABLE
97 -399.99 340.93 84.68 2.89 ACCEPTABLE 98 -405.90 380.71 121.01 1.88 ACCEPTABLE 99 -401.65 366.91 106.95 1.47 ACCEPTABLE 100 -404.25 352.80 96.66 2.85 ACCEPTABLE	96	-406.15	384.95	124.84		ACCEPTABLE
98 -405.90 380.71 121.01 1.88 ACCEPTABLE 99 -401.65 366.91 106.95 1.47 ACCEPTABLE 100 -404.25 352.80 96.66 2.85 ACCEPTABLE		-399.99	340.93	84.68	2.89	ACCEPTABLE
100 -404.25 352.80 96.66 2.85 ACCEPTABLE	98	-405.90				ACCEPTABLE
	99	-401.65	366.91	106.95	1.47	ACCEPTABLE
	100	-404.25	352.80	96.66	2.85	ACCEPTABLE
101 -400.69 344.39 84.32 1.47 ACCEPTABLE	101	-406.89	344.39	84.32	1.47	ACCEPTABLE
102 -414.46 388.68 125.56 1.61 ACCEPTABLE	102	-414.46	388.68	125.56	1.61	ACCEPTABLE
103 -410.11 375.07 111.56 1.59 ACCEPTABLE		-410.11	375.07	111.56		ACCEPTABLE
104 -411.33 356.28 96.47 1.69 ACCEPTABLE		-411.33	356.28	96.47		ACCEPTABLE
105 -406.92 328.45 72.57 2.89 ACCEPTABLE	105	-406.92	328.45	72.57	2.89	ACCEPTABLE
106 -404.76 324.04 67.99 2.91 ACCEPTABLE						ACCEPTABLE
107 -410.71 349.87 90.99 2.32 ACCEPTABLE	107	-410.71	349.87	90.99	2.32	ACCEPTABLE

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

Slope Stability Analysis

Center Radius						
No.	x [ft]	z [ft]	R [ft]	FS	Verification	
108	-406.46	340.29	80.88	2.07	ACCEPTABLE	
109	-409.07	332.81	77.15	2.89	ACCEPTABLE	
110	-411.07	353.52	94.10	2.06	ACCEPTABLE	
111	-406.73	342.83	83.01	1.69	ACCEPTABLE	
112	-406.06	383.42	123.45	1.47	ACCEPTABLE	
113	-401.74	368.27	108.16	1.47	ACCEPTABLE	
114	-406.56	361.21	101.32	1.46	ACCEPTABLE	
115	-403.42	366.58	106.45	1.47	ACCEPTABLE	
116	-408.48	367.08	104.99	1.53	ACCEPTABLE	
117	-408.27	406.06	143.61	1.56	ACCEPTABLE	
118	-405.22	392.59	130.14	1.55	ACCEPTABLE	
119	-406.35	376.72	116.66	1.47	ACCEPTABLE	
120	-402.07	347.11	89.60	2.67	ACCEPTABLE	
121	-406.16	373.86	114.10	1.79	ACCEPTABLE	
122	-403.30	364.92	104.98	1.46	ACCEPTABLE	
123	-404.93	355.21	97.81	2.69	ACCEPTABLE	
124	-406.82	349.75	89.73	1.47	ACCEPTABLE	
125	-411.63	378.44	116.36	1.55	ACCEPTABLE	
126	-408.72	369.56	107.23	1.54	ACCEPTABLE	
127	-409.75	357.84	98.01	1.68	ACCEPTABLE	
128	-406.75	337.28	80.06	2.70	ACCEPTABLE	
129	-405.30	333.99	76.66	2.70	ACCEPTABLE	
130	-409.40	353.99	94.69	2.13	ACCEPTABLE	
131	-406.55	346.95	87.35	1.96	ACCEPTABLE	
132	-408.18	340.55	83.46	2.71	ACCEPTABLE	
133	-409.60	356.13	96.53	1.96	ACCEPTABLE	
134	-406.70	348.57	88.73	1.67	ACCEPTABLE	
135	-406.27	375.54	115.60	1.46	ACCEPTABLE	
136	-403.38	366.01	105.95	1.47	ACCEPTABLE	
137	-406.56	361.21	101.32	1.46	ACCEPTABLE	
138	-404.50	365.03	104.95	1.46	ACCEPTABLE	
139	-407.80	365.05	103.68	1.50	ACCEPTABLE	
140	-407.62	388.20	126.60	1.52	ACCEPTABLE	
141	-405.60	380.16	118.56	1.51	ACCEPTABLE	
142	-406.44	371.41	111.39	1.46	ACCEPTABLE	
143	-403.51	351.53	93.20	2.50	ACCEPTABLE	
144	-406.31	369.50	109.69	1.70	ACCEPTABLE	
145	-404.40	363.64	103.72	1.46	ACCEPTABLE	
146	-405.43	357.01	98.78	2.52	ACCEPTABLE	
147	-406.75	353.45	93.48	1.46	ACCEPTABLE	
148	-409.86	372.27	110.90	1.51	ACCEPTABLE	
149	-407.92	366.44	104.91	1.51	ACCEPTABLE	
150	-408.70	358.93	99.08	1.66	ACCEPTABLE	
151	-406.65	344.17	86.06	2.53	ACCEPTABLE	
152	-405.69	341.79	83.61	2.52	ACCEPTABLE	
153	-408.49	356.57	97.03	1.99	ACCEPTABLE	
154	-406.58	351.57	91.85	1.82	ACCEPTABLE	
155	-407.61	346.54	88.50	2.56	ACCEPTABLE	
156	-408.60	357.85	98.14	1.82	ACCEPTABLE	

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

	Cei	nter	Radius	50	
No.	x [ft]	z [ft]	R [ft]	FS	Verification
157	-406.67	352.61	92.75	1.62	ACCEPTABLE
158	-406.38	370.56	110.64	1.46	ACCEPTABLE
159	-404.46	364.45	104.43	1.46	ACCEPTABLE
160	-406.56	361.21	101.32	1.46	ACCEPTABLE
161	-405.20	363.86	103.82	1.46	ACCEPTABLE
162	-407.37	363.74	102.85	1.49	ACCEPTABLE
163	-407.24	378.11	117.08	1.50	ACCEPTABLE
164	-405.90	373.10	112.07	1.49	ACCEPTABLE
165	-406.49	367.95	107.97	1.46	ACCEPTABLE
166	-404.50	354.62	95.77	2.33	ACCEPTABLE
167	-406.40	366.67	106.84	1.68	ACCEPTABLE
168	-405.12	362.81	102.90	1.46	ACCEPTABLE
169	-405.78	358.32	99.53	2.35	ACCEPTABLE
170	-406.69	355.98	96.04	1.46	ACCEPTABLE
171	-408.73	368.41	107.52	1.49	ACCEPTABLE
172	-407.44	364.56	103.58	1.49	ACCEPTABLE
173	-407.99	359.67	99.81	1.63	ACCEPTABLE
174	-406.61	349.30	90.60	2.37	ACCEPTABLE
175	-405.97	347.63	88.88	2.36	ACCEPTABLE
176	-407.86	358.20	98.52	1.87	ACCEPTABLE
177	-406.58	354.72	94.94	1.73	ACCEPTABLE
178	-407.25	350.98	92.32	2.39	ACCEPTABLE
179	-407.93	358.98	99.20	1.74	ACCEPTABLE
180	-406.64	355.40	95.53	1.46	ACCEPTABLE
181	-406.45	367.36	107.45	1.46	ACCEPTABLE
182	-405.16	363.39	103.40	1.46	ACCEPTABLE
183	-406.56	361.21	101.32	1.46	ACCEPTABLE
184	-405.66	363.02	103.02	1.46	ACCEPTABLE
185	-407.09	362.88	102.32	1.48	ACCEPTABLE
186	-407.00	372.03	111.38	1.48	ACCEPTABLE
187	-406.11	368.84	108.19	1.48	ACCEPTABLE
188	-406.52	365.67	105.72	1.46	ACCEPTABLE
189	-405.18	356.76	97.55	2.18	ACCEPTABLE
190	-406.46	364.82	104.97	1.64	ACCEPTABLE
191	-405.60	362.27	102.37	1.46	ACCEPTABLE
192	-406.03	359.24	100.08	2.21	ACCEPTABLE
193	-406.65	357.70	97.77	1.46	ACCEPTABLE
194	-407.99	365.94	105.38	1.48	ACCEPTABLE
195	-407.13	363.38	102.77	1.48	ACCEPTABLE
196	-407.51	360.18	100.30	1.46	ACCEPTABLE
197	-406.58	353.01	93.91	2.22	ACCEPTABLE
198	-406.16	351.85	92.72	2.22	ACCEPTABLE
199	-407.43	359.24	99.48	1.75	ACCEPTABLE
200	-406.58	356.86	97.04	1.69	ACCEPTABLE
201	-407.01	354.17	95.10	2.25	ACCEPTABLE
202	-407.48	359.73	99.91	1.69	ACCEPTABLE
203	-406.62	357.30	97.42	1.46	ACCEPTABLE
204	-406.49	365.27	105.37	1.46	ACCEPTABLE
205	-405.63	362.67	102.71	1.46	ACCEPTABLE

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

No.	Cer	ter	Radius	FS	Verification
206	-406.56	361.21	101.32	1.46	ACCEPTABLE

Analysis 2 (stage 5)

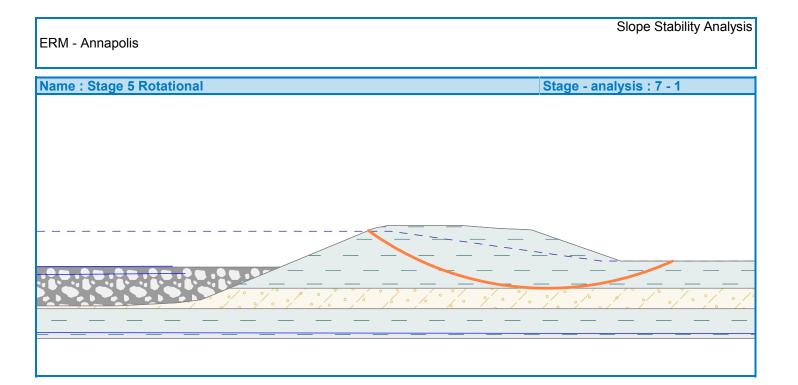
Polygonal slip surface

	Coordinates of slip surface points [ft]									
x	z	X	z	x	z	X	z	X	z	
338.62 271.97 419.87 260.50 443.76 269.00										
			The slip surfa	ace after optimizati	on.					

Segments restricting slip surface

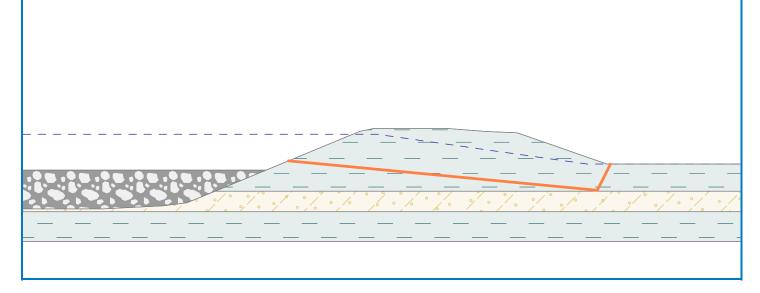
No. First point			Second point			
NO.	x [ft]	z [ft]	x [ft]	z [ft]		
1	-159.78	250.98	109.70	250.98		

Slope stability verification (Janbu) Factor of safety = 1.56 > 1.00


Slope stability ACCEPTABLE

Input data (Stage of construction 6)

Assigning and surfaces


No.	Surface position	Coordi	nates of su	urface points	; [ft]	Assigned
NO.	Surface position	x	z	x	z	soil
1		-352.68	260.06	-372.12	269.00	Clay with high or very high plasticity (CH, CV, CE), soft
		-396.00	281.00	-480.00	281.00	consistency
		-480.00	260.00			
2		57.43	260.06	40.70	266.99	Clay with high or very high
		40.68	267.00	14.18	278.00	plasticity (CH, CV, CE), soft consistency
		0.00	281.00	-32.48	281.00	
		-56.00	277.75	-75.60	268.96	
		-95.63	259.96			[
3		640.00	259.88	640.00	269.00	Clay with high or very high
		441.00	269.00	411.00	279.50	plasticity (CH, CV, CE), soft consistency
		400.00	280.00	387.00	281.00	
		363.00	281.00	358.00	280.00	
		326.60	267.00	309.46	259.91	
4		-372.12	269.00	-352.68	260.06	Ash
		-346.00	257.00	-106.00	257.00	ASII
		-100.00	258.00	-95.63	259.96	
		-75.60	268.96			
			-			
5		40.70	267.00	40.68	267.00	Ach
		40.70	266.99	57.43	260.06	Ash
		72.00	254.00	272.00	254.00	
		292.00	255.00	300.00	256.00	
		309.46	259.91	326.60	267.00	
		1				I

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

Name : Stage 5 Polygonal

Stage - analysis : 7 - 2

ERM - Annapolis

No.	Surface position Coordinates of surface points [ft]				Assigned	
NO.	Surface position	x	z	x	z	soil
6		640.00	253.00	640.00	259.88	Silty sand (SM)
		309.46	259.91	300.00	256.00	Sitty Salid (Sivi)
		292.00	255.00	272.00	254.00	。
		72.00	254.00	57.43	260.06	
		-95.63	259.96	-100.00	258.00	
		-106.00	257.00	-346.00	257.00	
		-352.68	260.06	-480.00	260.00	
		-480.00	253.00			
7		-480.00	253.00	-480.00	243.00	Clay with high or very high
		640.00	243.00	640.00	253.00	plasticity (CH, CV, CE), soft consistency

Water

Water type : GWT

No.	GWT location	Coordinates of GWT points [ft]					
NO.		x	z	x	z	x	z
4		-480.00	281.00	-397.22	281.00	378.66	281.00
1		434.84	269.00	640.00	269.00		

Tensile crack

Tensile crack not input.

Earthquake

Settings of the stage of construction

Design situation : seismic

Results (Stage of construction 6)

Analysis 1 (stage 6)

Circular slip surface

Slip surface parameters							
Center :	x =	409.29	[ft]	Angles :	α ₁ =	-32.63 [°]	
	z =	368.42	[ft]		α ₂ =	23.67 [°]	
Radius :	R =	108.55	[ft]				
The slip surface after optimization.							

Segments restricting slip surface

No.	First	point	Second point		
	x [ft]	z [ft]	x [ft]	z [ft]	
1	-159.58	250.78	109.90	251.38	
2	639.76	244.48	58.61	245.20	
3	51.50	266.59	282.50	266.86	

The restrictions of points of circular slip surface

Slope stability verification (Bishop)

Sum of	active forces : F _a =	36547.7 lbf/ft			
Sum of	passive forces : $F_p =$	49673.0 lbf/ft			
Sliding I	moment : M _a =	3967252.5 lbfft/ft			
-		5392007.3 lbfft/ft			
	of safety = 1.36 > 1.00				
	tability ACCEPTABLE				
	zation of circular slip				
No.	Center		Radius	FS	Verification
NO.	x [ft]	z [ft]	R [ft]	13	
1	-409.29	368.42	108.55	1.36	ACCEPTABLE
2	-409.29	368.42	108.55	1.36	ACCEPTABLE
3	-409.29	368.42	108.55	1.36	ACCEPTABLE
4	-606.92	304.25	47.90	6.91	ACCEPTABLE
5	-367.16	4371.96	4111.98	5.40	ACCEPTABLE
6	-409.29	368.42	108.55	1.36	ACCEPTABLE
7	-550.97	411.45	151.32	3.36	ACCEPTABLE
8	-409.29	368.42	108.55	1.36	ACCEPTABLE
9	-501.25	411.45	151.32	3.36	ACCEPTABLE
10	-409.29	368.42	108.55	1.36	ACCEPTABLE
11	-475.81	367.09	107.24	3.64	ACCEPTABLE
12	-409.29	368.42	108.55	1.36	ACCEPTABLE
13	-455.30	357.99	98.30	2.45	ACCEPTABLE
14	-409.29	368.42	108.55	1.36	ACCEPTABLE
15	-440.84	356.40	96.75	2.00	ACCEPTABLE
16	-436.25	317.35	66.79	2.13	ACCEPTABLE
17	-402.39	282.32	22.20	3.15	ACCEPTABLE
18	-409.29	368.42	108.55	1.36	ACCEPTABLE
19	-403.80	289.82	34.54	3.79	ACCEPTABLE
20	-431.02	356.40	96.75	1.85	ACCEPTABLE
21	-403.20	285.74	33.14	3.86	ACCEPTABLE
22	-428.42	334.24	78.74	2.66	ACCEPTABLE
23	-405.20	299.30	39.31	1.78	ACCEPTABLE
24	-409.29	368.42	108.55	1.36	ACCEPTABLE
25	-390.66	362.81	105.50	2.77	ACCEPTABLE
26	-426.63	438.05	169.13	2.13	ACCEPTABLE
27	-405.72	464.34	204.42	1.41	ACCEPTABLE
28	-389.57	311.14	65.26	2.12	ACCEPTABLE
29	-405.52	454.54	195.13	2.05	ACCEPTABLE
30	-391.25	390.95	130.85	1.49	ACCEPTABLE
31	-403.36	347.16	100.14	1.69	ACCEPTABLE
32	-408.07	316.28	56.57	1.83	ACCEPTABLE
33	-458.63	647.07	378.14	2.73	ACCEPTABLE
34	-458.04	644.17	375.19	2.73	ACCEPTABLE
35	-424.47	356.40	96.75	1.80	ACCEPTABLE
36	-411.14	295.65	49.51	1.95	ACCEPTABLE
37	-403.65	287.28	40.29	2.48	ACCEPTABLE
38	-420.59	323.34	70.79	2.39	ACCEPTABLE
39	-406.61	306.68	49.88	2.81	ACCEPTABLE
40	-422.96	343.54	86.06	2.44	ACCEPTABLE
41	-408.11	316.53	56.75	1.73	ACCEPTABLE
42	-405.78	467.75	207.66	1.42	ACCEPTABLE

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

ĺ	Cen	iter	Radius		
No.	x [ft]	z [ft]	R [ft]	FS	Verification
43	-391.14	385.75	126.07	1.93	ACCEPTABLE
44	-409.29	368.42	108.55	1.36	ACCEPTABLE
45	-397.63	377.05	117.63	2.03	ACCEPTABLE
46	-418.25	397.80	131.38	1.74	ACCEPTABLE
47	-429.88	1035.99	767.64	2.21	ACCEPTABLE
48	-417.05	828.90	560.55	1.97	ACCEPTABLE
49	-407.58	428.47	168.37	1.39	ACCEPTABLE
50	-395.45	326.37	75.24	2.28	ACCEPTABLE
51	-407.26	419.62	160.12	1.94	ACCEPTABLE
52	-397.91	383.64	123.61	1.42	ACCEPTABLE
53	-404.77	351.69	100.33	2.10	ACCEPTABLE
54	-409.49	332.15	72.03	1.41	ACCEPTABLE
55	-431.24	461.75	195.13	2.00	ACCEPTABLE
56	-422.44	429.16	161.63	1.89	ACCEPTABLE
57	-419.79	358.23	98.54	1.72	ACCEPTABLE
58	-410.38	309.39	58.62	2.13	ACCEPTABLE
59	-405.49	302.23	50.96	2.38	ACCEPTABLE
60	-417.68	339.15	82.77	2.55	ACCEPTABLE
61	-408.35	323.61	65.29	2.35	ACCEPTABLE
62	-415.16	316.39	66.34	1.94	ACCEPTABLE
63	-418.94	350.56	92.04	2.23	ACCEPTABLE
64	-409.22	330.16	70.43	1.71	ACCEPTABLE
65	-407.54	427.36	167.33	1.39	ACCEPTABLE
66	-397.93	384.03	123.96	1.42	ACCEPTABLE
67	-409.29	368.42	108.55	1.36	ACCEPTABLE
68	-401.81	377.98	118.00	1.39	ACCEPTABLE
69	-414.52	384.59	120.08	1.58	ACCEPTABLE
70	-415.30	546.07	280.44	1.74	ACCEPTABLE
71	-408.07	492.37	226.74	1.67	ACCEPTABLE
72	-408.45	406.76	146.63	1.38	ACCEPTABLE
73	-399.62	338.03	83.75	2.85	ACCEPTABLE
74	-408.13	400.30	140.69	1.82	ACCEPTABLE
75	-401.81	377.98	118.00	1.39	ACCEPTABLE
76	-405.94	355.75	101.53	2.74	ACCEPTABLE
77	-409.71	342.86	82.76	1.38	ACCEPTABLE
78	-422.21	417.20	152.62	1.65	ACCEPTABLE
79	-415.78	395.60	130.40	1.63	ACCEPTABLE
80	-416.45	360.70	100.96	1.67	ACCEPTABLE
81	-409.91	322.21	68.38	2.76	ACCEPTABLE
82	-406.66	316.35	62.23	2.84	ACCEPTABLE
83	-415.31	349.54	91.47	2.33	ACCEPTABLE
84	-409.00	336.62	77.59	2.11	ACCEPTABLE
85	-413.11	327.98	74.53	2.72	ACCEPTABLE
86	-415.98	356.05	96.96	2.07	ACCEPTABLE
87	-409.48	340.80	81.03	1.64	ACCEPTABLE
88	-408.36	404.90	144.92	1.38	ACCEPTABLE
89	-401.89	379.47	119.35	1.40	ACCEPTABLE
90	-409.29	368.42	108.55	1.36	ACCEPTABLE
91	-404.45	376.25	116.13	1.38	ACCEPTABLE
91	-404.45	310.25	110.13	1.38	AUGEPTABLE

Slope Stability Analysis

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

ERM -	Annapolis	
No.	Cer x [ft]	nter z [ft]
92	-412.49	378.66
93	-412.33	452.95
94	-407.68	427.85
95	-408.86	393.23
96	-402.61	346.92
97	-408.60	388.79
98	-404.34	374.56
99	-406.87	359.14
100	-409.66	350.84
101	-417.35	397.73

	Cer	iter	Radius		
No.	x [ft]	z [ft]	R [ft]	FS	Verification
92	-412.49	378.66	115.58	1.49	ACCEPTABLE
93	-412.33	452.95	189.24	1.56	ACCEPTABLE
94	-407.68	427.85	164.13	1.54	ACCEPTABLE
95	-408.86	393.23	133.14	1.37	ACCEPTABLE
96	-402.61	346.92	90.67	2.66	ACCEPTABLE
97	-408.60	388.79	129.10	1.76	ACCEPTABLE
98	-404.34	374.56	114.61	1.38	ACCEPTABLE
99	-406.87	359.14	103.02	2.61	ACCEPTABLE
100	-409.66	350.84	90.80	1.37	ACCEPTABLE
101	-417.35	397.73	134.62	1.51	ACCEPTABLE
102	-413.00	383.66	120.17	1.51	ACCEPTABLE
103	-414.09	363.10	103.31	1.60	ACCEPTABLE
104	-409.60	333.63	77.77	2.61	ACCEPTABLE
105	-407.44	329.06	73.03	2.63	ACCEPTABLE
106	-413.47	356.48	97.60	2.13	ACCEPTABLE
107	-409.22	346.51	87.12	1.93	ACCEPTABLE
108	-411.75	338.15	82.50	2.60	ACCEPTABLE
109	-413.83	360.24	100.83	1.91	ACCEPTABLE
110	-409.49	349.17	89.37	1.60	ACCEPTABLE
111	-408.76	391.59	131.65	1.37	ACCEPTABLE
112	-404.44	376.02	115.93	1.38	ACCEPTABLE
113	-409.29	368.42	108.55	1.36	ACCEPTABLE
114	-406.13	374.22	114.11	1.38	ACCEPTABLE
115	-411.31	375.02	112.96	1.44	ACCEPTABLE
116	-411.07	415.74	153.30	1.47	ACCEPTABLE
117	-408.01	401.85	139.41	1.47	ACCEPTABLE
118	-409.06	384.63	124.59	1.37	ACCEPTABLE
119	-404.72	353.45	95.96	2.47	ACCEPTABLE
120	-408.87	381.64	121.89	1.66	ACCEPTABLE
121	-406.01	372.41	112.49	1.37	ACCEPTABLE
122	-407.58	361.80	104.42	2.47	ACCEPTABLE
123	-409.57	356.44	96.45	1.37	ACCEPTABLE
124	-414.46	386.78	124.71	1.45	ACCEPTABLE
125	-411.55	377.60	115.30	1.45	ACCEPTABLE
126	-412.51	364.79	104.98	1.58	ACCEPTABLE
127	-409.44	343.02	85.81	2.47	ACCEPTABLE
128	-408.00	339.61	82.30	2.46	ACCEPTABLE
129	-412.15	360.80	101.50	1.97	ACCEPTABLE
130	-409.30	353.50	93.91	1.82	ACCEPTABLE
131	-410.87	346.40	89.32	2.48	ACCEPTABLE
132	-412.35	363.01	103.42	1.82	ACCEPTABLE
133	-409.45	355.19	95.37	1.56	ACCEPTABLE
134	-408.98	383.39	123.47	1.36	ACCEPTABLE
135	-406.09	373.58	113.53	1.37	ACCEPTABLE
136	-409.29	368.42	108.55	1.36	ACCEPTABLE
137	-407.22	372.53	112.46	1.37	ACCEPTABLE
138	-410.59	372.73	111.37	1.41	ACCEPTABLE
139	-410.39	396.92	135.34	1.43	ACCEPTABLE
140	-408.37	388.62	127.04	1.42	ACCEPTABLE

	Cei	nter	Radius	50	Martfreddau
No.	x [ft]	z [ft]	R [ft]	FS	Verification
141	-409.16	379.08	119.09	1.36	ACCEPTABLE
142	-406.19	358.14	99.83	2.32	ACCEPTABLE
143	-409.02	377.08	117.29	1.61	ACCEPTABLE
144	-407.11	371.04	111.13	1.37	ACCEPTABLE
145	-408.11	363.79	105.57	2.31	ACCEPTABLE
146	-409.49	360.31	100.36	1.36	ACCEPTABLE
147	-412.66	380.20	118.84	1.41	ACCEPTABLE
148	-410.72	374.17	112.67	1.42	ACCEPTABLE
149	-411.44	365.96	106.13	1.55	ACCEPTABLE
150	-409.36	350.33	92.24	2.33	ACCEPTABLE
151	-408.40	347.87	89.71	2.33	ACCEPTABLE
152	-411.23	363.51	103.98	1.85	ACCEPTABLE
153	-409.32	358.33	98.64	1.72	ACCEPTABLE
154	-410.32	352.78	94.76	2.34	ACCEPTABLE
155	-411.34	364.83	105.14	1.71	ACCEPTABLE
156	-409.42	359.42	99.58	1.54	ACCEPTABLE
157	-409.10	378.19	118.29	1.36	ACCEPTABLE
158	-407.17	371.89	111.90	1.37	ACCEPTABLE
159	-409.29	368.42	108.55	1.36	ACCEPTABLE
160	-407.92	371.26	111.24	1.37	ACCEPTABLE
161	-410.14	371.25	110.38	1.39	ACCEPTABLE
162	-409.99	386.27	125.26	1.40	ACCEPTABLE
163	-408.65	381.10	120.09	1.40	ACCEPTABLE
164	-409.22	375.46	115.51	1.36	ACCEPTABLE
165	-407.20	361.42	102.58	2.16	ACCEPTABLE
166	-409.12	374.13	114.31	1.57	ACCEPTABLE
167	-407.84	370.15	110.25	1.36	ACCEPTABLE
168	-408.48	365.23	106.46	2.17	ACCEPTABLE
169	-409.43	362.96	103.03	1.36	ACCEPTABLE
170	-411.50	376.08	115.21	1.39	ACCEPTABLE
171	-410.21	372.11	111.15	1.40	ACCEPTABLE
172	-410.73	366.77	106.92	1.54	ACCEPTABLE
173	-409.32	355.79	97.10	2.19	ACCEPTABLE
174	-408.68	354.05	95.32	2.18	ACCEPTABLE
175	-410.60	365.22	105.56	1.74	ACCEPTABLE
176	-409.32	361.63	101.87	1.64	ACCEPTABLE
177	-409.96	357.51	98.87	2.19	ACCEPTABLE
178	-410.67	366.04	106.28	1.64	ACCEPTABLE
179	-409.38	362.34	102.49	1.54	ACCEPTABLE
180	-409.17	374.84	114.95	1.36	ACCEPTABLE
181	-407.88	370.75	110.79	1.37	ACCEPTABLE
182	-409.29	368.42	108.55	1.36	ACCEPTABLE
183	-408.38	370.36	110.38	1.36	ACCEPTABLE
184	-409.85	370.29	109.75	1.38	ACCEPTABLE
185	-409.75	379.86	119.23	1.39	ACCEPTABLE
186	-408.85	376.56	115.93	1.39	ACCEPTABLE
187	-409.25	373.09	113.16	1.36	ACCEPTABLE
188	-407.88	363.69	104.50	2.04	ACCEPTABLE
189	-409.18	372.20	112.36	1.56	ACCEPTABLE
	100.10	012.20	1.2.00	1.00	

ERM - Annapolis

[GEO5 - Slope Stability | version 5.2016.57.0 | hardware key 9321 / 1 | ERM, Inc. | Copyright © 2017 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Gintegro, LLC | 201.204.9560| info@gintegro.com| www.gintegro.com]

Slope Stability Analysis

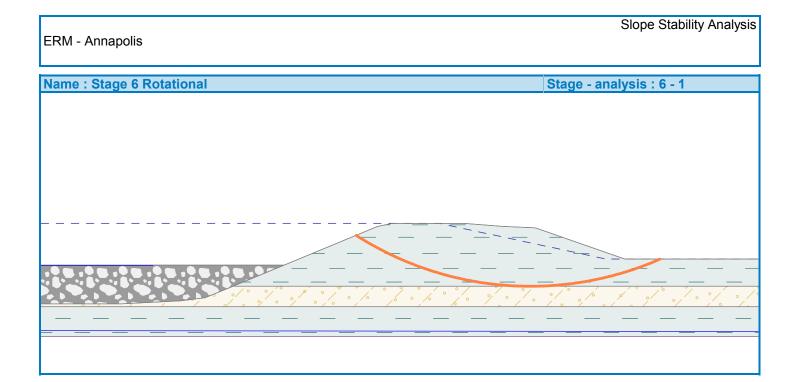
No	Cer	nter	Radius	FS	Verification
No.	x [ft]	z [ft]	R [ft]	гэ	verification
190	-408.33	369.56	109.68	1.36	ACCEPTABLE
191	-408.74	366.24	107.11	2.05	ACCEPTABLE
192	-409.39	364.75	104.85	1.36	ACCEPTABLE
193	-410.75	373.45	112.91	1.38	ACCEPTABLE
194	-409.89	370.82	110.22	1.38	ACCEPTABLE
195	-410.25	367.31	107.46	1.54	ACCEPTABLE
196	-409.30	359.72	100.64	2.07	ACCEPTABLE
197	-408.87	358.52	99.41	2.06	ACCEPTABLE
198	-410.17	366.33	106.59	1.66	ACCEPTABLE
199	-409.32	363.87	104.07	1.60	ACCEPTABLE
200	-409.73	360.92	101.86	2.07	ACCEPTABLE
201	-410.21	366.84	107.04	1.60	ACCEPTABLE
202	-409.35	364.33	104.47	1.51	ACCEPTABLE
203	-409.21	372.66	112.78	1.36	ACCEPTABLE
204	-408.36	369.98	110.05	1.36	ACCEPTABLE
205	-409.29	368.42	108.55	1.36	ACCEPTABLE

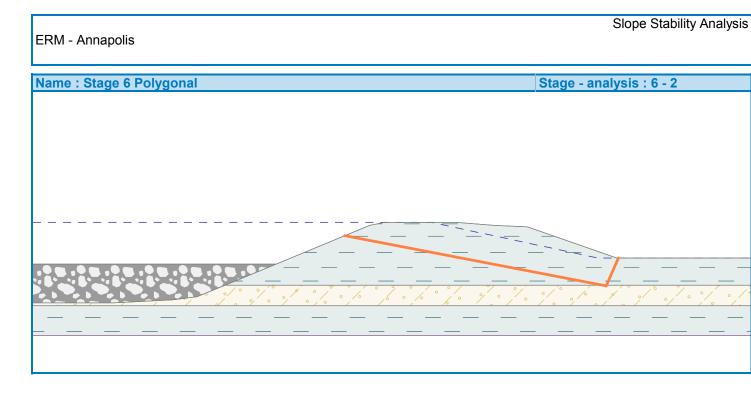
Analysis 2 (stage 6)

Polygonal slip surface

	Coordinates of slip surface points [ft]									
x	x z x z x z x z x z									
349.62	349.62 276.53 437.49 259.66 441.55 269.00									
	The slip surface after optimization.									

Segments restricting slip surface


No.	First	point	Second point		
NO.	x [ft]			z [ft]	
1	-159.78	250.98	109.70	250.98	


Slope stability verification (Janbu) Factor of safety = 1.43 > 1.00 Slope stability ACCEPTABLE

Input data (Stage of construction 7)

Assigning and surfaces

No.	Surface position	Coordi	nates of su	urface points	; [ft]	Assigned
NO.		x	z	x	z	soil
1		-352.68	260.06	-372.12	269.00	Clay with high or very high plasticity (CH, CV, CE), soft
		-396.00	281.00	-480.00	281.00	consistency $(C\Pi, CV, CE)$, solution
		-480.00	260.00			
2		57.43	260.06	40.70	266.99	Clay with high or very high
2						plasticity (CH, CV, CE), soft
		40.68	267.00	14.18	278.00	consistency
		0.00	281.00	-32.48	281.00	
		-56.00	277.75	-75.60	268.96	
		-95.63	259.96			

Nie	Quefere e esitien	Coordi	nates of su	Irface points	[ft]	Assigned
No.	Surface position	x	z	x	z	soil
3		640.00	259.88	640.00	269.00	Clay with high or very high
		441.00	269.00	411.00	279.50	plasticity (CH, CV, CE), soft consistency
		400.00	280.00	387.00	281.00	
		363.00	281.00	358.00	280.00	
		326.60	267.00	309.46	259.91	
4		-372.12	269.00	-352.68	260.06	Ach
		-346.00	257.00	-106.00	257.00	Ash
		-100.00	258.00	-95.63	259.96	
		-75.60	268.96			
5		40.70	267.00	40.68	267.00	Ach
		40.70	266.99	57.43	260.06	Ash
		72.00	254.00	272.00	254.00	
		292.00	255.00	300.00	256.00	
		309.46	259.91	326.60	267.00	
6		640.00	253.00	640.00	259.88	Silty sand (SM)
		309.46	259.91	300.00	256.00	
		292.00	255.00	272.00	254.00	
		72.00	254.00	57.43	260.06	
		-95.63	259.96	-100.00	258.00	
		-106.00	257.00	-346.00	257.00	
		-352.68	260.06	-480.00	260.00	
		-480.00	253.00			
7		-480.00	253.00	-480.00	243.00	Clay with high or very high plasticity (CH, CV, CE), soft
		640.00	243.00	640.00	253.00	consistency

Water

Water type : GWT

No.	GWT location		Coo	rdinates of G	WT points	[ft]	
NO.	GWI location	x	z	x	z	x	z
		-480.00	279.00	-397.22	279.00	363.96	279.00
1		434.56	269.00	640.00	269.00		

Tensile crack

Tensile crack not input.

Earthquake

Horizontal seismic coefficient : $K_h = 0.20$ Vertical seismic coefficient : $K_v = 0.00$

Settings of the stage of construction

Design situation : seismic

Results (Stage of construction 7)

Analysis 1 (stage 7)

Circular slip surface

Slip surface parameters								
Center :	x =	416.16	[ft]		α ₁ =	-35.85 [[°]	
Center.	z =	362.20	[ft]	Angles :	α ₂ =	24.36 [[°]	
Radius :	Radius : R = 102.31 [ft]							
The slip surface after optimization.								

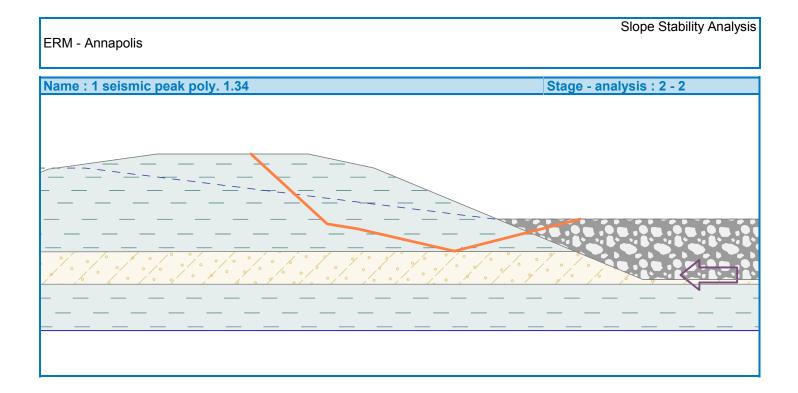
Segments restricting slip surface

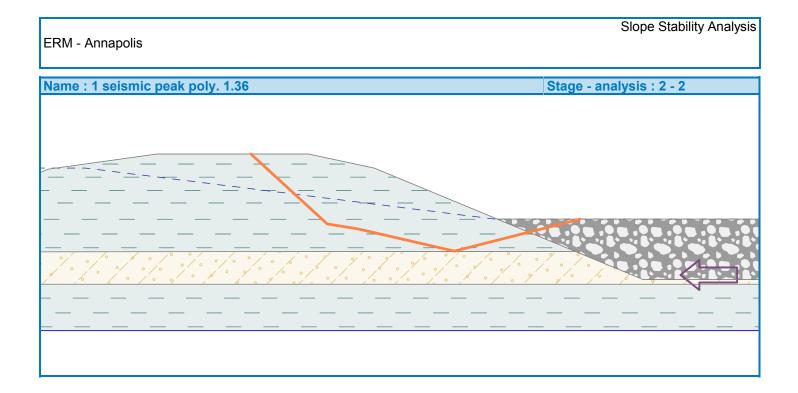
No	No. First point		Second point			
NO.	x [ft]	z [ft]	x [ft]	z [ft]		
1	-159.58	250.78	109.90	251.38		
2	106.95	266.86	290.40	267.28		
3	639.76	244.48	58.61	245.20		
4	294.71	264.84	101.63	263.47		

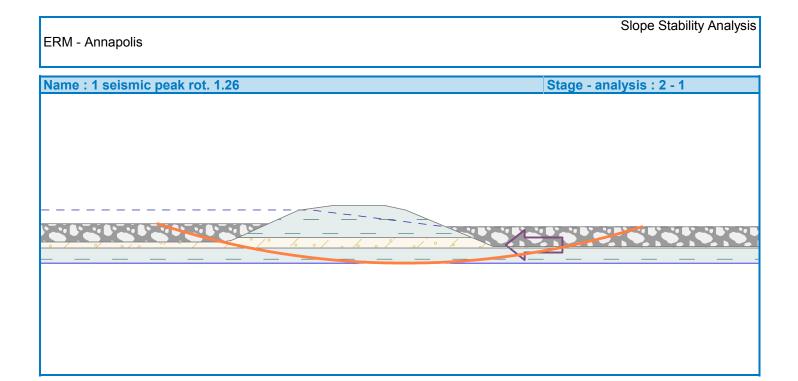
The restrictions of points of circular slip surface

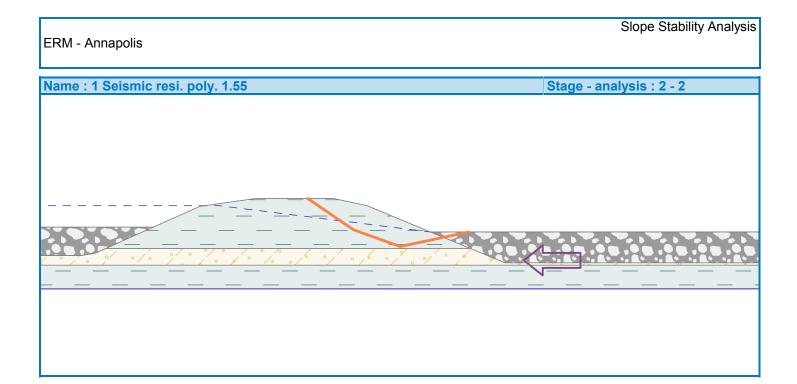
Slope stability verification (Bishop)					
Sum of active forces :	F _a =	35519.0	lbf/ft		
Sum of passive forces :	F _p =	51670.4	lbf/ft		
Sliding moment :	M _a =	3633946.7	lbfft/ft		
Resisting moment :	M _p =	5286395.6	lbfft/ft		
Factor of safety = 1.45 > 1.00					
Slope stability ACCEPTABLE					

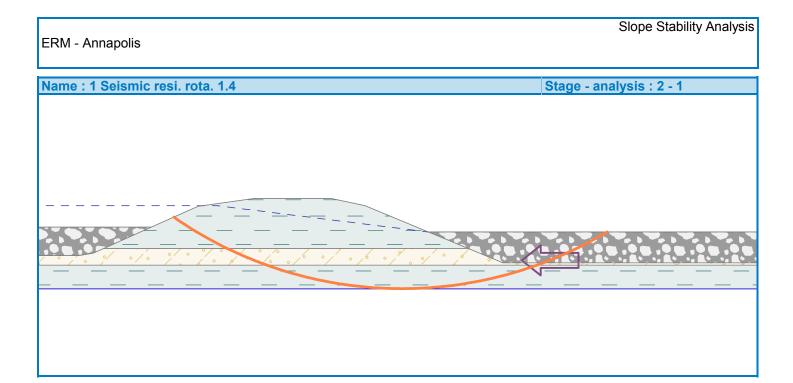
Analysis 2 (stage 7)

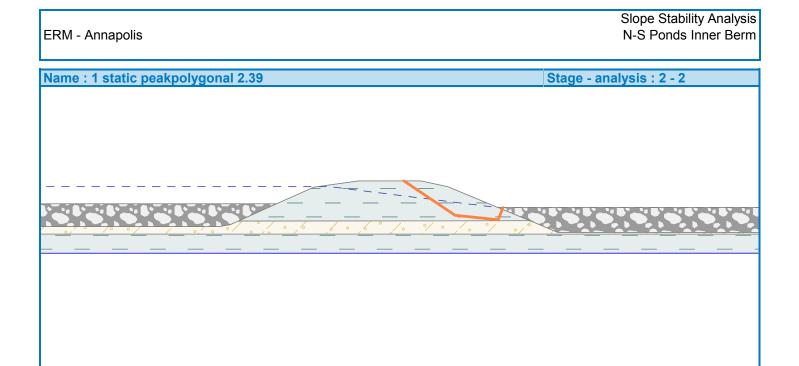

Polygonal slip surface

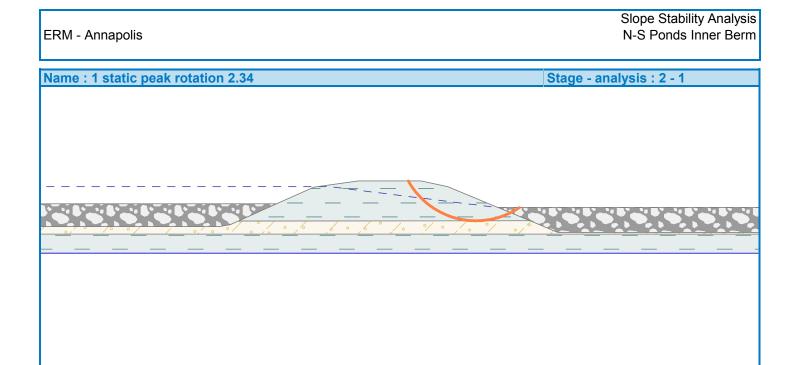

Coordinates of slip surface points [ft]									
x	Z	x	z	x	Z	X	z	x	z
334.08	270.10	437.83	260.22	442.28	269.00				
The slip surface after optimization.									

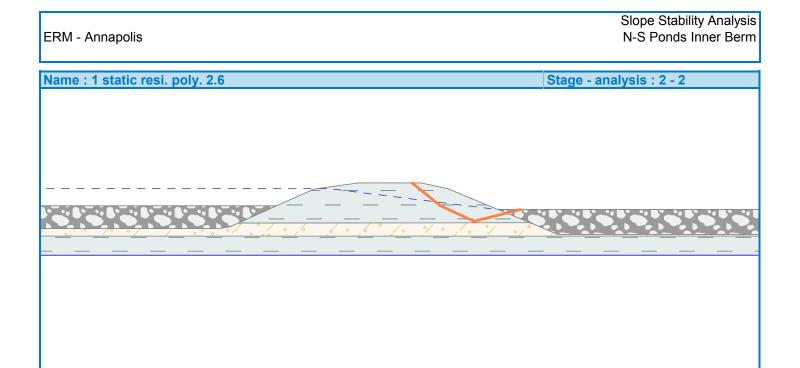

Segments restricting slip surface

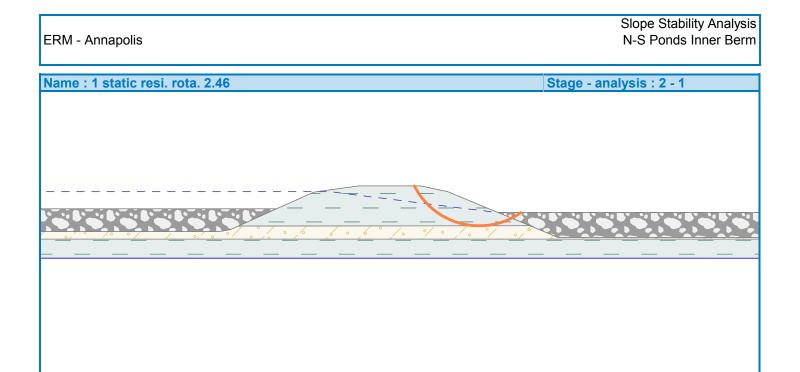

No.	First point		Second point		
NO.	x [ft]	z [ft]	x [ft]	z [ft]	
1	-159.78	250.98	109.70	250.98	

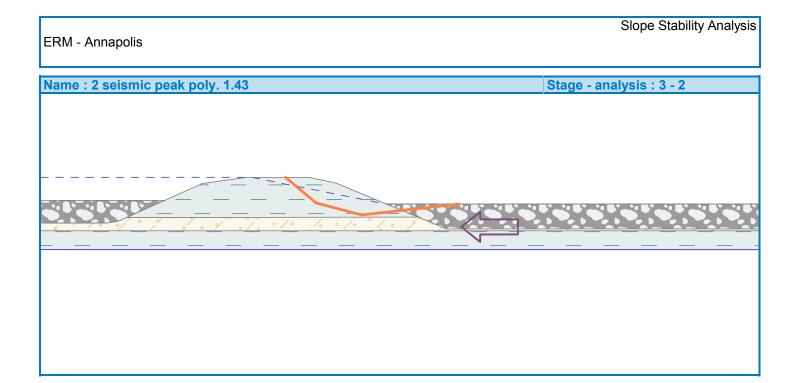

Slope stability verification (Janbu) Factor of safety = 1.52 > 1.00 Slope stability ACCEPTABLE

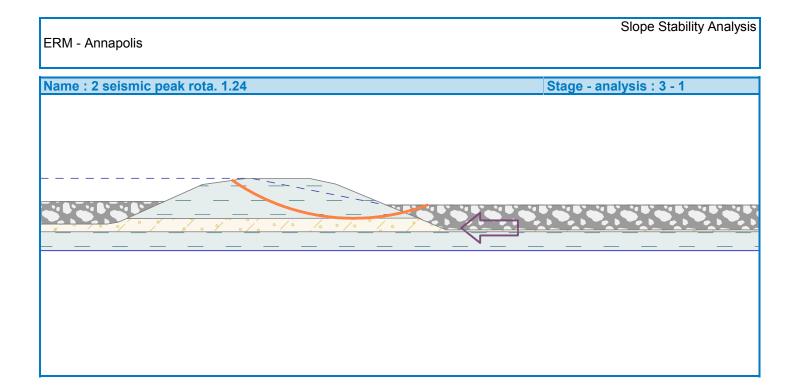


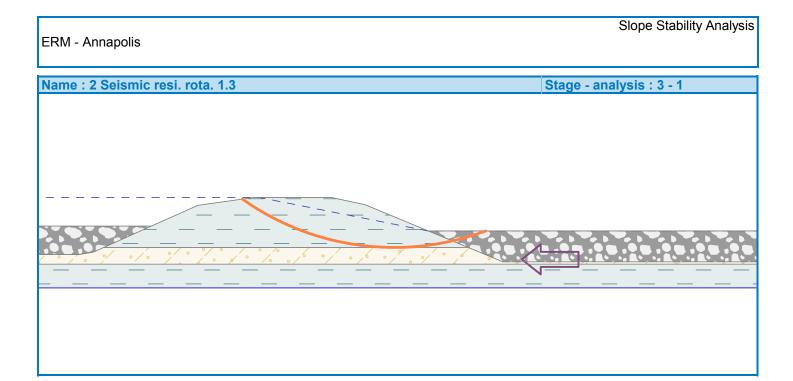


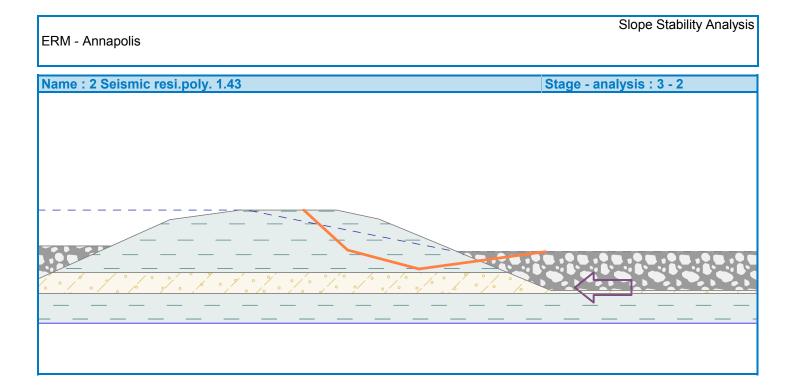


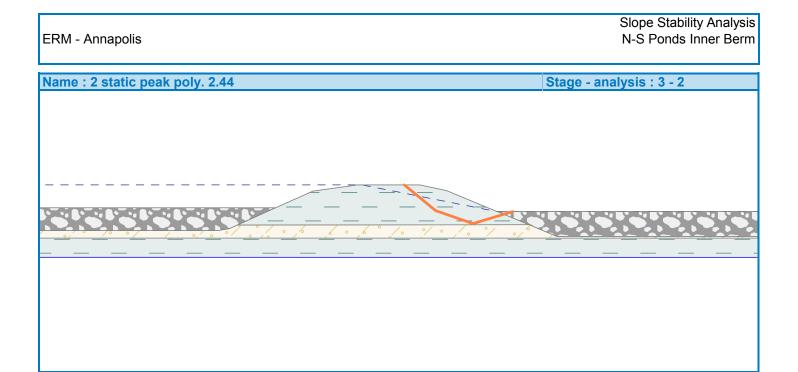


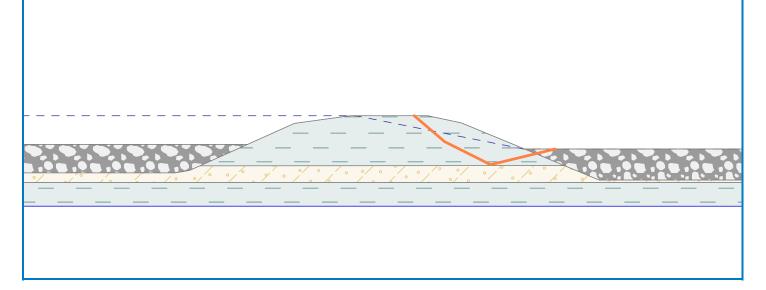


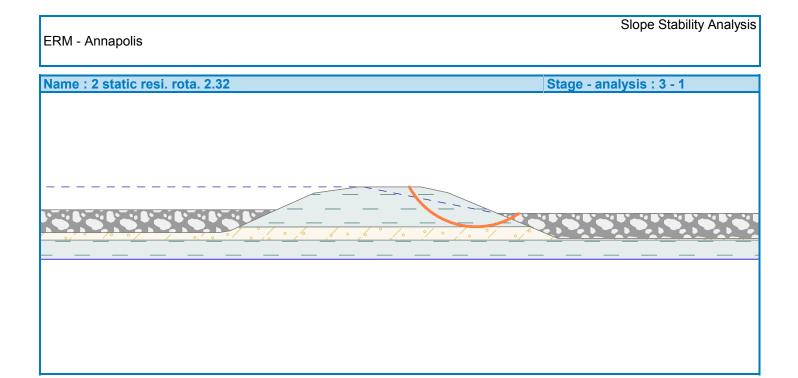




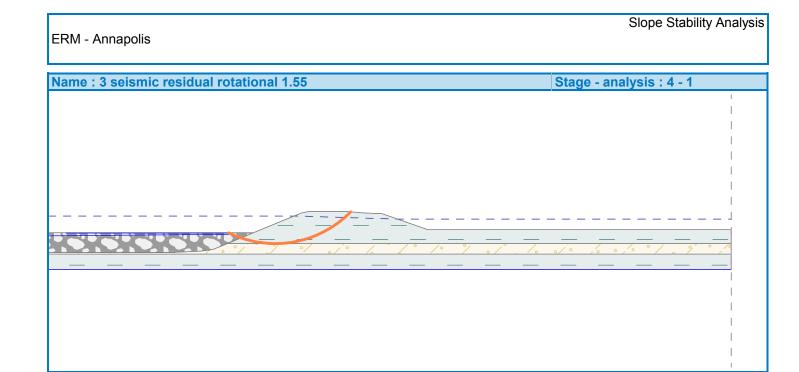


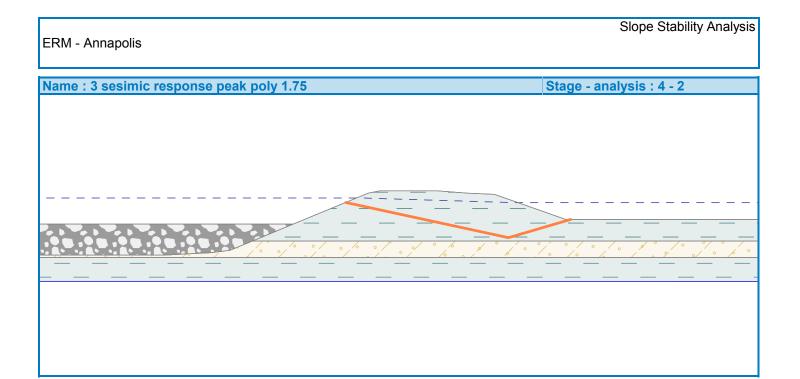


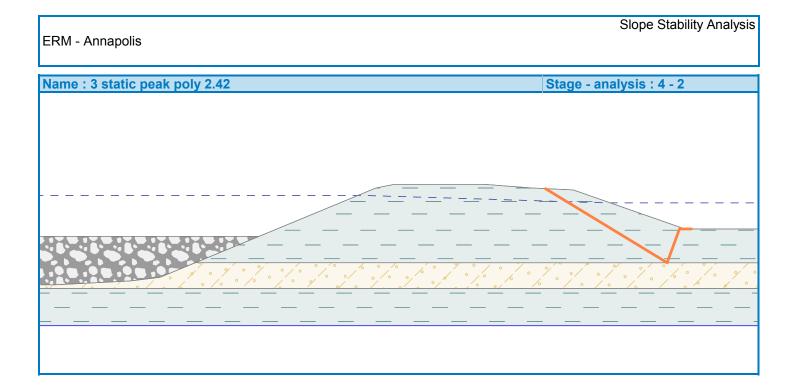




Name : 2 static resi. poly. 2.45

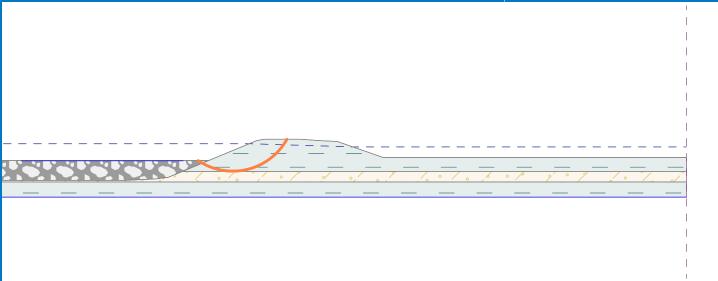

Stage - analysis : 3 - 2

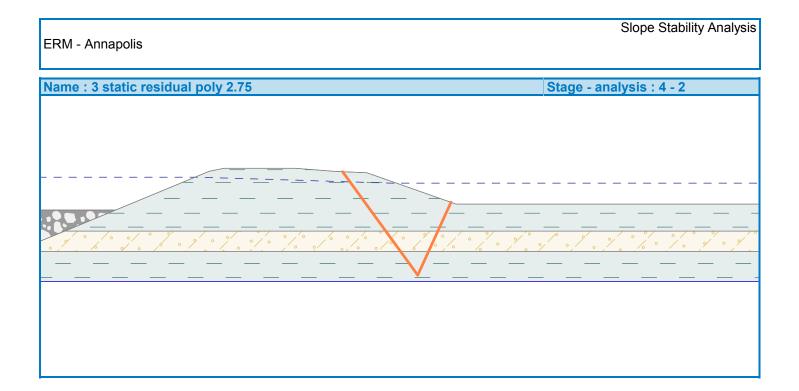




ERM - Annapolis	Slope Stability Analysis
Name : 3 seismic peak rotational 1.53	Stage - analysis : 4 - 1

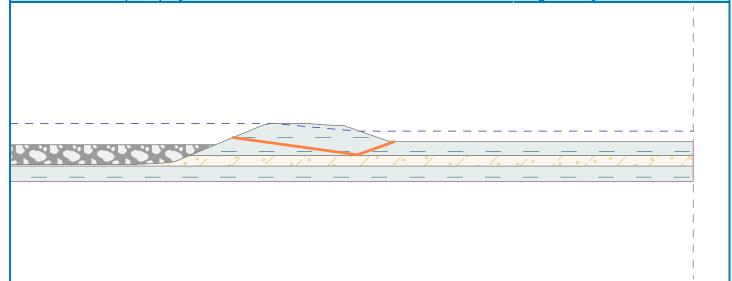
ERM - Annapolis	Slope Stability Analysis
Name : 3 seismic residual poly 1.59	Stage - analysis : 4 - 2
	<u>, </u>

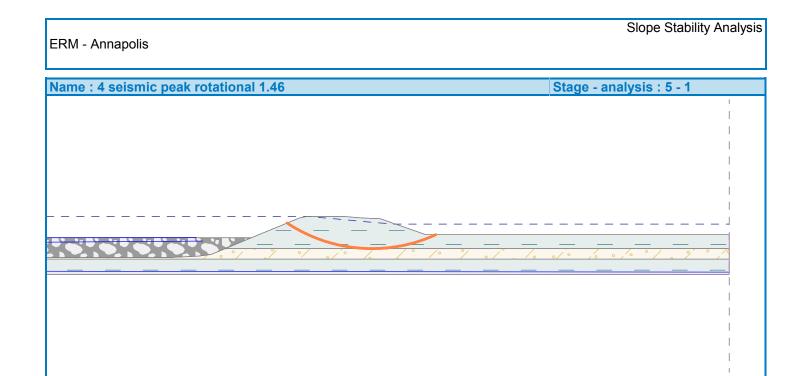




Name : 3 static peak rotational 3.92

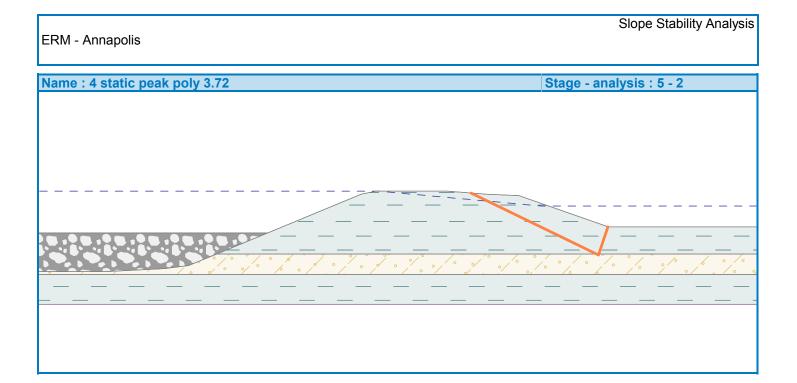
Stage - analysis : 4 - 1

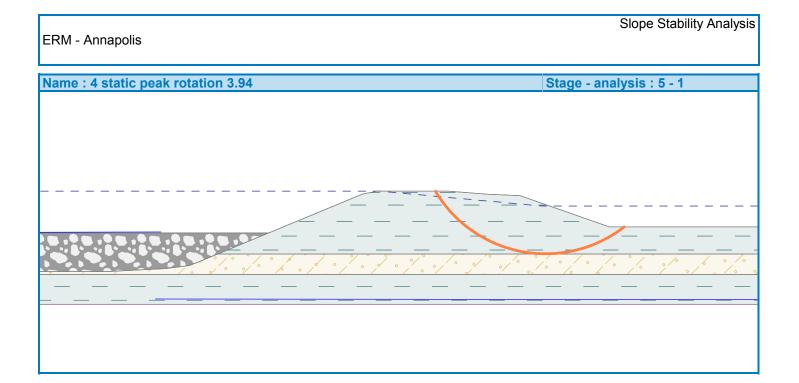


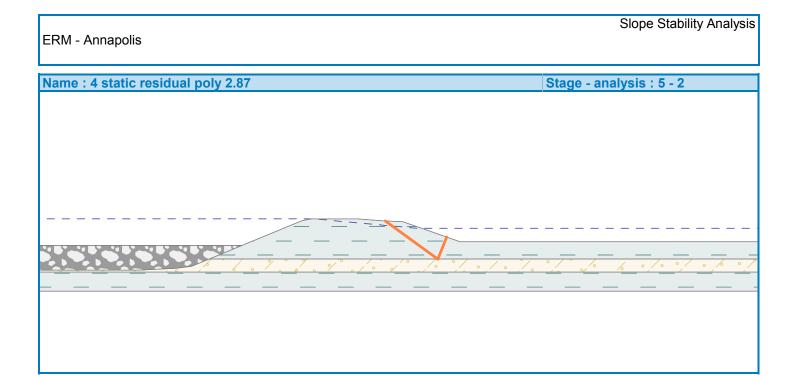


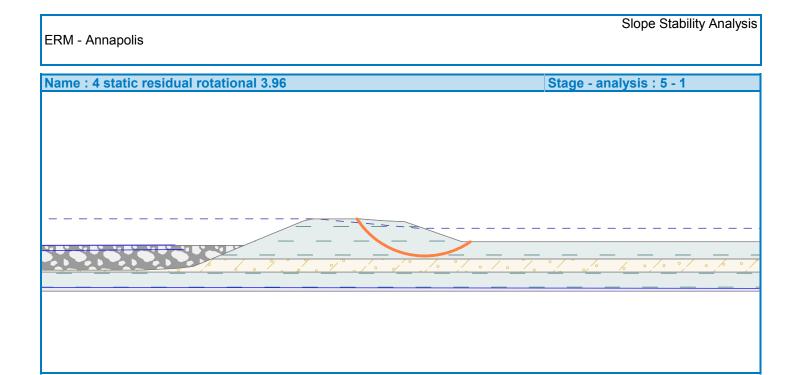
ERM - Annapolis	Slope Stability Analysis
Name : 3 static residual rotat 3.89	Stage - analysis : 4 - 1

Name : 4 seismic peak poly 1.55

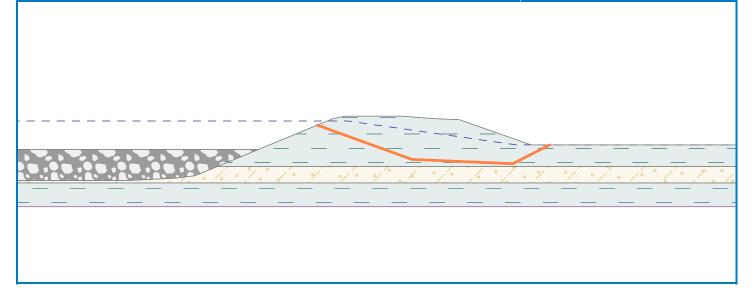

Stage - analysis : 5 - 2

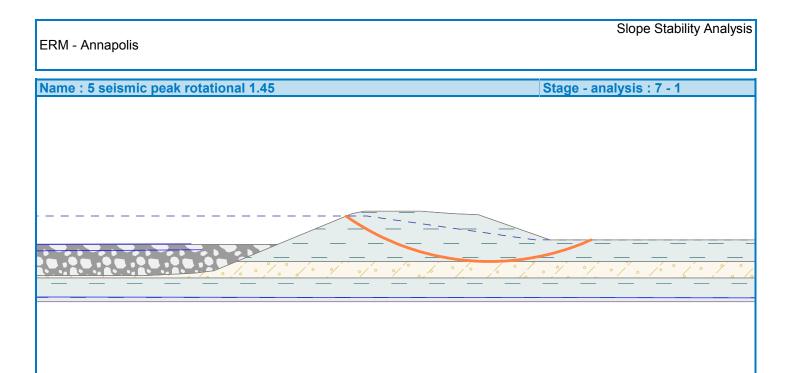


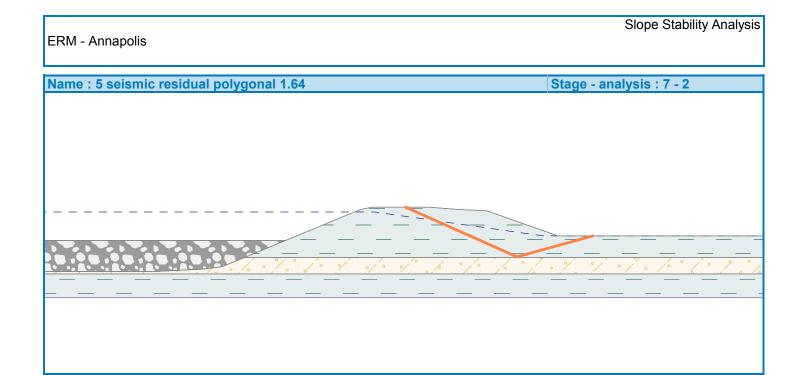


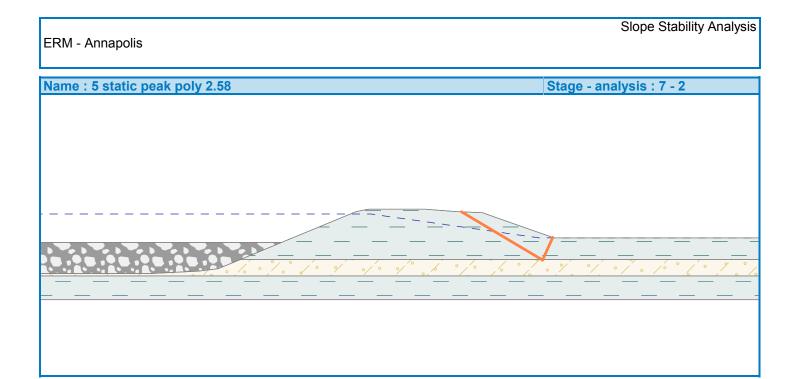

ERM - Annapolis	Slope Stability Analysis
Name : 4 seismic residual poly 1.5	Stage - analysis : 5 - 2

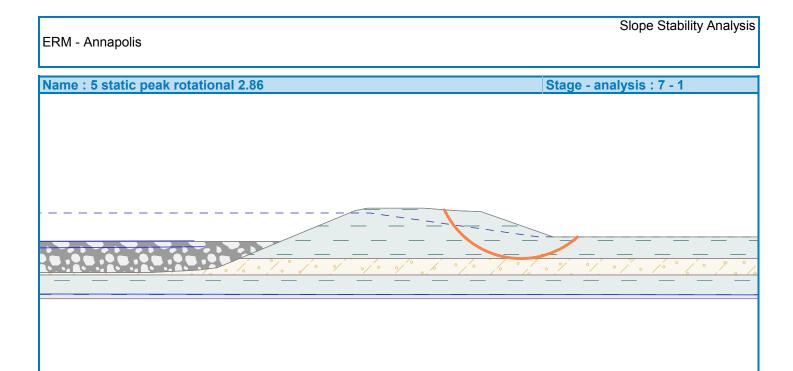
ERM - Annapolis	Slope Stability Analysis
Name : 4 seismic residual rotat 1.49	Stage - analysis : 5 - 1
	<u> </u>








Name : 5 seismic peak poly 1.51


Stage - analysis : 7 - 2

