

Structural Stability Assessment South Recycle Pond

Entergy -White Bluff Steam Electric Station White Bluff, Arkansas

November 19, 2020

ERM Project Number: 0558908

QUALIFIED PROFESSIONAL ENGINEER CERTIFICATION

I hereby certify, as a Professional Engineer in the State of Arkansas, that the information in this document was assembled under my direct supervisory control. This report is not intended or represented to be suitable for reuse by Entergy Arkansas, LLC, White Bluff Steam Electric Station or others without specific verification or adaptation by the Engineer.

This assessment has been prepared for the exclusive use of Entergy Arkansas, LLC, in accordance with the general engineering standards at the time the services were performed. This work has been performed for the sole purpose of assisting Entergy in evaluating the White Bluff South Recycle Pond's consistency with the FOS assessment provisions of 40 CFR 257.73(d).

The findings of the assessment, as represented within this report, must be viewed in recognition of certain limiting conditions. The scope of work commissioned for this project represents a reasonable engineering analysis, consistent with good commercial practice and subject to all of the limitations; both stated and unstated in the report as well as identified assumptions. In the course of this assessment, ERM has relied on information provided by Entergy, such as design drawings, regulatory correspondence, site inspection of the facility, interviews, and the project team's experience. ERM has made no independent investigation as to the validity, completeness, or accuracy of such information provided. For the purposes of this assessment, such information is assumed accurate unless contradictory evidence is noted, and ERM does not express or imply any warranty regarding information provided to us.

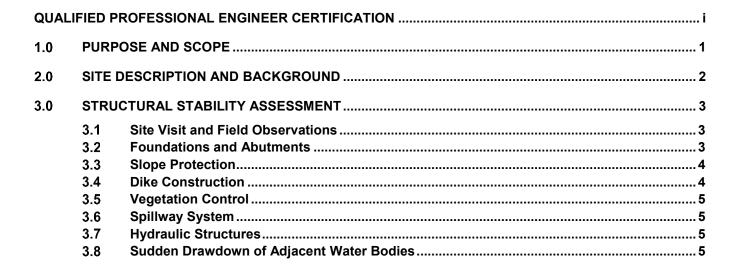
The findings and conclusions presented herein should reflect conditions as identified during ERM's site visit.

Wayne T. Sicora P.E., Arkansas

Wayne T. Sicoson

Environmental
Resources
Management
Southwest, Inc.
No. 726

No. 16187


No. 16187

No. 16187

Seals

Table of Contents

List of Figures

1 Site Maps – White Bluff Recycle Ponds

List of Appendices

- A Topographic Survey
- B Final Report for Geophysical Survey
- C Geotechnical Boring Logs
- D Geotechnical Laboratory Data
- E Site Photographs

1.0 PURPOSE AND SCOPE

The South Recycle Pond was used primarily, but not exclusively, for recycling bottom ash sluice water at the White Bluff Steam Electric Station. The South Recycle Pond ceased all waste receipt in October 2018. This sluice water may have contained filtrate deposits of bottom ash, which also present finer-grained particles intermixed with the bottom ash. For purposes of this assessment, ERM has assumed that the recycle pond is a coal combustion residuals (CCR) surface impoundment as defined by the *Hazardous and Solid Waste Management System, Disposal of Coal Combustion Residuals from Electric Utilities* (the "CCR Rule") in 40 CFR 257.2.

ERM has prepared this Initial Structural Stability Assessment for the South Recycle Pond at the White Bluff Steam Electric Station to ensure the South Recycle Pond is consistent with the requirements described in 40 CFR 257.73(d), which are part of the broader provisions of the 40 CFR 257.73, *Structural Integrity Criteria for existing CCR surface impoundments*.

2.0 SITE DESCRIPTION AND BACKGROUND

The White Bluff Steam Electric Station is located at 1100 White Bluff Road, in the City of Redfield, Arkansas. It is owned and operated by Entergy Arkansas, LLC. The site map is presented as Figure 1 and identifies two recycle ponds, the South Recycle Pond and the North Recycle Pond. While active, the South Recycle Pond was used primarily but not exclusively to recycle bottom ash sluice water, but Entergy posted notice of intent to close the South Recycle Pond on October 5, 2018, and has since ceased waste receipt and initiated closure of the pond.

A topographic survey (Appendix A) of the two recycle ponds was conducted by B&F Engineering, Inc. (B&F Engineering) on July 5 and 6, 2018. This survey depicts the approximate top of infill elevations, the elevations of the pond floors as designed (as reference), containment berms dimensions and other layout features. Similarly, a geophysical survey of both ponds was conducted by GeoView of St. Petersburg, FL in June 2018. This geophysical survey (Appendix B) mapped the elevations of the north and south pond floors through compressed high-intensity radiated pulse (CHIRP) sonar imaging. The geophysical survey indicated that the bottom elevation of the South Recycle Pond ranged from approximately 253.5 to 256 feet. A comparison of the top of infill survey and the pond floor survey indicate that the thickness of the infill in both ponds varied from approximately 0 to 3 feet near the edges to 6 to 13 feet in the middle portions.

3.0 STRUCTURAL STABILITY ASSESSMENT

3.1 Site Visit and Field Observations

An initial site inspection was conducted by ERM on March 14, 2019, to ensure that the South Recycle Pond is operating and maintained in accordance with generally accepted good engineering practices. During the inspection, ERM met with White Bluff plant personnel and discussed operations and maintenance of the pond. Photographs obtained during the March 14, 2019 site visit depicting the ponds conditions are included in Appendix E.

3.2 Foundations and Abutments

Section 257.73 (d)(1)(i) requires that the foundations and abutments of the pond to be stable.

No design reports or specifications are available for the South Recycle Pond. The South Recycle Pond has a constructed berm on its northern (shared berm) and southern perimeter (separating the South Recycle Pond from the lower lake).

Subsurface investigation was conducted in May and June 2018 by installing several soil borings around the pond (boring logs presented in Appendix C). The locations of the borings are shown on Figure 1. Based on the review of soil observed at depths corresponding to the pond depth, the pond bottom predominantly consists of clayey material (CH) with few locations exhibiting other fine-grained (SC, and SM) soils. The berms and abutments also consist of similar fine-grained cohesive soils exhibiting a high clay content, with intermediate lenses, pockets and/or thin layers of non-cohesive SM materials.

The soils were sampled in six locations at which undisturbed samples were obtained to conduct triaxial, consolidated-undrained shear strength tests with pore pressure measurements (tx/cu/pp tests) in a geotechnical laboratory in addition to classification and correlation tests. This data is summarized in Table 1, and as may be observed, the results of the strength testing indicates very similar results for the CL/CH and SC materials, with some variance for the SM materials. The complete laboratory data utilized is presented in Appendix D. These data were used in the stability evaluation of the South Recycle Pond containment berms/abatements as presented in the separate report entitled "Factor of Safety Assessment – South Recycle Pond" dated November 19, 2020. This analysis concluded that the slope of containment berms/abutments is stable in the existing configuration.

Table 1. Shear Strength Test Results Summary

				Effective Stre	ss		Total Stress		
Location	Depth (ft)	USCS	Angle of Friction (°)	Cohesion (psi)	Cohesion (psf)	Angle of Friction (°)	Cohesion (psi)	Cohesion (psf)	Density (pcf)
B-1	8 to 10	CL	21.6	1.5	216.0	12.3	2.6	374.4	100.0
B-3	10 to 12	SC	32.5	0.0	0.0	23.6	0.0	0.0	100.0
B-3	20 to 22	SM	22.1	3.0	432.0	22.4	4.2	604.8	100.0
B-5	3 to 5	CL	29.6	2.5	360.0	26.1	1.5	216.0	95.4
B-7	5 to 7	SM	42.5	11.2	1612.8	31.7	12.2	1756.8	90.4
B-7	15 to 17	SC	25.4	0.9	129.6	16.9	0.0	0.0	100.0
RP-4	20 to 22	CL	24.3	0.9	129.6	12.5	2.2	316.8	93.0

				Effective Stre	ss		Total Stress		
Location	Depth (ft)	USCS	Angle of Friction (°)	Cohesion (psi)	Cohesion (psf)	Angle of Friction (°)	Cohesion (psi)	Cohesion (psf)	Density (pcf)
		Average CL	25.2		235.2	17.0		302.4	96.1
		Average SC	29.0		64.8	20.3		0.0	100
		Average SM	32.3		1022.4	27.1		1180.8	95.2
		Bottom Ash ¹	38		0	38		0	100

Notes:

1. The infill material, or finer-grained particles intermixed with bottom ash, in the South Pond was not specifically sampled and analyzed. The strength parameters are derived from the typical range of industry-accepted direct shear test values surveyed by the Federal Highway Administration (FHWA) Research and Technology Program (FHWA-RD-97-148) entitled, User Guidelines for Waste and Byproduct Materials in Pavement Construction, 2008). The range of angle of internal friction from this source is 38 to 42 degrees; a conservative assignment of 38 degrees was applied to accommodate the potential for finer-grained particles being entrained in the bottom ash. Though ash can exhibit some apparent cohesion, none was applied as a conservative value.

Based on the findings of the subsurface investigations, the foundations materials and abutments are suitable for the South Recycle Pond.

3.3 Slope Protection

Section 257.73(d)(1)(ii) requires adequate slope protection against surface erosion, wave action, and adverse effects of sudden drawdown.

The containment berms are constructed with a minimum slope of 2.5H: 1V. As observed during the March 2019 initial site visit, the majority of the inboard slopes are covered by grass vegetation protecting against surface erosion, wave action, and adverse effects of sudden drawdown. No erosions or settlement of the slopes was observed during the March 2019 visit. The top of the berms have gravel access roads with adequate drainage slopes and are lined with grass on the shoulders.

A slope stability of containment berms presented elsewhere (see report entitled "Factor of Safety Assessment – South Recycle Pond" dated November 19, 2020) indicates the slopes of the constructed berms in the existing configuration are stable. Thus, the current condition of the grassed slopes and shoulders are adequate.

Operation and maintenance for these areas includes regular mowing of the grass vegetation. Any erosion or slips that may occur will be repaired within a timely manner.

3.4 Dike Construction

Section 257.73(d)(1)(iii) requires dikes to be mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

The dikes for the South Recycle Pond have a maximum design height of 24 feet on side slope of 2.5H: 1V. The elevation at the top of the dikes around the perimeter is approximately 281 feet, and the maximum storage water elevation is 278 feet. The original construction specifications are unavailable for the South Recycle Pond. However, as discussed in Section 3.2, borings through the dikes indicate that the material is generally consisted of fine-grained (CL, CH and SC) cohesive soils exhibiting a high clay content, with intermediate lenses, pockets and/or thin layers of non-cohesive SM material. The uppermost layer consists of silty clays of low to high plasticity, is variable in thickness and composition, and is reported to be fill materials obtained from a neighboring on-site borrow source during construction of the ponds. The boring logs indicates that majority of these materials

are dense, medium stiff-to-stiff representative of a compacted earthen material. A stability analysis of the diking system was also conducted which demonstrate that the dikes have a factor of safety greater than the minimum values required by the CCR rule.

3.5 Vegetation Control

Section 257.73(d)(1)(iv) requires that the vegetated slopes of dikes and surrounding areas not to exceed a height of six inches above the slope of the dike, except for slopes which have an alternate form or forms of slope protection.

During the March 2019 site visit vegetative grown on the dikes were observed to be less than 6 inches. The vegetative areas are moved to facilitate inspections and promote the growth of the vegetative layer. This is done also to prevent the growth of woody vegetation.

3.6 Spillway System

Section 257.73(d)(1)(v) requires that a single spillway or a combination of spillways must be designed, constructed, operated, and maintained to adequately manage peak flow as per hazard classification of the CCR surface impoundment.

The South Recycle Pond does not have a spillway system. Therefore, the spillway requirement in 40 CFR 257.73(d)(1)(v) is not applicable.

3.7 Hydraulic Structures

Section 257.73(d)(1)(vi) requires that hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit shall maintain structural integrity and are free of significant deterioration, deformation, distortion bedding deficiencies, sedimentation, and debris which may negatively affect the operation the hydraulic structure.

There are no hydraulic structures underlying the base of the South Recycle Pond or passing through the dikes of the South Recycle Pond. Thus Section 257.73(d)(1)(vi) is not applicable.

3.8 Sudden Drawdown of Adjacent Water Bodies

Section 257.73(d)(1)(vii) requires that for CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, maintains structural stability during sudden drawdown of the adjacent water body.

The South Recycle Pond is approximately 3,600 feet from the nearby Arkansas River. The pond is outside the limits of FEMA regulatory floodway. Based on the National Oceanic and Atmospheric Administration (NOAA), the highest water elevation in Arkansas River recorded in over 100 years at a Gauge Station in Pine Bluff was 214.9 feet (May 1943).

The downstream slope of the South Recycle Pond is not expected to be inundated from adjacent water bodies.

Figures

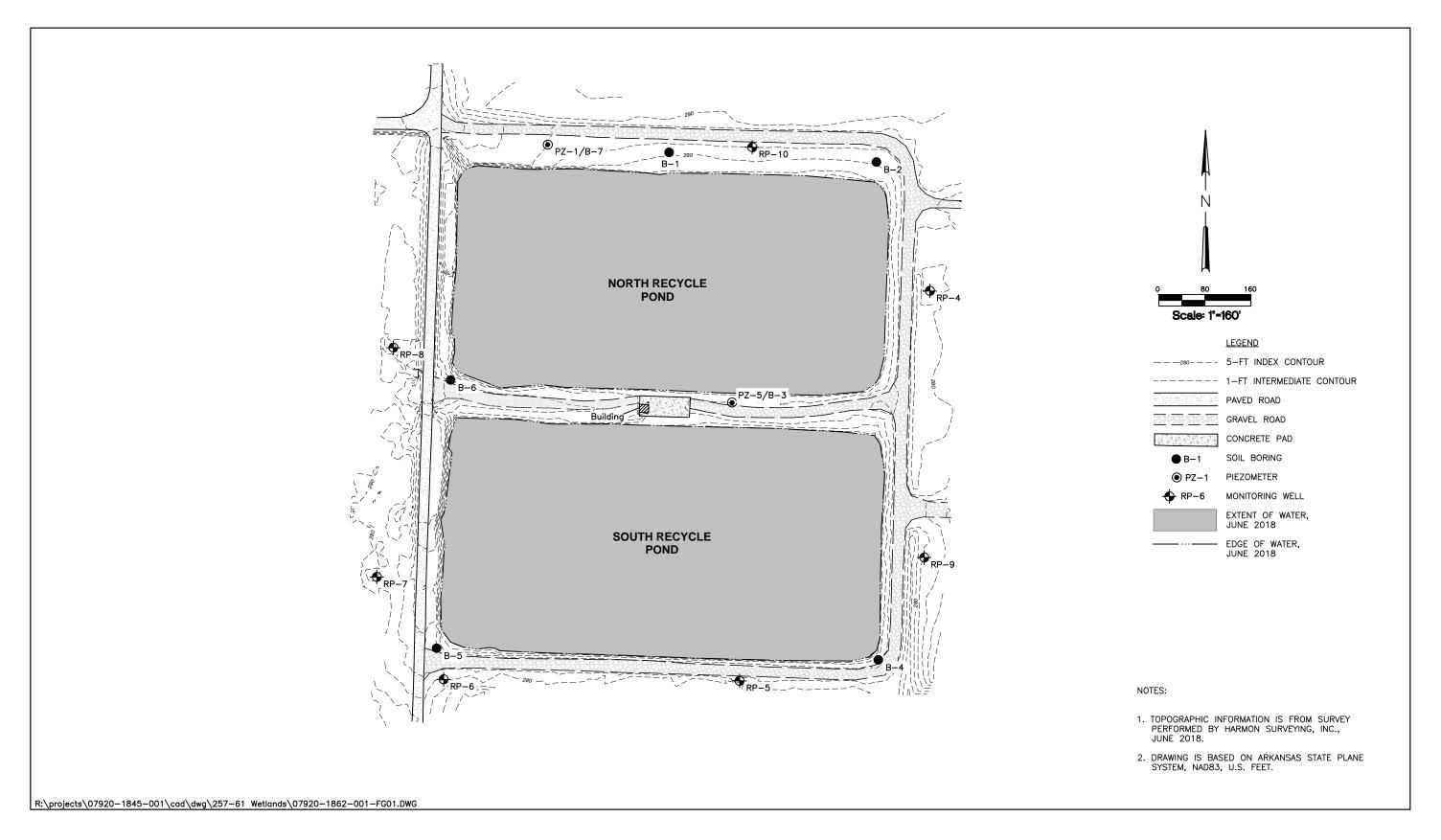
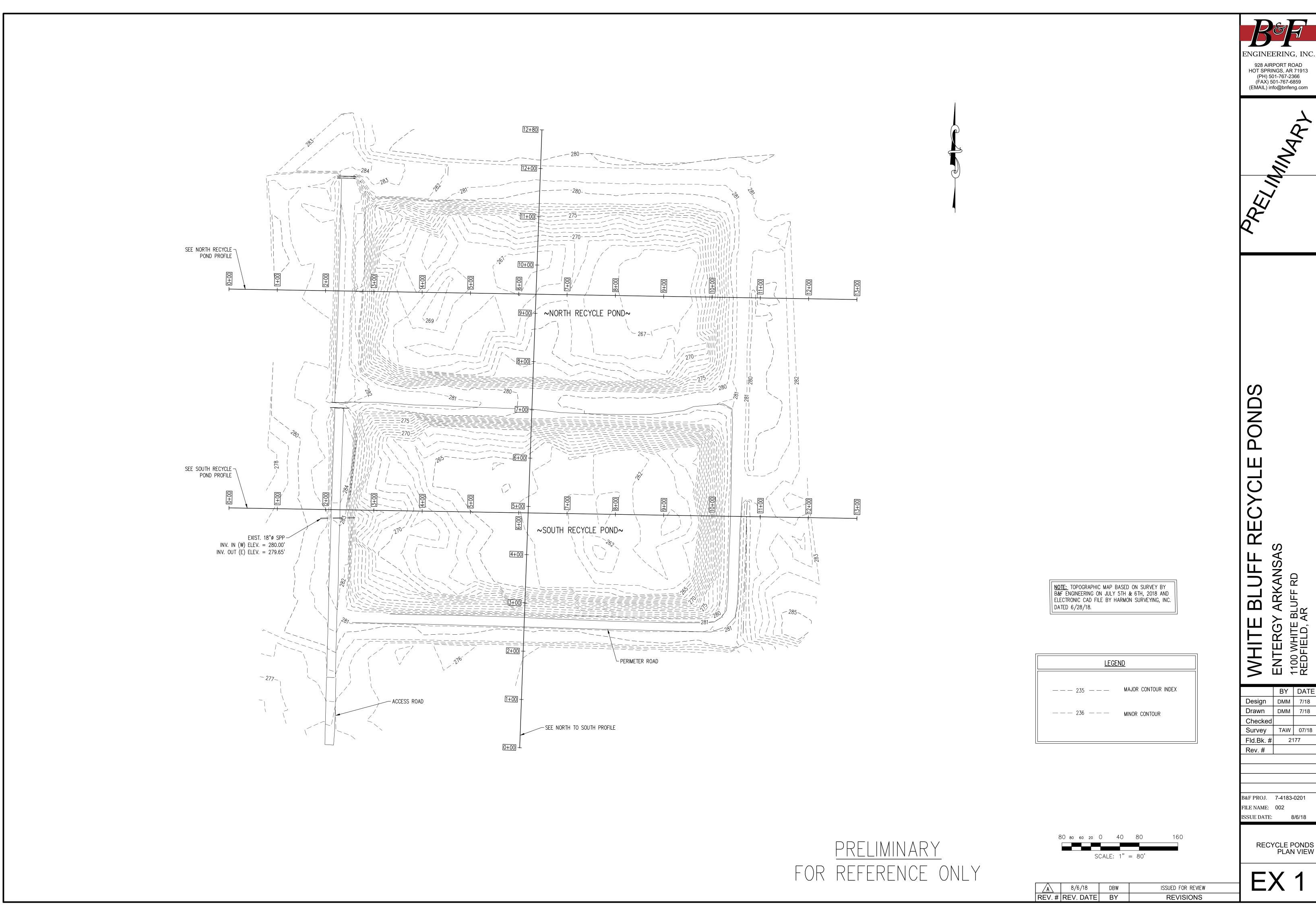
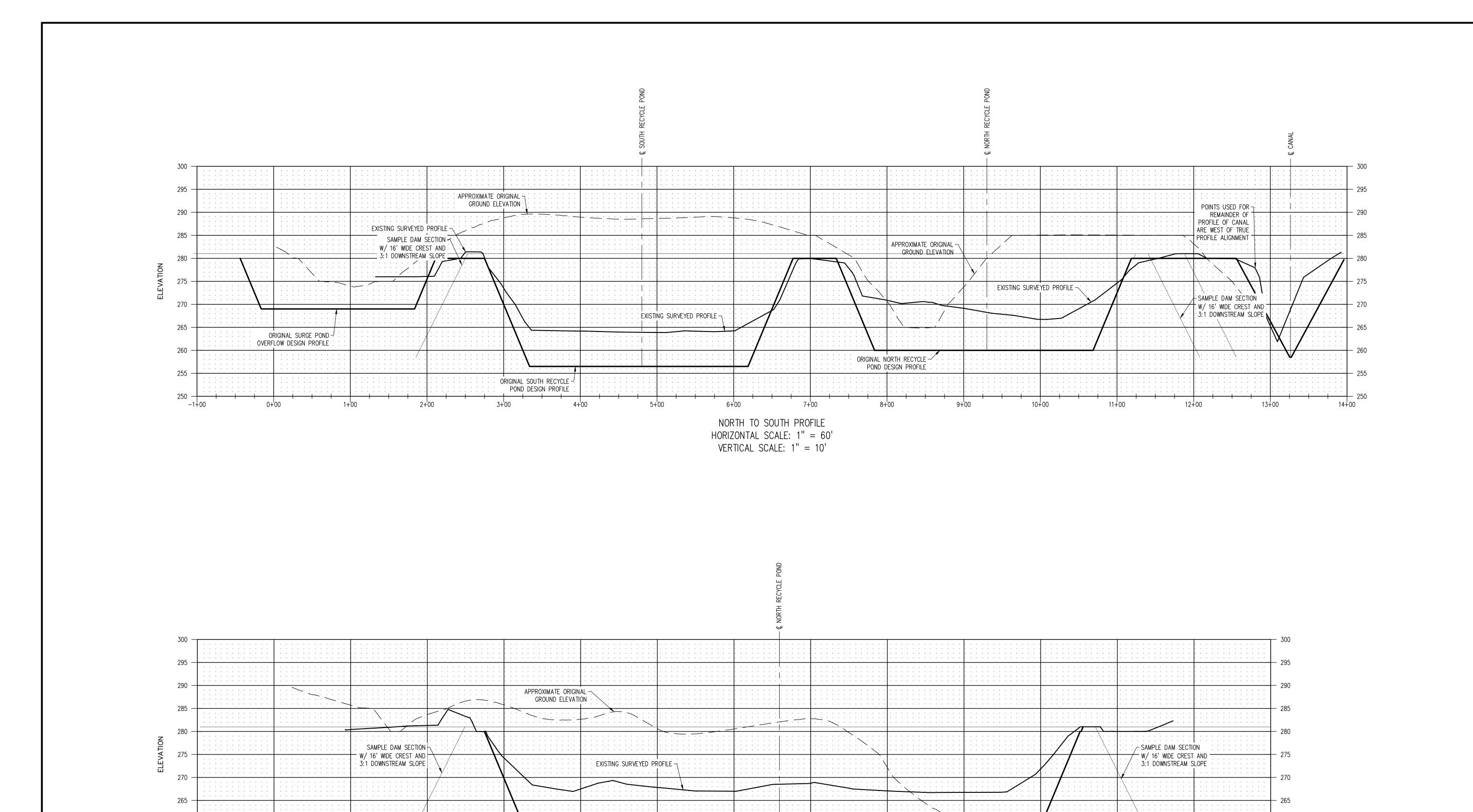



Figure 1. Site Map, Entergy White Bluff Recycle Ponds.

Appendix A Topographic Survey



928 AIRPORT ROAD HOT SPRINGS, AR 71913 (PH) 501-767-2366 (FAX) 501-767-6859 (EMAIL) info@bnfeng.com

BY DATE Survey TAW 07/18

RECYCLE PONDS PLAN VIEW

NORTH POND PROFILE

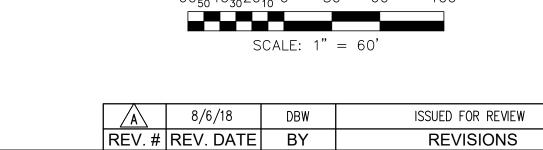
HORIZONTAL SCALE: 1" = 60' VERTICAL SCALE: 1" = 10'

255 -

ORIGINAL NORTH RECYCLE
POND DESIGN PROFILE

RECYCL BLUFF ENTERGY ARKANSAS 1100 WHITE BLUFF RD REDFIELD, AR BY DATE Design DMM 7/18 Drawn DMM 7/18 Checked

928 AIRPORT ROAD HOT SPRINGS, AR 71913 (PH) 501-767-2366


(FAX) 501-767-6859 (EMAIL) info@bnfeng.com

Survey TAW 07/18 Fld.Bk.# Rev.#

B&F PROJ. 7-4183-0201 FILE NAME: 002 ISSUE DATE: 8/6/18

RECYCLE PONDS PROFILES

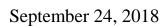
PRELIMINARY FOR REFERENCE ONLY

10 8 6 4 2 0 5 10

SCALE: 1" = 10'

REVISIONS

Appendix B Final Report for Geophysical Survey



FINAL REPORT ASH POND SURVEY WHITE BLUFF POWER PLANT JEFFERSON COUNTY, ARKANSAS

Prepared for FTN Associates, Ltd. Little Rock, Arkansas

Prepared by GeoView, Inc. St. Petersburg, Florida

Tel.: (727) 209-2334

Fax: (727) 328-2477

Ms. Dana Derrington, PE, PG FTN Associates, Ltd. 3 Innwood Circle, Suite 220 Little Rock, AR 72211

Subject: Transmittal of Final Report for Geophysical Survey

White Bluff Steam Electric Station – Recycle Pond Survey

Jefferson County, Arkansas

GeoView Project Number 26897 Rev 2

Dear Ms. Derrington,

GeoView, Inc. (GeoView) is pleased to submit the final report which summarizes and presents the results of the geophysical survey conducted at the above referenced site. Sub-bottom profiling was used to map the bottom of the recycle ponds. GeoView appreciates the opportunity to have assisted you on this project. If you have any questions or comments about the report, please contact us.

Sincerely,

GEOVIEW, INC.

Chris Taylor, P.G.

Christopher Taylor

Vice President

Florida Professional Geologist

Number 2256

Merritt McLean Geophysicist

A Geophysical Services Company

1.0 Introduction

A marine geophysical survey was conducted on two recycle ponds located at the White Bluff Steam Electric Station in Jefferson County, Arkansas. The purpose of the study was to map the bottom elevation of the recycle ponds. Each recycle pond was approximately 750 by 390 feet in size. The survey was conducted on June 14 and 15, 2018. The locations of the geophysical survey area are provided on Figures 1 and 2.

2.0 Description of Geophysical Investigation

The geophysical survey was conducted using a sub-bottom profiling towfish. The sub-bottom data was collected using an Edgetech 3100 system with a 216 towfish. The Edgetech system is a full Spectrum CHIRP imaging system. A frequency range of 2-16 kHz was used. During the survey, the towfish was situated 1.0 feet below the surface of the water. The high-power, low-frequency system was chosen to map the pond bottoms. The equipment was mounted to an unmanned, portable pontoon boat. The boat was pulled using ropes along each transect line. Photographs showing the equipment configuration are provided in Appendix 2.

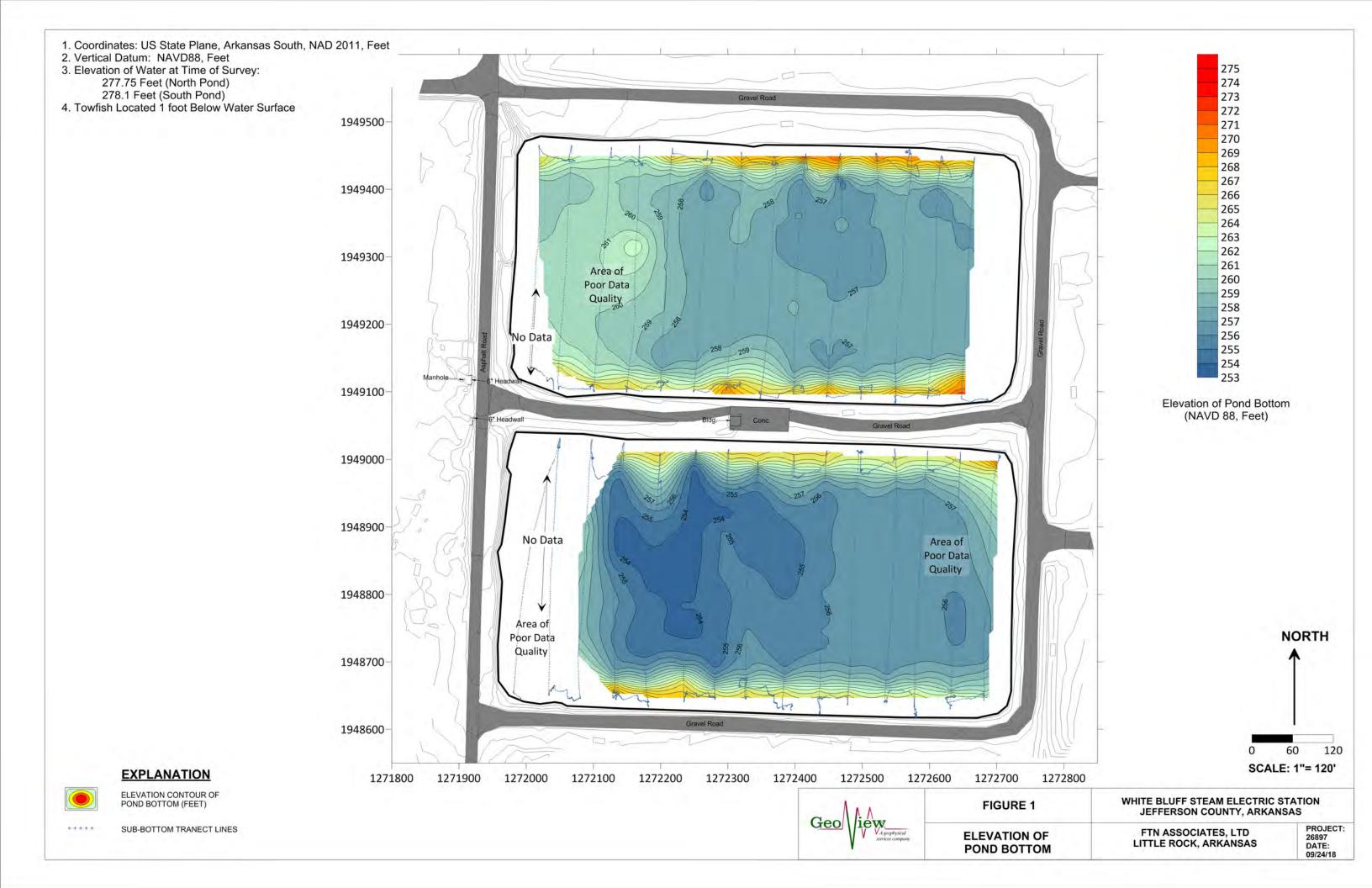
Within each pond, data was collected on north/south oriented transects spaced approximately 50 feet apart. The positions of the geophysical transect lines were recorded using a differential Trimble Geo6000 Global Positioning System (GPS). Real time differential corrections were applied to the GPS positions.

The data was processed using Edgetech Discover software. The two way travel time distances to the pond bottom were digitized and depths/elevations were calculated using a velocity of 4,921 feet per second.

The digitized elevations were exported into an Excel spreadsheet and converted for use in Surfer. The coordinates were converted to Arkansas South State Plane, NAD2011 (US Survey feet) using Trimble Pathfinder and the elevations were converted to State Plane NAVD88 using a topographic site survey provided by FTN.

3.0 Survey Results

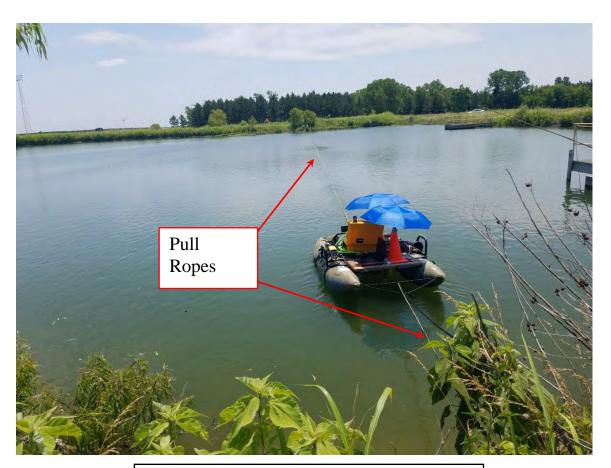
Results of the survey were able to provide accurate sub-bottom information for the elevation of the bottom of the recycle ponds. Contour maps showing the elevations of the bottom of the ponds are shown on Figure 1.


In general, the bottom elevation of the pond in the north pond ranged from approximately 256 to 260 feet. The bottom elevation of the pond in the south pond ranged from approximately 253.5 to 256 feet.

The data quality within the western portion of the north pond and the eastern and far western portions of the south pond was lower than in other portions of survey areas. In these areas, a shallower, intermediate reflector was present that partially obscured the bottom of the pond. In portions of the southern pond, the bottom of the pond was completely obscured and no valid data was able to be derived. These areas of poor quality are shown on the figure.

A discussion of the limitations of the geophysical methods used in this investigation is provided in Appendix 3.

APPENDIX 1 FIGURES


APPENDIX 2 PHOTOGRAPHS

Picture Showing the GPS, 3100 Topside Unit and 216 Sub-bottom Unit (towfish)

Data Collection

APPENDIX 3 LIMITATIONS

Edgetech 3100 XS system

The 3100- Sub-bottom Profiling System is a Full Spectrum CHIRP imaging system. It was used with a SB-216S towfish. The 3100- system uses specially designed transmitters with low Q wideband characteristics best suited for CHIRP transmissions. Two hydrophones are installed in the tow vehicle to reduce acoustic scattering from the sides. This results in a narrower across track beam pattern, enabling the 3100 to have both high resolution and ample depth of penetration. For this survey, GeoView mounted the fish directly under the center of the tow raft. A GPS antenna was mounted directly over the transducer.

Limitations of geophysical data

The marine environment, together with its boundaries, forms a remarkably complex medium for the propagation of sound. Both signal loss and interference result from interactions with boundaries and components within the water column, causing the source to be delayed, distorted and weakened. The main components affecting sound propagation are spreading loss and attenuation loss.

The ability of geophysical to collect interpretable information at a project site is limited by the attenuation (absorption) of the geophysical signal by underlying earth materials. Once the geophysical signal has been attenuated at a particular depth, information regarding deeper geological conditions will not be obtained. Geophysical data can only resolve subsurface features that have a sufficient density contrast between the feature in question and surrounding earth materials. If an insufficient contrast is present, the subsurface feature will not be identified.

GeoView can make no warranties or representations of geological conditions that may be present beyond the depth of investigation or resolving capability of the geophysical equipment or in areas that were not accessible to the geophysical investigation.

Appendix C Geotechnical Boring Logs

			PROJECT:	PO.	RING ID:				
			Monitoring Well Installations		RP-1				
	<u>Ė</u>		LOCATION:		LL ID:				
		_	Entergy White Bluff Plant		RP-1				
	= 5	4m	DRILLING CONTRACTOR:		RTHING:				EASTING:
	■ F		Walker-Hill Environmental, Inc.		949807.4	1			1273086.5
	Ass	ociates Ltd.	DRILLING EQUIPMENT:	+	OUND ELE		d·		TOC ELEVATION:
water resor	urces / enviror	mental consultants	Geoprobe 8150LS		82.8 ft		•		285.72 ft
			DRILLING METHOD:		TAL WELL	DEPTH	<u> </u>		DEPTH TO WATER: (7/17/2018)
	roject # 0-1845-	001	Sonic with 4x6 core and case	25.3 ft below TOC					8.97 ft below TOC
	ED BY:	001	SAMPLING METHOD:	DA ⁻	TE STARTE	ED:			DATE COMPLETED:
DLD			Continuous with 10 ft 4 in diameter core barrel	6	/13/2018				6/15/2018
et)		0							
(fe	nscs	Graphic Log	Description	REC					Vell
Depth (feet)	l so	Gra	Description	8		(Cc	ns	truction
<u>-4</u>								-4	
									Above ground completion includes
-	-						-		3x3 ft concrete pad, four pipe bollards, and locking outer
									aluminum casing.
0 -		//////	TOP SOIL	_		***	ŀ	0	45 2 ft of 4 in Colo 40 DVC
	CL		LEAN CLAY, light gray with reddish brown and orange mottles, stiff, moist.	1		\otimes			15.2 ft of 4 in Sch. 40 PVC including 2.9 ft of stickup (vented
			LEAN CLAY, light gray with reddish brown and orange motiles, still, moist.			\otimes	L		below cap)
						\otimes			
,						\otimes		4	Cement/bentonite grout from 0 to 6 ft bgs
4 -	1					\otimes		4	it bys
				30		\otimes			
-						2	▼		
	CL								Bentonite seal from 6.0 to 10.0 ft.
8 –	-						⊩	8	bgs
-	-		@ 10 ft, SANDY LEAN CLAY, pinkish tan with dark pinkish tan clay lenses and				⊩		
			orange and bright yellow mottling. Stiff, moist.						
12 -							L	12	
			CLAVEY CAND to with a series and bright cells on settler days are int	1					
_			CLAYEY SAND, tan with orange and bright yellow mottles, dense, moist.						
	SC			100					Silica size 20/40 filter pack from 10.0 to 22.0 ft bgs
 16 -				100				16	
10 -			SANDY LEAN CLAY, pinkish tan with dark pinkish tan clay lenses and orange and bright yellow mottling, stiff, moist.					10	
	CL								10 ft of 4 in dia. 0.010 in slot, Sch 40 PVC well screen
-	1	///////	CLAYEY SAND, tan with orange and bright yellow mottles, dense, moist.	1			ľ		40 C V G Well Screen
20 –	sc						\parallel	20	
-	+		FAT CLAY, dark pinkish tan, laminated with light gray silt, stiff, moist.	-		_	ŀ		0.1 ft 4 in dia. Sch 40 PVC end cap
24 –	-						H	24	
				100					
	СН		@ 26 ft, color changes to olive gray.				l		Slough from 22.0 ft to 30.0 ft in 4 in
									dia., borehole.
28 –							L	28	
20 -								20	
									Drilling terminated at 30 ft bgs
	'		and vertical data are based on the Harmon Surveying report de				_		

NOTES: Horizontal and vertical data are based on the Harmon Surveying report dated July 13, 2018 (AR State Plane NAD83 South and NAVD88).

			PROJECT:	BO	DINC ID:				
					RING ID:				
_	<u>ė</u>		Monitoring Well Installations		RP-2				
=			LOCATION:		ELL ID:				
		4-	Entergy White Bluff Plant		RP-2				FACTING
	■F		DRILLING CONTRACTOR:		RTHING:				EASTING:
=		ociates Ltd	Walker-Hill Environmental, Inc. DRILLING EQUIPMENT:	+	950042				1274004
water resou	urces / enviror	nmental consultants			OUND ELE 88.9 ft	:VATION	I:		TOC ELEVATION:
			Geoprobe 8150LS DRILLING METHOD:			DEDTU			291.92 ft
	roject#		Sonic with 4x6 core and case	TOTAL WELL DEPTH: 39.9 ft below TOC					DEPTH TO WATER: (7/17/2018) 15.14 ft below TOC
	0-1845-	001	SAMPLING METHOD:	_	TE STARTE				DATE COMPLETED:
DLD	ED BY:		Continuous with 10 ft 4 in diameter core barrel		/13/2018				6/15/2018
					7.0720.10				0.10.2010
Depth (feet)	nscs	Graphic Log	Description	REC				V	/ell
epth	NS	Gra	Description	%		(C_{C}	nst	truction
<u>0</u>								-4	
-									Above ground completion includes
-							-		3x3 ft concrete pad, four pipe bollards, and locking outer
0 -		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TOP SOIL	1			L	0	aluminum casing.
	CL					\otimes			
-			LEAN CLAY, light gray with orange mottles and light gray silt lenses, stiff, dry.			\otimes	-		
,						\otimes		4	
4 -				30		\otimes		4	
-						\otimes	-		29.8 ft of 4 in Sch. 40 PVC including 3.0 ft of stickup (vented
						\otimes			below cap)
8 –	CL					\otimes	-	8	
l .						\otimes	L		
						\otimes			
12 —			@ 14 ft, color changes to greenish gray with orange mottles.			\otimes	•	12	
						\otimes			
-				100		\otimes	-		
16 —			FAT CLAY, pinkish tan with orange and some bright yellow mottles, blocky, very stiff, moist.	100		\otimes		16	Cement/bentonite grout from 0 to 21 ft bgs
'						\otimes			Z1 it bgs
-						\otimes	-		
			@ 20 ft, color to reddish light brown with few mottles.			\otimes		00	
20 —			@ 20 ft, color to reddistriight brown with lew motiles.			\otimes		20	
	СН		@ 22.3 ft, FAT SANDY CLAY, silty, olive gray, fine-grained, increasing sand content with depth, very stiff.				L		Bentonite seal from 21.0 to 24.5 ft
			, , ,						bgs
24 —				1.00			-	24	
				100			L		
									Silica size 20/40 filter pack from
28 —			CLAYEY SAND, fine-grained, olive gray, dense, moist.	-			_	28	24.5 to 37.0 ft bgs
-							-		10 ft of 4 in dia. 0.010 in slot, Sch
32 —								32	40 PVC well screen
-	SC							-	
-	-						H		
				100				20	0.1 ft 4 in dia. Sch 40 PVC end cap
36 —								36	
			FAT SANDY CLAY, olive gray, very stiff, moist.				L		Slough from 37.0 ft to 40.0 ft in 4 in dia., borehole.
40	СН							40	Drilling terminated at 40 ft bgs
40	NOTES:	Horizontal	1 and vertical data are based on the Harmon Surveying report da	ted lul	v 13 2010	(AR Stat	<u>ا</u> د	70	,
l '		i ionzonial a	and voluder date and based on the Hamilton Surveying report da	.ou Jul	10, 2010	,, t Otal		.aiiC	1

			PROJECT:		RING ID:				
_	<u>-</u>		Monitoring Well Installations	R	P-3				
<u> </u>	=		LOCATION:	WE	LL ID:				
			Entergy White Bluff Plant	R	P-3				
	╡╡	TN	DRILLING CONTRACTOR:	NO	RTHING:			EASTING:	
			Walker-Hill Environmental, Inc.	1	949489.5			1273729.9	
	Ass	<u>ociates Ltd.</u>	DRILLING EQUIPMENT:	GR	OUND ELEVATION	DN:		TOC ELEVATION:	
water resou	rces / environ	mental consultants	Geoprobe 8150LS	281.0 ft				284.15 ft	
l			DRILLING METHOD:	TOTAL WELL DEPTH:				DEPTH TO WATER: (7/17/2018)	
FTN Pr R07920	oject #)-1845-(001	Sonic with 4x6 core and case	3	6.3 ft below 1	ОС		8.6 ft below TOC	
LOGGE			SAMPLING METHOD:	DA	TE STARTED:			DATE COMPLETED:	
DLD			Continuous with 10 ft 4 in diameter core barrel	6	/12/2018			6/15/2018	
Depth (feet)	nscs	Graphic Log	Description	REC			W	/ell	
bth	ΩS	Gra	Description	%		Cor	ารt	ruction	
-4									
-4							-4	Above ground completion includes	
-						-		3x3 ft concrete pad, four pipe	
								bollards, and locking outer aluminum casing.	
0 —			FAT CLAY, tan with yellowish orange mottles and some fine-grained sand, stiff, moist.			■	0	didnimani odoling.	
_			most.		\bowtie				
4 —						.	4		
				30				26.2 ft of 4 in Sch. 40 PVC	
-						I I⊦		including 3.2 ft of stickup (vented	
								below cap)	
8 —							8		
l _	СН								
	CIT								
12 —						I -	12	Cement/bentonite grout from 0 to 16.5 ft bgs	
								10.0 11 293	
-						III-			
				100	\bowtie				
16 —							16		
								Bentonite seal from 16.5 to 20.0 ft	
								bgs	
20 —			CLAYEY SAND, olive gray, stiff, moist.				20		
			CEATET SAND, Olive gray, Sull, Moist.					Silica size 20/40 filter pack from	
-						I		20.0 to 33.0 ft bgs	
l									
24 —	sc			400			24		
_				100					
								40.0 (41 11 0.515)	
28 —							28	10 ft of 4 in dia. 0.010 in slot, Sch 40 PVC well screen	
			POORLY GRADED SAND, fine-grained, clayey , olive gray, soft, moist.	-				10 1 VO Well coroon	
-	SP		ganos, says, sone gay, son, most			III-			
l .	ا ا								
32 —		///////	LEAN CLAY, olive gray, laminated with light gray silt and very fine-grained sand, stiff, moist			■ - :	32		
			Sun, more		3888			0.1 ft 4 in dia. Sch 40 PVC end cap	
36 —	CL						36	Clauseh fram 00 0 ft to 40 0 ft to 4	
								Slough from 33.0 ft to 40.0 ft in 4 in dia., borehole.	
-						1			
40							40	Drilling terminated at 40 ft bgs	
	IOTES	Horizontol o	I and vertical data are based on the Harmon Surveying report dat	ارزا ام	, 12, 2019 (AD S		10	,	

NOTES: Horizontal and vertical data are based on the Harmon Surveying report dated July 13, 2018 (AR State Plane NAD83 South and NAVD88).

			PROJECT:	BO	RING ID:			
					RP-4			
_	<u> </u>		Monitoring Well Installations LOCATION:	-	ILL ID:			
=					RP-4			
=	= 3	4-	Entergy White Bluff Plant DRILLING CONTRACTOR:	-	RTHING:			EASTING:
	= F							
1	Asso	ociates Ltd	Walker-Hill Environmental, Inc. DRILLING EQUIPMENT:		949249.3	1.		1272808.4
water reso	urces / environ	mental consultants			OUND ELEVATION 80.8 ft	N.		TOC ELEVATION: 284.17 ft
			Geoprobe 8150LS DRILLING METHOD:			1-		
	roject#		Sonic with 4x6 core and case	TOTAL WELL DEPTH: 36.5 ft below TOC				DEPTH TO WATER: (7/17/2018) 9.34 ft below TOC
	20-1845-0	001	SAMPLING METHOD:	_				
	ED BY:		Continuous with 10 ft 4 in diameter core barrel		TE STARTED: /6/2018			DATE COMPLETED: 6/15/2018
AJP			Continuous with 10 it 4 in diameter core parrer	- 0	10/2016			0/13/2010
Depth (feet)	တ္သ	Pic	.	REC			V	/ell
pth	nscs	Graphic Log	Description	R R		Cc		truction
		01		, ,		_		il dollori
-4							-4	Above ground completion includes
	-					-		3x3 ft concrete pad, four pipe
								bollards, and locking outer aluminum casing.
0 -	CL		TOP SOIL FAT CLAY, yellowish orange with some fine-grained sand and small gravel, stiff,			ıH	0	3
			moist to dry.					
·								
4 -	СН		@ 4-5.5 ft, FAT SANDY CLAY with some well-rounded gravel (< 2 inch) dia, tan,			L	4	
			stiff, moist	100				26.4 ft of 4 in Sch. 40 PVC
			@ 6-6.3 ft, with clayey sand, red, medium to coarse grained sand, stiff.			▼		including 3.4 ft of stickup (vented
								below cap)
8 –	CL		SILTY to SANDY CLAY, light gray to tan with some orange and red staining, fine-grained sand, stiff, moist.			⊩	8	
			FAT CLAY, yellowish orange with some fine-grained sand and small gravel, stiff, moist to dry.					
·	СН		nada da aj.					Cement/benontite grout from 0 to 15.0 ft bgs
12 –	ML					L	12	15.0 It bgs
	IVIL		SILT. gray with black organic matter, sulfur smell. LEAN CLAY to SILT with sand, gray, increasing sand content with depth, medium stiff, moist.	1				
	CL/ML	///	medium sun, moist.			╠		
				50				
16 -			FAT CLAY, yellowish orange, with orange mottles.			⊩	16	
	CH							Bentonite seal from 15.0 to 20.0 ft bgs
	sc		CLAYEY SAND, fine-grained, red and light gray, medium stiff, moist.					290
20 –	SM		SILTY SAND, red to bright red, stiff.			L	20	
			FAT CLAY, light gray with some red mottles, soft to medium stiff, moist.					Siling size 20/40 filter pack from
	СН					-		Silica size 20/40 filter pack from 20.0 to 33.0 ft bgs
24 –	ML/CL		CLAYEY SILT to LEAN CLAY, gray, sulfur smell.	1			24	
l .	СН		FAT SANDY CLAY, yellowish orange to olive green with some orange and red mottles.	60				
	СП		@ 26.2 - 26.5 ft, with silt laminations.					
28 –			SILT, light gray with lenses of olive gray clay, soft, moist. @ 27.2 - 27.3 ft, layer of organic matter.			L	28	10 ft of 4 in dia. 0.010 in. slot, Sch 40 PVC well screen
	ML							
-	+		FAT CLAY, laminated with lenses of white silt to fine-grained sand, stiff, moist.			-		
32 –	1						32	0.1 ft 4 in dia. Sch 40 PVC end cap
	CII			100	1999			
	- CH			100				
36 -						L	36	Slough from 33.0 ft to 38.0 ft in 4 in dia., borehole.
			@ 38 ft, decreasing silt and sand content with depth.					Drilling terminated at 38 ft bgs
	NOTES	<u> </u>	1			<u> </u>	N -	-
1	NUTES:	Horizontal a	and vertical data are based on the Harmon Surveying report dat	ea Jul	y 13, 2018 (AR Sta	ite F	rane	NAD83 South and NAVD88).

			PROJECT:	PO	RING ID:				
			Monitoring Well Installations		RING ID. RP-5				
_	<u> </u>		LOCATION:		LL ID:				
	=								
		4-	Entergy White Bluff Plant	_	RTHING:				EASTING:
			DRILLING CONTRACTOR:			•			
=		ociates Ltd	Walker-Hill Environmental, Inc. DRILLING EQUIPMENT:	1948586.2					1272475.8
water reso	urces / enviror	mental consultants			OUND ELE	EVATIO	N:		TOC ELEVATION:
			Geoprobe 8150LS	281.4 ft					284.57 ft
	roject#		DRILLING METHOD: Sonic with 4x6 core and case	TOTAL WELL DEPTH: 30.9 ft below TOC					DEPTH TO WATER: (7/17/2018)
R0792	20-1845-	001		-			UC		8.23 ft below TOC
I	ED BY:		SAMPLING METHOD:		TE STARTI	ED:			DATE COMPLETED:
AJP			Continuous with 10 ft 4 in diameter core barrel	 0	/5/2018				6/15/2018
Depth (feet)	nscs	Graphic Log	Description	% REC			Co		Vell truction
0 -			FILL, consisting of nepheline syenite gravel.	-				-4	Above ground completion includes 3x3 ft concrete pad, four pipe bollards, and locking outer aluminum casing.
4 -	FILL		FAT CLAY, yellowish orange to tan with oxidized orange silt and sand lenses, medium stiff to stiff, moist.	- 20			 - -	4	20.8 ft of 4 in Sch 40 PVC including 3.2 ft of stickup (vented below cap) Cement/benonite grout from 0 to
12 -	CH		@ 12 ft, FAT SANDY CLAY, increasing sand content with depth, yellow and orange silt and fine-grained sand lenses.				-	12	11 ft bgs Bentonite seal from 11.0 to 15.0 ft bgs
16 –	SC/SM		CLAYEY SAND, yellow and orange silt lenses, decreasing clay content with depth, medium stiff, moist. CLAYEY SAND to SILTY SAND, tan with orange oxidized staining that decreases with depth, increasing clay content with depth, soft to medium stiff to soft, wet.	100				16	Silica size 20/40 filter pack from 15.0 to 28.0 ft bgs
	СН		FAT SANDY CLAY, orange and yellow staining along silt and sand lenses.						
	0							00	
20 –	sc		CLAYEY SAND, fine-grained, olive gray, decreasing clay content with depth, loose to medium dense.					20	
24 -	SM		SILTY SAND, fine-grained, olive gray, medium dense, wet.	100				24	10 ft of 4 in dia. 0.010 in slot, Sch 40 PVC well screen
28 -	СН		FAT SANDY CLAY, olive gray, stiff, moist. @ 27.5 ft, FAT CLAY, laminated lenses of white silt to fine-grained sand with some greenish gray to green clay layers.					28	0.1 ft 4 in dia. Sch 40 PVC end cap Slough from 28.0 ft to 30.0 ft in 4 in dia., borehole.
									Drilling terminated at 30 ft bgs
	NOTES:	Horizontal a	and vertical data are based on the Harmon Surveying report dat	ed Jul	y 13, 2018	(AR Sta	ate F	Plane	NAD83 South and NAVD88).

			PROJECT: Monitoring Well Installations		RING ID: P-6	
					•	
			LOCATION:	WE	_L ID:	
		_	Entergy White Bluff Plant		P-6	
	= 3	4-	DRILLING CONTRACTOR:	1	-	ASTING:
	■F		Walker-Hill Environmental, Inc.			-
	Assi	ociates Lta	DRILLING EQUIPMENT:			271958.9
water resour	ces / environ	mental consultants	Geoprobe 8150LS			DC ELEVATION: 183.81 ft
			DRILLING METHOD:			
FTN Pro			Sonic with 4x6 core and case			PTH TO WATER: (7/17/2018) 8.82 ft below TOC
R07920		001	SAMPLING METHOD:	_		ATE COMPLETED:
LOGGE AJP	D BY:		Continuous with 10 ft 4 in diameter core barrel			3/15/2018
		0				
n (fe	nscs	Graphic Log	Description	REC	Well	
Depth (feet)	ñ		Becompain	%	Construc	tion
-4					-4	
						e ground completion includes
-				1		t concrete pad, four pipe rds, and locking outer
						inum casing.
0 —			FAT CLAY, yellowish orange with some rootlets in upper 3 inches, medium stiff	1	0	
	СН		to stiff, moist.	1		
			CII T with lovers of fine grained and will write a	1	■	W 641 0 1 10 DV
			SILT, with layers of fine-grained sand, yellowish orange with oxidation along silt layers, dry to moist with moisture increasing with depth.			ft of 4 in Sch 40 PVC ding 3.2 ft of stickup (vented
	ML					v cap)
4 —						
			LEAN CLAY, yellowish orange, silt content decreases with depth, stiff, moist.	60		
_	CL				Ceme	ent/bentonite grout from 0 to
			FAT CLAY, yellowish brown with yellow and orange silt lenses that decrease in	1	9.0 ft	
8 —			frequency with depth, moist.			
			@ 9.7 ft, color changes to olive gray.			
	СН		@ 10 ft, increasing fine-grained sand content with depth.			
						onite seal from 9.0 to 12.0 ft
					bgs	
12 —						
	SC		CLAYEY SAND, fine-grained, olive gray, medium dense, moist.			
	СН		FAT SANDY CLAY, olive gray with lenses of fine-grained sand, stiff.		<u> </u>	
			CLAYEY SAND, fine-grained, olive gray, medium dense, moist.	8		
				0		
16 —	SC		3	1	- 16 Silica	a size 20/40 filter pack from
				1	12.01	to 26.0 ft bgs
-			FAT SANDY CLAY, olive gray with lenses of fine-grained sand, stiff.	1		
	СН			1		
20 —			CLAVEY SAND fine grained alive grow decreasing condications with de-th-	-	- 20 10 ft.	of 4 in dia 0.040 in -1-4.0.1
	sc		CLAYEY SAND, fine-grained, olive gray, decreasing sand content with depth, medium dense, moist.	1	1011.0	of 4 in dia. 0.010 in. slot, Sch VC well screen
			SILTY SAND, olive gray, medium dense.	-		
1	SM		@ 23.8 ft, layer of organic matter.	100		
	O141			1		
24 —	SC		CLAYEY SAND, fine-grained, olive gray, increasing clay and lenses of white silt	1		
			to fine-grained sand with depth, medium dense, moist. FAT CLAY, with laminated lenses of white silt to fine-grained sand, stiff, moist to	1	0.1 ft	4 in dia. Sch 40 PVC end cap
			dry. @ 25 ft, with greenish gray clay layers.	1		2 311 10 1 7 0 0114 04p
	011			1		
28 —	СН			100		gh from 26.0 ft to 30.0 ft in 4 in borehole.
40				1		
				1	Drillin	ng terminated at 30 ft bgs
	IULEO:	Horizonto	and vertical data are based on the Harmon Surveying report dat	0d I	/ 13 2018 (AD State Plane NADO	23 South and NAV/Doov

			PROJECT:	ВО	RING ID:	
	_		Monitoring Well Installations		P-7	
<u> </u>	<u> </u>		LOCATION:	_	LL ID:	
		_	Entergy White Bluff Plant		RP-7	
	= 5	4m	DRILLING CONTRACTOR:		RTHING:	EASTING:
	≡ŧ		Walker-Hill Environmental, Inc.		948766.8	1271839.4
	Ass	ociates Ltd	DRILLING EQUIPMENT:	_	OUND ELEVATION:	
water resou	rces / environ	mental consultants			81.3 ft	TOC ELEVATION: 284.46 ft
			Geoprobe 8150LS DRILLING METHOD:		TAL WELL DEPTH:	
	roject#		Sonic with 4x6 core and case	1	7.5 ft below TOC	DEPTH TO WATER: (7/17/2018 9.98 ft below TOC
	0-1845-0	001	SAMPLING METHOD:		TE STARTED:	
LOGGE	D BY:		Continuous with 10 ft 4 in diameter core barrel		/5/2018	DATE COMPLETED: 6/15/2018
AJP			Continuous with 10 it 4 in diameter core parrel	+ 6	15/2016	6/15/2016
Depth (feet)	SOSN	Graphic Log	Description	% REC		Well struction
<u>-4</u>					-4	
_					-	Above ground completion includes 3x3 ft concrete pad, four pipe bollards, and locking outer aluminum casing.
0 —	CL	(//////	TOP SOIL and GRAVEL	-	0	
	СН		FAT SANDY CLAY, yellowish orange, rootlets, medium stiff, moist. SILT, with clayey fine-grained sand, yellowish orange, increasing clay content			47.4 ft - f.4 in Oak 40 DVO
_	ML		with depth, moist to dry.			17.4 ft of 4 in Sch 40 PVC including 3.2 ft stickup (vented
			LEAN CLAY, yellowish orange with lenses of oxidized silt to fine-grained sand,			below cap)
			stiff, moist.			
4 —						
	CL			80		0
						Cement/bentonite grout from 0 to 8.0 ft bgs
_			FAT CLAY, olive gray with lenses of white silt to fine-grained sand, stiff, moist.	4		3
			TAT CLAT, GIVE gray with lenses of write six to line-grained sand, still, most.			
8 —					8 - 8	
						Bentonite seal from 8.0 to 11.0 ft bgs
_						3
	СН					
12 —	011				<u> </u>	Silica size 20/40 filter pack from
						11.0 to 24.0 ft bgs
_						
				80		
16 —					<u> </u>	
			CLAYEY SAND, fine-grained, medium dense, moist.			
	SC					
_	C		FAT SANDY CLAY, olive gray, medium stiff, moist.			10 ft of 4 in dia. 0.010 in slot, Sch 40 PVC well screen
	СН		CLAYEY SAND, fine-grained, medium dense, moist.			40 PVO Well Screen
20 —	sc		SECTION AND STATE OF THE STATE OF THE SECTION OF TH		_ 20	
	CN4		SILTY SAND, fine-grained, olive gray, wet.			
	SM					
_	sc		CLAYEY SAND, fine-grained, medium dense, moist.	100		0.1 ft 4 in dia. Sch 40 PVC end cap
	30					Slough from 24.0 ft to 25.0 ft in 4 i
24 —	СН		FAT CLAY, with laminated lenses of white silt to fine-grained sand, very stiff, moisture decreases with depth.			dia., borehole.
	0					Drilling terminated at 25 ft bgs
		I .	1	1		-

			PROJECT:	ВО	ORING ID:
			Monitoring Well Installations		RP-8
	<u>=</u>		LOCATION:		/ELL ID:
			Entergy White Bluff Plant	F	RP-8
\equiv	= 3	tn.	DRILLING CONTRACTOR:		ORTHING: EASTING:
	= F		Walker-Hill Environmental, Inc.		1949162.5 1271875.3
	Asso	ociates Ltd.	DRILLING EQUIPMENT:		ROUND ELEVATION: TOC ELEVATION:
water reso	ources / environ	mental consultants	Geoprobe 8150LS		282.1 ft 285.60 ft
			DRILLING METHOD:		OTAL WELL DEPTH: DEPTH TO WATER: (7/17/2018)
	Project #	204	Sonic with 4x6 core and case		29.7 ft below TOC 10.75 ft below TOC
\vdash	20-1845-0	JU1	SAMPLING METHOD:		ATE STARTED: DATE COMPLETED:
AJP	ED BY:		Continuous with 10 ft 4 in diameter core barrel		6/4/2018 6/15/2018
eet)	(O	. <u>e</u>		U	Well
Depth (feet)	nscs	Graphic Log	Description	REC	VVCII
Dep		ا ق	•	%	Construction
-6					-6
	1				Above ground completion includes
					3x3 ft concrete pad, four pipe bollards, and locking outer
-2 -	1				-2 aluminum casing.
	CH		FAT SANDY CLAY, yellowish orange, increasing sand and silt content with	+	19.6 ft of 4 in Sch 40 PVC
	011		depth, medium stiff, moist. SILT, with clayey fine-grained sand, tan to yellowish orange with lenses of clay,	-	including 3.5 ft stickup (vented
2 -			moist to dry.		below cap)
	ML				
	-				Cement/bentonite grout from 0 to
			FAT SANDY CLAY to LEAN CLAY, orange oxidized lenses of silt within fat	80	
6 -			sandy clay, sand content increasing with depth, stiff.		6
	CH/CL		@ 10 ft, medium stiff, increasing moisture with depth.		Pontonito coal from 9.0 to 13.0 ft
10 -			(a) To It, medium sun, increasing mosture war deput.		Bentonite seal from 8.0 to 12.0 ft 10 bgs
10 -					
			CLAYEY SAND, yellowish brown, loose to medium dense.	_	
 			@ 13.8 ft, color changes to olive gray.		
14 -	sc				14
	30			80	Silica size 20/40 filter pack from
	1				- 12.0 to 26.3 ft bgs
	CII		FAT SANDY CLAY, olive gray, medium stiff to stiff, moist.	+	
18 -	CH		CLAYEY SAND, yellowish brown, loose to medium dense.	4	<u> </u>
			@ 20 ft, decreasing clay content with depth.		
	SC		G = 1 accepting any content must deput.		10 ft of 4 in dia. 0.010 in slot, Sch
				_	40 PVC well screen
22 -	-		SILTY SAND, fine-grained, olive gray, loose, moist.		_ 22
	SM				
	-		FAT CLAY, with laminated lenses of white silt to fine-grained sand.	-	
			2 , Show of mile on to find grained durid.	100	
26 -	_				0.1 ft 4 in dia. Sch 40 PVC end cap
	СН				Slough from 26.3 ft to 30.0 ft in 4 in
]				dia., borehole.
30					30 Drilling terminated at 30 ft bgs
	NOTES:	Horizontal a	and vertical data are based on the Harmon Surveying report da	ted Jul	uly 13, 2018 (AR State Plane NAD83 South and NAVD88).

i			PROJECT:	BO	RING ID:				
			Monitoring Well Installations		P-9				
	<u>=</u>		LOCATION:	+	LL ID:				
=			Entergy White Bluff Plant		P-9				
	= 5	t n	DRILLING CONTRACTOR:	_	RTHING:			EASTING:	
			Walker-Hill Environmental, Inc.	1	948797.6			1272803.3	
	Asso	ociates Ltd.	DRILLING EQUIPMENT:		OUND ELEVATIO	TOC ELEVATION:			
water resor	urces / environ	mental consultants	Geoprobe 8150LS	2	81.4 ft			284.68 ft	
			DRILLING METHOD:	TOTAL WELL DEPTH: DEPTH TO				DEPTH TO WATER: (7/17/2018)	
	roject # 20-1845-0	001	Sonic with 4x6 core and case	2	29.8 ft below TOC			8.35 ft below TOC	
LOGGE	ED BY:		SAMPLING METHOD:	DA	TE STARTED:			DATE COMPLETED:	
AJP	1		Continuous with 10 ft 4 in diameter core barrel	6	/6/2018			6/15/2018	
Depth (feet)	nscs	Graphic Log	Description	% REC		Co		Well struction	
-4							-4		
-	_					-		Above ground completion includes 3x3 ft concrete pad, four pipe bollards, and locking outer aluminum casing.	
0 -	CL		TOP SOIL FAT CLAY, yellowish orange to tan, rootlets in upper 1 ft, increasing silt with depth, hard, dry.			F	0	19.7 ft of 4 in Sch 40 PVC including 3.3 ft stickup (vented below cap)	
4 -	ML		SILT, with fine-grained sand that increases with depth, tan, soft to medium stiff, moist. SILTY SAND, fine-grained, tan with orange oxide staining, medium stiff to stiff,				4	Cement/bentonite grout from 0 to	
	SM	[:]:]:]:]: V%727/%A	moisture increases with depth. CLAYEY GRAVEL with sand, well graded angular to subrounded sand with	100		Ī▼		9.0 ft bgs	
-	GC	6/4/6/196/5/ 	subrouneded to rounded gravel (<1 in), dry to moist. SILTY SAND, fine-grained, tan with orange oxide staining, medium stiff to stiff,	-		ŀ			
	SM		moisture increases with depth.			ш			
8 -	GM/SW	000 000 0000 00000 00000 00000 00000 0000	WELL GRADED SAND and GRAVEL, very fine-grained to coarse-grained, angular to subrounded sand and subangular to subrounded gravel (<2 in), dry to moist.			ŀ	8		
	GW	• • • •	WELL GRADED GRAVEL, angular to subrounded (<2 in).					Bentonite seal from 9.0 to 14.0 ft	
12 —	СН		FAT SANDY CLAY, tan with oxidized lenses of silt and fine-grained sand, sand content increases with depth, soft to medium stiff,			ŀ	12	bgs	
- 16 -	SC		CLAYEY SAND, light gray, soft, wet. SILTY SAND, light gray with some orange oxide staining, loose, wet.	100		ŀ	16	011 1 00/40 514	
			LEAN SANDY CLAY to FAT SANDY CLAY, lenses of silt and sand, heavily			ш		Silica size 20/40 filter pack from 14.0 to 26.5 ft bgs	
20 -	CL/CH		SILTY SAND, fine-grained, tan to yellow, loose, wet.			ŀ	20		
	SM						۷۷	10 ft of 4 in dia. 0.010 in slot, Sch	
24 –			FAT CLAY, tan, stiff, moist.	100			24	40 PVC well screen	
			@ 25 ft color changes to olive grov	100					
			@ 25 ft, color changes to olive gray.					0.1 ft 4 in dia. Sch 40 PVC end cap	
28 –	СН						28	Slough from 26.5 ft to 30.0 ft in 4 in dia., borehole.	
								Drilling terminated at 30 ft bgs	

			PROJECT:	BO	PRING ID:	
			Monitoring Well Installations		RP-10	
_	<u> </u>		LOCATION:	_	ELL ID:	
					RP-10	
=		4-	Entergy White Bluff Plant DRILLING CONTRACTOR:		RTHING:	EASTING:
	■F					
=		ociates Ltd	Walker-Hill Environmental, Inc. DRILLING EQUIPMENT:	_	949510.5	1272499
water reso	ources / enviror	mental consultants			OUND ELEVATION:	TOC ELEVATION:
			Geoprobe 8150LS		180.5 ft	283.66 ft
	Project #		DRILLING METHOD:		DEPTH TO WATER: (7/17/2018)	
R0792	20-1845-	001	Sonic with 4x6 core and case		5.5 ft below TOC	9.6 ft below TOC
I	ED BY:		SAMPLING METHOD:		TE STARTED:	DATE COMPLETED:
DLD	<u> </u>		Continuous with 10 ft 4 in diameter core barrel	6	5/12/2018 T	6/15/2018
Depth (feet)	o,	. <u>5</u>		REC	ļ ,	Well
th (nscs	Graphic Log	Description	% RE		struction
Dep		0 1		8	Cons	Struction
-4					-4	
						Above ground completion includes 3x3 ft concrete pad, four pipe
•	1					bollards, and locking outer
						aluminum casing.
0 -		******	FILL, consisting of nepheline syenite gravel.			15.4 ft of 4 in Sch 40 PVC
	FILL	**************************************				including 3.2 ft stickup (vented below cap)
·	1	******				.,
		<i>}}}}}</i>	FAT CLAY, tan with yellowish orange mottles, some fine-grained sand, stiff,	1		
4 -	-		moist.			Cement/bentonite grout from 0 to
				40		6.5 ft bgs
	-					
8 -	СН				8	Bentonite seal from 6.5 to 10.0 ft
						bgs
	_					
						0::
12 -			@ 12 ft, SANDY FAT CLAY.		— 12	Silica size 20/40 filter pack from 10.0 to 22.3 ft bgs
						Ü
	sc		CLAYEY SAND, fine-grained, gray with orange mottles, dense, moist.			
			POORLY GRADED SAND, fine-grained, silty, gray with orange mottles, wet.	100		
16 –				100	— 16	
10 -						
	0.0					10 ft of 4 in dia. 0.010 in slot, Sch
l '	SP					40 PVC well screen
20 -					_ 20	
						0.1 ft 4 in dia. Sch 40 PVC end cap
•	1 ~.	///////	SILT and FAT CLAY, brownish tan clay with light gray silt, medium stiff, moist.	1		
	CL					
24 -	+		FAT CLAY, dark gray with light gray laminated silt lenses, stiff, moist.		— 24	Silica size 20/40 liller pack from
			1	100		22.3 to 27.5 ft bgs in a 4 in dia.
-	-				-	borehole
28 -	СН				— 28	
						Bentonite seal from 27.5 to 32.0 ft
	-		4			bgs in a 4 in dia. borehole
			4			-
32			1		32	Drilling terminated at 32 ft bgs
	NOTES:	Horizontal a	and vertical data are based on the Harmon Surveying report da	ted Ju	lv 13 2018 (AR State Plan	e NAD83 South and NAVD88)

NOTES: Horizontal and vertical data are based on the Harmon Surveying report dated July 13, 2018 (AR State Plane NAD83 South and NAVD88).

			1		T	
<u> </u>			PROJE		BORING ID:	
=				nitoring Well Installations	B-1 WELL ID:	
	7	4_	LOCATI			
	≓ F'	ТΓ	Ente	ergy White Bluff Plant	N/A	
	1000	ociatos	1.1	NG CONTRACTOR:	NORTHING:	EASTING:
water resource	es / environ	mental consul		ker-Hill Environmental, Inc.	1949501.9	1272354.9
			DRILLIN		GROUND SURFACE ELEV.: 280.3 ft NAVD88	
				probe 8150LS NG METHOD:	TOTAL DEPTH: DEPTH TO WATER:	
FTN Pr R07920	oject#	001		ic with 4 in diameter core		
		-001		ING METHOD:	10 ft bgs DATE STARTED:	N/A DATE COMPLETED:
LOGGED BY:				nuous with 10 ft 4 in diameter core barrel	5/16/2018	5/16/2018
AJP				3/10/2010 3/10/2010		
Depth (feet)	% REC	SOSU	Graphic Log	Des	cription	
0			**********	FILL		
		FILL	*********			

1 —			***************************************	WELL GRADED GRAVEL with sand, medium to coa	rse sand, fine to coarse-gra	ained angular to round gravel, medium
			1	dense to loose, dry.		
_	77					
		014				
2 —		GW				
Ī						
3 —						
				FAT SANDY CLAY, tan with orange oxide staining, le	enses of fine sand, stiff, mo	oist.
-						
4 —						
_						
_						
5 —						
_		СН				
6 —						
-	66					
_						
7 —						
8 —				LEAN CLAY with fine grained and silty vallowish broad	own and gray maint	
				LEAN CLAY with fine-grained sand, silty yellowish br	own and gray, moist.	
-						
9 —		CL				
10			///////	Boring terminated at 10 ft bgs.		
NOTES: Northings and eastings recorded using a Garmin eTrex30 and converted to AR State Plane NAD83 South						

NOTES: Northings and eastings recorded using a Garmin eTrex30 and converted to AR State Plane NAD83 South Borehole backfilled with bentonite to ground surface.

			1		T===:::=:=						
	_		PROJEC		BORING ID:						
=				itoring Well Installations	B-2						
		4_	LOCATI		WELL ID:						
	∄ [1		Ente	ergy White Bluff Plant	N/A						
=	1000	ciatos I	1 1	IG CONTRACTOR:	NORTHING:	EASTING:					
water resource	es / environm	iental consulta		ker-Hill Environmental, Inc.	1949485.1 1272715.5 GROUND SURFACE ELEV.:						
					280.2 ft NAVD88						
				probe 8150LS IG METHOD:	TOTAL DEPTH:	DEPTH TO WATER:					
FTN Pr	oject # 0-1845-0	201		ic with 4 in diameter core							
		JU 1		NG METHOD:	10 ft bgs DATE STARTED:	N/A DATE COMPLETED:					
LOGGE				NG METHOD: Nuous with 10 ft 4 in diameter core barrel							
AJP				idous with 10 it 4 in diameter core parre	5/10/2010	5/16/2018					
Depth (feet)	% REC	SOSN	Graphic Log	De	scription						
0	100	СН		© 4.6 ft FAT CLAY with sand and some rounded gray of the FAT SANDY CLAY, light gray with orange and sand some rounded gray of the FAT SANDY CLAY, light gray with orange and sand some rounded gray of the FAT SANDY CLAY, light gray with orange and sand some rounded gray of the FAT SANDY CLAY, light gray with orange and red of the FAT SANDY CLAY, light gray with orange and	ravels, soft, moist.						

			PROJECT:		RING ID:		
	<u>-</u> _		Monitoring Well Installations	+-	i-3		
=			LOCATION:		LL ID:		
		4_	Entergy White Bluff Plant	+	Z-5		
	= † F'		DRILLING CONTRACTOR:		RTHING:		EASTING:
		noiator Ltd	Walker-Hill Environmental, Inc.	_	949067.5		1272460.6
water resou	rces / environ	mental consultants	DRILLING EQUIPMENT:		OUND ELEVATION	:	TOC ELEVATION:
			Geoprobe 8150LS		79.9 ft		283.01 ft
FTN Pr	oject#		DRILLING METHOD:		TAL WELL DEPTH:		DEPTH TO WATER: (7/17/2018)
)-1845-(001	Sonic with 4x6 core and case		7.2 ft below TO	C	8.72 ft below TOC
LOGGE	D BY:		SAMPLING METHOD:		TE STARTED:		DATE COMPLETED:
AJP		I	Continuous with 10 ft 4 in diameter core barrel	5	/15/2018		6/15/2018
Depth (feet)	S	. <u>e</u>		ပ		V	Vell
‡)	nscs	Graphic Log	Description	REC			
Dep		ك ق	·	%	_	onsر	truction
-4						-4	Above ground completion includes
							2x2 ft concrete pad, four pipe bollards, and locking outer
-				1		-	aluminum casing.
				1			
0 —						— o	
			FAT CLAY, light brown, stiff, moist.		$- \otimes \otimes \otimes$	_ 0	17.0 ft of 2 in Sch 40 PVC including 3.1 ft stickup (vented
					$- \otimes \otimes \otimes$		below cap)
-					- XX XX	-	
	СН		@ 4.8 ft, with rounded gravel.	50	- XX XX		
					- XX XX	4	
4 -					$- \otimes \otimes \otimes$	- 4	Cement/bentonite grout from 0 to
			SANDY CLAY, light gray to tan with some iron stained lenses, soft, moist.	1	$- \otimes \otimes \otimes$		8.0 ft bgs
-					- XX XX	_	
					$-\infty$		
				33	$- \otimes \otimes \otimes$		
8 —	CL					— 8	
							Bentonite seal from 8.0 to 11.0 ft
-						_	bgs
1.0	SC	1111111	CLAYEY SAND, tan, soft, moist to wet.	1		40	
12 —	CL		LEAN SANDY CLAY, light gray to tan with some iron stained lenses, soft, moist to wet.	80		— 12	Silica size 20/40 filter pack from
			FAT SANDY CLAY, tan with lenses of fine-grained sand, stiff, moist.	-			11.0 to 24.0 ft bgs
-	СН		S. IND FOLKT, with multiplices of intergranted salid, still, Hibist.	1		F	
			CLAVEY CAND fine grained ton with account of the control of the co	1			
1,0			CLAYEY SAND,fine-grained, tan with orange oxide staining, clay content decreasing with depth, loose, wet.	1		40	
16 —	sc			1		— 16	
				100			
-			CILTY CAND top with game evide stairing large with	100		-	
			SILTY SAND, tan with some oxide staining, loose, wet.	1			40 # -40 !- 4!- 0 040 ! 1 0
] 20				1		_ 20	10 ft of 2 in dia. 0.010 in slot, Sch 40 PVC well screen
20 —			@ 20.8 - 21 ft layer of fat clay.	1			
	SM			1			
-			@ 22.9 - 23 ft, lenses of olive gray clay.			-	
				100			0.40 ft 0 in all 0.1 40 70 10
				1		0.4	0.18 ft 2 in dia. Sch 40 PVC end cap
24 —	СН		FAT CLAY, olive gray, laminated with white silt to fine-grained sand, stiff, dry.	1		— 24	Slough from 24 ft bgs to 25 ft bgs
				1			Drilling terminated at 25 ft bgs
<u> </u>			and vertical data are based on the Harman Surveying report data				

NOTES: Horizontal and vertical data are based on the Harmon Surveying report dated July 13, 2018 (AR State Plane NAD83 South and NAVD88).

			PROJE	CCT:	BORING ID:										
=	_			nitoring Well Installations	B-4										
		_	LOCAT		WELL ID:										
	三河	l e	Fnt	ergy White Bluff Plant	N/A										
	▋▐▐			NG CONTRACTOR:	NORTHING:	EASTING:									
-	-Asso	ciates	1.1.1	lker-Hill Environmental, Inc.	1948619	1272718.6									
water resourc	es / environm	ental consult		NG EQUIPMENT:	GROUND SURFACE ELEV.:										
			Geo	oprobe 8150LS	280.8 ft NAVD88										
FTN Pr	niect #			NG METHOD:	TOTAL DEPTH:	DEPTH TO WATER:									
R07920)-1845-(001	Sor	nic with 4 in diameter core	10 ft bgs	N/A									
OGGE	D BY:		SAMPL	ING METHOD:	DATE STARTED:	DATE COMPLETED:									
AJP			Conti	nuous with 10 ft 4 in diameter core barrel	5/17/2018	5/17/2018									
AJP (feet) (pept)	% REC	nscs	Graphic Log	Description											
0		FILL	*******	FILL											
_		1 122	*******	FAT OLAY with a surely sufficient and surely		d and the state of									
				FAT CLAY with sand, yellowish orange with orange t	o red oxide staining, san	d content increasing with depth, stirr, moist.									
1 —															
				@1.6-1.7 ft layer of white silt.											
-															
2 —															
_															
_															
3 —															
1															
4 —	88			@ 4 ft FAT SANDY CLAY, light gray to olive gray, fin	e grained, sand content	increases with depth, stiff, moist.									
-															
				@ 5-5.3 ft small gravel.											
5		011		@ 3-3.3 it siliali gravei.											
		СН													
6 —															
+															
7 —															
′ ¬															
_															
8 —															
1															
9 —															
4															
10				Boring terminated at 10 ft bgs.											
10				1 -											

			DDO	DJECT:	DODING ID:						
<u> </u>	_				BORING ID:	B-5					
=				onitoring Well Installations ATION:	WELL ID:						
		4 -	_		N/A						
		U N	DBII	ntergy White Bluff Plant LLING CONTRACTOR:	NORTHING:	EASTING:					
=		ciates		/alker-Hill Environmental, Inc.	1948639.2						
water resourc	es / environn	ental consult		LLING EQUIPMENT:	GROUND SURFACE EL	1271950.5					
				eoprobe 8150LS	281.0 ft NAVD						
				LING METHOD:	TOTAL DEPTH:	DEPTH TO WATER:					
FTN Pr R07920	oject #)-1845-	001		onic with 4 in diameter core	12 ft bgs	N/A					
				IPLING METHOD:	DATE STARTED:	DATE COMPLETED:					
LOGGE	D BY:			ntinuous with 10 ft 4 in diameter core barre		5/17/2018					
Depth (feet)	()				. 0/11/2010	0/11/2010					
(fec	REC	SS	Graphic Log	De	scription						
epth	%	nscs	ا يُو عَ		Soription						
0			XXXXXX	X FILL							
			****	₩							
1 1			*****	\otimes							
1 —			*****	₩							
	00		****	\otimes							
1	66	FILL	*****	\otimes							
2 —			*****	₩							
			****	\otimes							
			*****	\otimes							
3 —			*****	LEAN CLAY with sand, yellowish orange with yello	wand orange staining stiff	dry					
				EE/AV GE/VI WAIT SAING, YORGWISH GRAINGE WAIT YORG	w and orange staining, stin,	Gry.					
_											
4 —											
=											
5 —											
1		CI									
6 —		CL									
	400										
_	100										
7 —											
8 —											
				FAT CLAY with sand, stiff, moist.							
9 —											
		СН									
10 —				LEAN CLAY, light brown, silty, some fine-grained s	and, trace fine-grained grav	vel. moist.					
				granted o	., g.amoa grav	,					
11 —		CL									
				Boring terminated at 12 ft bgs.							
12			(/////	//							
NOTES	: No	rthings	and eastin	gs recorded using a Garmin eTrex30 and converted to Al	R State Plane NAD83 South	1					

			PROJEC	TT:	BORING ID:	
Ė	_			nitoring Well Installations	B-6	
			LOCATI		WELL ID:	
	三二	f r	Ente	ergy White Bluff Plant	N/A	
		H		IG CONTRACTOR:	NORTHING:	EASTING:
	- Asso	<u>ciates</u>	Ltd. Wall	ker-Hill Environmental, Inc.	1949105.8	1271974.9
water resourc	es / environm	nental consul	DRILLIN	IG EQUIPMENT:	GROUND SURFACE ELI	
				probe 8150LS	281.9 ft NAVD8	
FTN Pr		004		IG METHOD:	TOTAL DEPTH:	DEPTH TO WATER:
	0-1845-0	J01		ic with 4 in diameter core	30 ft bgs DATE STARTED:	N/A
LOGGE AJP				nuous with 10 ft 4 in diameter core barrel	6/14/2018	DATE COMPLETED: 6/14/2018
				idous with 10 it 4 in diameter core barrer	0/14/2010	0/14/2010
Depth (feet)	% REC	SOSN	Graphic Log		cription	
0 -		-	*******	FILL		
1 -		FILL	*******			
2 -				LEAN CLAY with sand, tan with lenses of sand and g	greenish gray silt, soft, wet	
3 —						
4 –						
5 —	25					
6 –		CL				
7 —						
8 –						
9 —						
10 —						
11				SILTY SAND, tan with lenses of orange to yellow oxi	dized sand.	
12 —						
13						
14		SM				
+	400			@ 15 th color changes to tan and gracelish gray increase	againg alov contant with do	nth
15 —	100			@ 15 ft color changes to tan and greenish gray, incre	easing day content with de	рит.
16				FAT SANDY CLAY, brown to tan with orange oxidation	on along sandy lenses, fine	e-grained sand, medium stiff, moist.
17 —		СН		0.404		
18 —				@ 18 ft color changes to olive gray.		
19		SC		CLAYEY SAND, olive gray, decreasing clay with dep	th, medium stiff, moist to w	vet.
20 —				SILTY SAND, fine-grain, olive gray, medium stiff, sat	urated.	
21 —				•		
22						
23 —		SM				
24 –				@ 24-25 ft then lenses of dark gray clay.		
25	100					
26						
27				FAT CLAY with sand, olive gray to greenish gray clay	with laminated lenses of	white silt to fine-grained sand, stiff.
28		C1.				
-		CH				
29 — 30				Borehole terminated at 30 ft bgs.		
NOTES	· No	rthings	and eastings r	ecorded using a Garmin eTrex30 and converted to AR	State Plane NAD83 South	

			DDO IFOT.	- BO	DINO ID:	
			PROJECT:		RING ID:	
_	<u>i</u>		Monitoring Well Installations	\vdash	-7	
			LOCATION:		LL ID:	
=		4_	Entergy White Bluff Plant		Z-1	
	≓F		DRILLING CONTRACTOR:		RTHING:	EASTING:
		ociatos I tal	Walker-Hill Environmental, Inc.		949513.9	1272146.8
water resou	rces / enviro	mental consultants	DRILLING EQUIPMENT:		OUND ELEVATION:	TOC ELEVATION:
			Geoprobe 8150LS		81.9 ft	284.94 ft
FTN P	roject#		DRILLING METHOD:	-	TAL WELL DEPTH:	DEPTH TO WATER: (7/17/2018)
R0792	0-1845-	001	Sonic with 4x6 core and case		7.1 ft below TOC	10.09 ft below TOC
LOGGE	D BY:		SAMPLING METHOD:		TE STARTED:	DATE COMPLETED:
AJP			Continuous with 10 ft 4 in diameter core barrel	5	/16/2018	6/15/2018
Depth (feet)	S	. <u>5</u>		ပ္ပ	\/\	/ell
) E	nscs	Graphic Log	Description	% REC		ruction
Dep		בפ		%	Const	TUCTION
-4						Above ground completion includes 2x2 ft concrete pad, four pipe bollards, and locking outer aluminum casing.
0 -	FILL		FILL	46		16.9 ft of 2 in Sch 40 PVC including 3.0 ft stickup (vented below cap)
4 -			FAT SANDY CLAY, tan with orang staining, decreasing clay content with depth, medium stiff, moist.	_		Cement/bentonite grout from 0 to 7 ft bgs
8 -	СН		CLAYEY SAND, tan with oxide staining, loose, moist to wet.			Bentonite seal from 7.0 to 10.0 ft bgs
12 —	sc			100		Silica size 20/40 filter pack from 10.0 to 24.0 ft bgs
-	CH		FAT SANDY CLAY, tan with oxide staining along sandy lenses, stiff, moist.			10.0 to 2 1.0 it age
	SC		SANDY CLAY, oxide stained, decreasing sand content with depth, medium stiff, moist.			
16 —	SM		SILTY SAND, fine-grain, tan with oxide staining in upper 1 ft, very loose, wet.	100		10 ft of 2 in dia. 0.010 in slot, Sch 40 PVC well screen
20 —			CLAYEY SAND, tan to orange with lenses of light gray to olive gray clay,		_ 20	
24 —	sc		moisture increases with depth. @ 23.2 fine-grained olive gray sand, loose, wet.	100		0.18 ft 2 in dia. Sch 40 PVC end cap
-			FAT CLAY, with lenses of silt to very fine-grained sand, blocky, stiff to very stiff, moist. @ 25 ft laminations of white silt to fine-grained sand, blocky, stiff to hard, somewhat moist to dry.		_	
28 -			@ 30 ft, silt and sand laminations decrease with depth.	100	— 28 —	
32 —	СН					Slough from 24.0 ft to 40.0 ft in 4 in dia., borehole.
36 —			@ 38 ft, with lenses of fine to medium-grained olive gray to greenish gray sand.	100	_ 36	
40			and vertical data are based on the Harmon Surveying report data			Drilling terminated at 40 ft bgs

NOTES: Horizontal and vertical data are based on the Harmon Surveying report dated July 13, 2018 (AR State Plane NAD83 South and NAVD88).

Appendix D Geotechnical Laboratory Data

FTN/ENTERGY WHITE BLUFF/AR SUMMARY OF SOIL DATA

Sample Identification	Sample Type	Sample Depth	Soil Classi- fication	Natural Moisture %			rberg mits		% Finer No. 4	Grain Size Distribution % Finer No. 200	% Finer .005	Compa Maximum Dry Density	oction Optimum Moisture	Gs	Unit W Moisture	Veight Dry	Permeability (cm/sec)	Additional Tests Conducted
					L.L.	P.L.	P.I.	L.I.	Sieve	Sieve	mm	(lb/cuft)	%		%	(lb/cuft)		(See Notes)
B-1	UD	3.0-5.0'	СН	29.0	63	17	46	0.27	100.0	88.9	59.5	-	-	-	29.0	92.8	1.6E-08	
B-1	UD	8.0-10.0'	CL	25.0	44	15	29	0.35	100.0	53.8	40.4	-	•	2.57	25.0	93.9	-	T-CU w/pp
В-3	UD	5.0-7.0'	CL	24.1	37	17	20	0.37	100.0	73.3	47.7	,	•	_	24.1	98.7	2.2E-08	-
В-3	UD	10.0-12.0'	SC	21.6	32	20	12	0.18	100.0	41.9	31.0	•	•	2.58	21.6	100.9	-	T-CU w/pp
В-3	UD	15.0-17.0'	SC	19.0	34	15	19	0.23	100.0	28.2	22.0	•	•	-	19.0	110.5	6.3E-06	_
В-3	UD	20.0-22.0'	SM	31.5	NP	NP	NP	NP	100.0	18.1	9.5	•	•	-	31.5	79.2	-	DS
B-4	UD	8.0-10.0'	СН	33.5	59	30	29	0.13	100.0	94.7	51.5	•	•	-	33.5	86.1	4.6E-08	-
B-5	UD	3.0-5.0'	CL	26.6	42	21	21	0.28	95.4	73.1	28.0	-	•	2.69	26.6	91.7	-	T-CU w/pp
B-5	UD	10.0-12.0'	CL	17.1	35	16	19	0.07	97.6	90.3	46.0			-	17.1	113.8	1.5E-08	-
B-7	UD	5.0-7.0'	SM	20.5	34	26	8	-0.73	90.4	40.0	21.1			2.66	20.5	104.7		T-CU w/pp
B-7	UD	7.0-9.0'	CL	21.8	34	20	14	0.13	100.0	52.7	34.5		•	-	21.8	98.1	6.7E-07	-
B-7	UD	15.0-17.0'	SC	21.9	28	19	9	0.36	100.0	36.5	24.0	•	•	2.62	21.9	102.2	-	T-CU w/pp
RP-4	UD	20.0-22.0	CL	22.2	44	15	29	0.24	93.0	66.9	39.5	•	•	2.67	22.2	101.8	-	T-CU w/pp
RP-4	UD	30.0-32.0	СН	37.1	54	21	33	0.47	100.0	96.3	57.4		-	-	37.1	80.2	3.5E-07	-
RP-9	UD	30.0-32.0'	СН	30.2	54	24	30	0.19	100.0	98.8	44.0	•	-	2.67	30.2	88.9	-	С

ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)
MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST DS = DIRECT SHEAR TEST O = ORGANIC CONTENT

P = pH

FTN/ENTERGY WHITE BLUFF/AR SUMMARY OF SOIL DATA

Samula	Sample	Sample	Soil	Natural Moisture				Grain Size Distribution			Compaction						Additional	
Sample Identification	Type	Depth	Classi- fication	Woisture %	Limits				% Finer No. 4	% Finer No. 200	% Finer	Maximum Dry Density	Optimum Moisture	Gs	Unit Weight Moisture Dry		Permeability (cm/sec)	Tests Conducted
					L.L.	P.L.	P.I.	L.I.	Sieve	Sieve	mm	(lb/cuft)	%	O.	%	(lb/cuft)	(CHISCC)	(See Notes
B-2	Bag	5.0-7.5'	СН	24.7	52	21	31	0.13	100.0	86.0	55.0				1-5-7.5			
B-3 (P2-5)	Bag	13.0-14.0'	CL	23.3	40	19	21	0.18	100.0	54.1	41.0				1.50			in L
B-3 (P2-5)	Bag	23.0-24.0'	SM	30.0	NP	NP	NP	NP	100.0	28.1	16.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			TAGE	7.00		
B-5	Bag	4.0-6.0'	ML	27.4	46	30	16	-0.17	100.0	70.7	33.0					1.0		
B-5	Bag	9.0-10.0'	ML	26.3	49	31	18	-0.27	100.0	89.1	45.0	727			1.		_	100
B-6	Bag	11.0-12.0'	SM	12.4	NP	NP	NP	NP	100.0	27.6	20.0		100					
B-6	Bag	16.0-17.0'	CL	21.3	36	23	13	-0.11	100.0	54.2	38.0	1.00	56					1.9
B-6	Bag	22.0-24.0'	SM	10.9	NP	NP	NP	NP	100.0	28.6	18.9			1.1		-	4	1
B-7	Bag	18.0-20.0	SM	22.8	NP	NP	NP	NP	100.0	21.4	15.0							
RP-3	Bag	18.0-20.0	СН	27.1	56	27	29	0.02	100.0	95.6	44.0				14.5			
RP-3	Bag	29.0-30.0	SM	22.4	NP	NP	NP	NP	100.0	26.3	20.0			B .		4	4 3 2	*
RP-4	Bag	8.0-9.0'	CL	13.4	30	16	14	-0.17	100.0	50.8	29.0	1			12.1	- L		
RP-4	Bag	25.0-26.0	ML	37.7	48	30	18	0.40	100.0	98.7	43.0					1.30		
RP-5	Bag	15.0-18.0'	SC-SM	24.4	28	22	6	0.51	100.0	34.0	25.9			1-21	100			-
RP-7	Bag	16.6-17.4'	SC	22.3	36	19	17	0.20	100.0	46.7	34.0							

ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)
MOISTURE (Mc)

NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST DS = DIRECT SHEAR TEST O = ORGANIC CONTENT

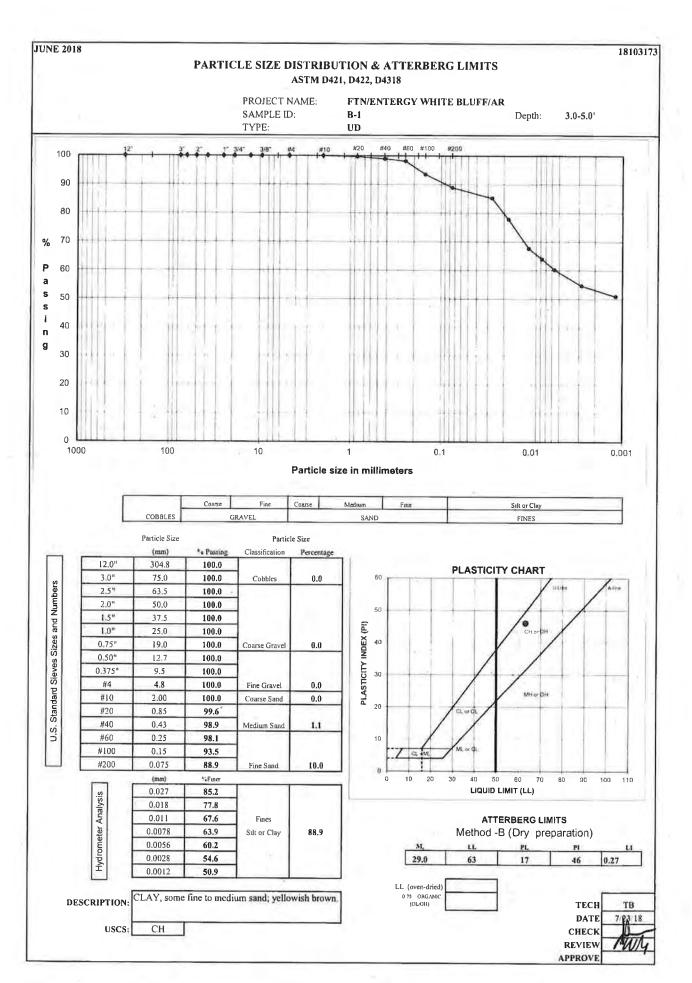
P = pH

FTN/ENTERGY WHITE BLUFF/AR SUMMARY OF SOIL DATA

Sample	Sample	Sample Depth	Soil Classi-	Natural Moisture	Atterberg Limits		Grain Size Distribution % Finer % Finer % Finer			Compaction Maximum Optimum			Unit Weight		Permeability	Additional Tests		
Identification	Туре		fication	%	L.L.	P.L.	P.I.	L.I.	No. 4 Sieve	No. 200 Sieve	.005 mm	Dry Density (lb/cuft)	Moisture %	Gs	Moisture %	Dry (lb/cuft)	(cm/sec)	Conducted (See Notes)
RP-9	Bag	9.0-10.0'	SC-SM	4.2	20	15	5	-2.35	67.7	16.4	9.5	-	18	700		-		
RP-9	Bag	26.0-27.0	СН	31.3	50	20	30	0.36	100.0	98.1	54.0			•	100	101		-
	-																	
						+												-

ABBREVIATIONS: LIQUID LIMIT (LL)

PLASTIC LIMIT (PL)
PLASTICITY INDEX (PI)
LIQUIDITY INDEX (LI)
SPECIFIC GRAVITY (Gs)
MOISTURE (Mc)


NOTES: T = TRIAXIAL TEST

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST
DS = DIRECT SHEAR TEST
O = ORGANIC CONTENT

P = pH

Golder Associates Inc.

FLEXIBLE WALL PERMEABILITY **ASTM D 5084** METHOD D, CONSTANT RATE OF FLOW

PROJECT TITLE
PROJECT NUMBER
SAMPLE ID
SAMPLE TYPE

Volume Voids, cm3 Void Ratio

Saturation, %

FTN/ENTERGY	WHITE BLUFF/AR
18103173	
B-1	3.0-5.0'
UD	

Board #	12
Flow Pump	2
Flow Pump Speed	11
Technician	FT

COMMENTS

Sample Data, Initial Height, inches Diameter, inches Area, cm2 Volume, cm3 Mass, g Moisture Content, % Dry Density, pcf Spec. Gravity (assumed) Volume Solids, cm3

ı	3.114	B-Value, f	0.97
	2.836	Cell Pres.	88.0
	40.75	Bot. Pres.	80.0
	322.35	Top Pres.	80.0
	618.40	Tot. B.P.	80.0
	29.04	Head, max.	137.16
	92.77	Head, min.	137.16
0	2.720	Max. Grad.	17.19
	176.19	Min. Grad.	17.19
	146.15	1	
	0.83		
- [95.2%	1	

Height, inches	3.142
meight, inches	3.142
Diameter, inches	2.858
Area, cm²	41.39
Volume, cm3	330.31
Mass, g	632.58
Moisture Content, %	31.99
Dry Density, pcf	90.54
Volume Solids, cm	176.19
Volume Voids, cm ³	154.12
Void Ratio	0.87
Saturation, %	99.5%

	Sample
S	Initial
g	618.40
g	479.25
g	0.00
g	139.15
g	479.25
%	29.04%
	8 8 8 8

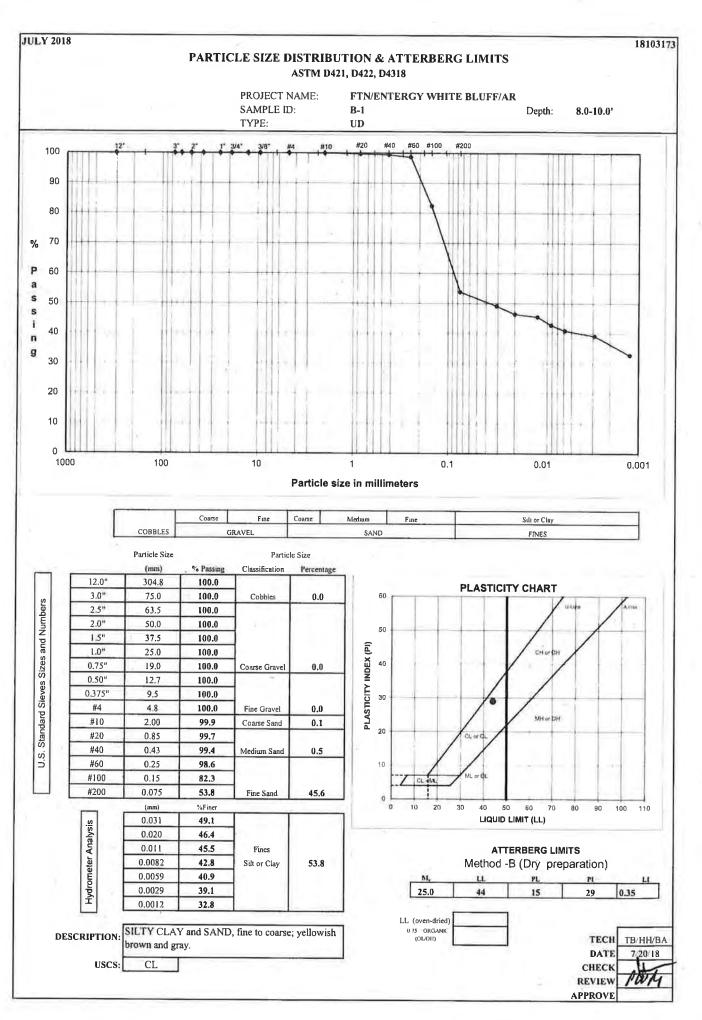
Sample
Final
715.61
562.37
83.41
153.24
478.96
31.99%

Flow Pump Rate

1.18E-05 cm³/sec

USCS

DESCRIPTION CLAY, some fine to medium sand; yellowish brown.


TIME FUNCTIONS, SECONDS dΡ DATE DAY HOUR TEMP MIN dt,acc dt dt,acc Reading Head Gradient Permeability (°C) (min) (min) (sec) (sec) (psi) (cm) (cm/sec) 07/23/18 43304 9 20.5 0 1.95 137.16 17.19 1.6E-08 07/23/18 43304 9 5 20.5 5 300 5 300 1.95 137.16 17.19 1.6E-08 07/23/18 43304 9 10 20.5 5 10 300 600 1.95 137.16 17.19 1.6E-08 07/23/18 43304 9 20.5 15 5 15 300 900 1.95 137.16 17.19 1.6E-08 07/23/18 43304 9 20 20.5 5 20 300 1200 1.95 137.16 17.19 1.6E-08 07/23/18 43304 9 25 20.5 5 25 300 1500 1.95 137.16 17.19 1.6E-08 07/23/18 43304 20.5 30 300 1800 1.95 137.16 17.19 1.6E-08

CH

*TRANSCRIBED FROM ORIGINAL DATA SHEETS

PERMEABILITY REPORTED AS ** 1.6E-08 cm/sec **

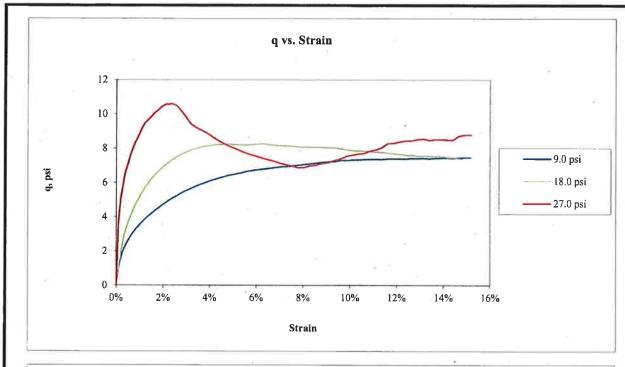
> DATE 7/23/18 CHECK REVIEW APPROVE

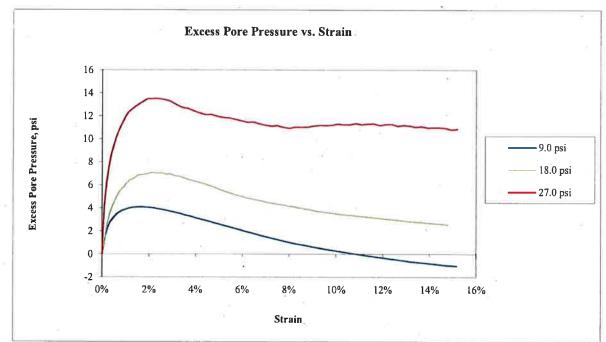
SPECIFIC GRAVITY OF SOILS ASTM D-854 PYCNOMETER METHOD

PROJECT NUMBER 18103173 SAMPLE ID B-1 SAMPLE TYPE UD TESTED FOR Gs SAMPLE DEPTH 8.0-10.0		ASTM D-85 PYCNOMETER M			
ROJECT NUMBER	PROJECT TITLE	FTN/ENTERGY WHITE BLUFF/A	R		
MOISTURE CONTENT OF MATERIAL PASSING THE #4 SIEVE Weight Soil and Tare, Initial (gm) 203.53 203.11 Weight Of Moisture (gm) 51.24 204.5 204.50 206.50 206.5	PROJECT NUMBER	18103173		SAMPLE ID	B-1
Weight Soil and Tare, Initial (gm) 203.53 Weight Soil and Tare, Final (gm) 203.11 Weight Of Tare (gm) 51.24 Weight Of Moisture (gm) 0.42 Weight Of Dry Soil (gm) 151.87 Hygroscopic Moisture In (%) 0.3% Test Method				SAMPLE TYPE	UD
Weight Soil and Tare, Final (gm) Weight Of Tare (gm) Weight Of Tare (gm) Weight Of Moisture (gm) Weight Of Dry Soil (gm) Hygroscopic Moisture In (%) Test Method Pycnometer Number Weight Pycnometer Empty (gm) Volume of Pycnometer (gm) Weight Pycnometer and Water (gm) Mass of Pycnometer and Water (gm) Mass of Pycnometer and Water at the test Temperture (A) Observed Temperature (Tb), for (Mb) In Degrees C Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY (G) G @ 20° C = [C/(A-(B-C))]*(K)	TESTED FOR	Gs	SA	AMPLE DEPTH	8.0-10.01
Weight Soil and Tare, Final (gm) Weight Of Tare (gm) Weight Of Tare (gm) Weight Of Dry Soil (gm) Hygroscopic Moisture In (%) Test Method Pycnometer Number Weight Pycnometer Empty (gm) Volume of Pycnometer (gm) Weight Pycnometer and Water (gm) Mass of Pycnometer and Water at the test Temperture (A) Observed Temperature (Tb), for (Mb) In Degrees C Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY (G) G @ 20° C = [C/(A-(B-C))]*(K)	MOISTURE CONTENT	OF MATERIAL PASSING THE #4 SIEVE			
Weight Soil and Tare, Final (gm) Weight Of Tare (gm) Weight Of Tare (gm) Weight Of Moisture (gm) Weight Of Dry Soil (gm) Hygroscopic Moisture In (%) Test Method Pycnometer Number Weight Pycnometer Empty (gm) Volume of Pycnometer (gm) Weight Pycnometer and Water (gm) Mass of Pycnometer and Water at the test Temperture (A) Observed Temperature (Tb), for (Mb) In Degrees C Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil Slurry plus Tare Weight Of Tare Weight of Dry Soil Slurry plus Tare Weight Of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY (G) G@ 20° C = [C/(A-(B-C))]*(K)	Weight Soil and Tare, Ini	tial (gm)	203.53		
Weight Of Tare (gm) 51.24 Weight Of Moisture (gm) 0.42 Hygroscopic Moisture In (%) 151.87 Method Method - B Pycnometer Number 24 Weight Pycnometer Empty (gm) 499.61 Volume of Pycnometer (gm) 499.61 Weight Pycnometer and Water (gm) 680.37 Mass of Pycnometer and Water at the test Temperture Observed Temperature (Tb), for (Mb) In Degrees C 24.50 Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare - Weight of Tare 0.00 Weight of Dry Soil (gm) (C) 50.04 Temperature Coefficient 0.9990					
Weight Of Moisture (gm)	-				
Weight Of Dry Soil (gm)			0.42		
Test Method Method - B			151.87		
Note	Hygroscopic Moisture In				
Weight Pycnometer Empty (gm) Volume of Pycnometer (gm) Weight Pycnometer and Water (gm) Mass of Pycnometer and Water at the test Temperture Observed Temperature (Tb), for (Mb) In Degrees C Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY G G @ 20° C = [C/(A-(B - C))]*(K)	Test Method			Method - B	
Weight Pycnometer Empty (gm) Volume of Pycnometer (gm) Weight Pycnometer and Water (gm) Mass of Pycnometer and Water at the test Temperture Observed Temperature (Tb), for (Mb) In Degrees C Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY G G @ 20° C = [C/(A-(B - C))]*(K)	December Novel				
Volume of Pycnometer (gm) Weight Pycnometer and Water (gm) Mass of Pycnometer and Water at the test Temperture Observed Temperature (Tb), for (Mb) In Degrees C Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY G G @ 20° C = [C/(A-(B - C))]*(K)	Pycnometer Number	W/-1-14 D			
Weight Pycnometer and Water (gm) Mass of Pycnometer and Water at the test Temperture Observed Temperature (Tb), for (Mb) In Degrees C Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY (G) G@ 20° C = [C/(A-(B - C))]*(K)					
Mass of Pycnometer and Water at the test Temperture Observed Temperature (Tb), for (Mb) In Degrees C Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY (G) G@ 20° C = [C/(A-(B - C))]*(K)					
Weight of Soil, Water & Pycnometer (gm) Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY (G) G@ 20° C = [C/(A-(B-C))]*(K)			(A)		
Weight of Soil, Water & Pycnometer (gm) (B) 710.61 Temperature, C 24.5 Density of water @ tested temperature (g/ml) 1.00 Tare Number - Weight of Dry Soil Slurry plus Tare 50.04 Weight of Tare 0.00 Weight of Dry Soil (gm) (C) Temperature Coefficient 0.9990 SPECIFIC GRAVITY (G) G @ 20° C = [C/(A-(B - C))]*(K)					
Temperature, C Density of water @ tested temperature (g/ml) 1.00		Coscived Temperature (10), for (Wib) in Deg.	ices C	24.30	
Temperature, C Density of water @ tested temperature (g/ml) Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY G @ 20° C = $[C/(A-(B-C))]*(K)$	Weight of Soil, Water &	Pycnometer (gm)	(B)	710.61	
Tare Number Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY $G @ 20^{\circ} C = [C/(A-(B-C))]*(K)$ $C = [C/(A-(B-C))]*(K)$	Temperature, C		,		
Weight of Dry Soil Slurry plus Tare Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY $G @ 20^{\circ} C = [C/(A-(B-C))]*(K)$ 50.04 0.9990 0.9990		Density of water @ tested temperature (g/ml)		1.00	
Weight of Tare Weight of Dry Soil (gm) Temperature Coefficient SPECIFIC GRAVITY (G) $G @ 20^{\circ} C = [C/(A-(B-C))]*(K)$ 0.00 0.9990 2.575	Tare Number			· 1	
Weight of Dry Soil (gm) (C) 50.04 Temperature Coefficient 0.9990 SPECIFIC GRAVITY (G) G@ 20° C = [C/(A-(B - C))]*(K)		ry plus Tare		50.04	
Temperature Coefficient 0.9990 SPECIFIC GRAVITY (G) G @ 20° C = [C/(A-(B - C))]*(K)	Weight of Tare			0.00	
SPECIFIC GRAVITY (G) $G @ 20^{\circ} C = [C/(A-(B-C))]*(K)$ 2.575		Weight of Dry Soil (gm)	(C)	50.04	
$G @ 20^{\circ} C = [C/(A-(B-C))]*(K)$		Temperature Coefficient		0.9990	
$G @ 20^{\circ} C = [C/(A-(B-C))]*(K)$					
METHOD - A WET METHOD METHOD OF AIR REMOVAL				2.575	
METHOD OF THE TELLOUTE	METHOD - A	·	МЕТН	OD OF AIR REMOVA	AL
METHOD - B OVEN-DRIED METHOD VACUUM	METHOD - B	OVEN-DRIED METHOD			

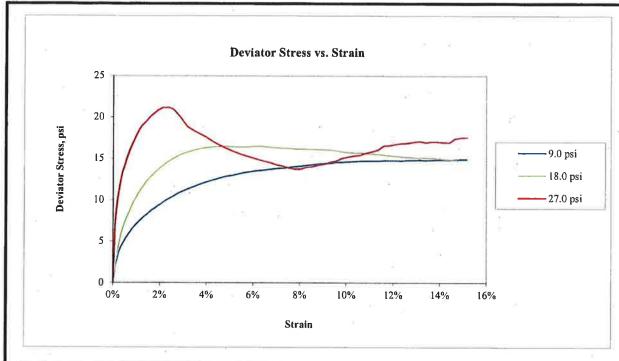
Recommended Mass	s for lest	Specimen

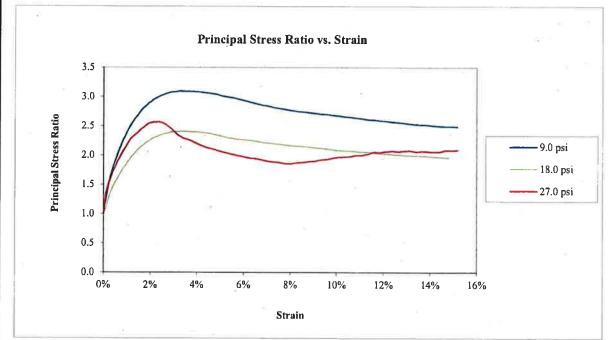
Soil Type	Specimen Dry Mass when using 500 ml Pycnometer
SP, SP-SM	100
SP-SC, SM, SC	75
SILT OR CLAY	50

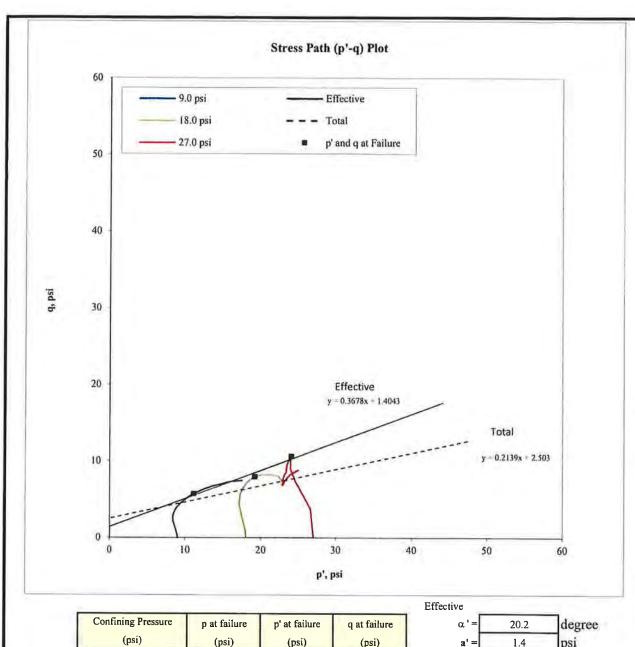

TECH [TJ
DATE	7/20/18
CHECK	1
REVIEW [My
APPROVE T	


	Sample:	UD		Somple Somple	: UD		CI-			
	•	8.0-10.0)' A	Sample	. 8.0-10.0	n' ⊕	Sample:		c.	
	Point No.:	1		Point No.		J II	Point No.:	8.0-10.0' 3	π	
	Tomi No	•		TOTAL INO.	. 2		FOIR NO	3		
		Initial			Initial			Initial		
	Length =			Length =	6.070	in	Length =	6 034	in	
	Diameter =		in	Diameter =	2.869	in	Diameter =	2.870	in	
	Wet Mass =		lb	Wet Mass =			Wet Mass =			
		6.406	in ²	Area =	6.465	in ²	Area =	6.469	in ²	
	Volume =		in ³	Volume =	39.241	in ³	Volume =	39.035	in ³	
	Specific Gravity =		(ASTM D854)	Specific Gravity =		(ASTM D854)	Specific Gravity =	2.57	(ASTM E	0854)
	Dry Mass of Solids =		lb	Dry Mass of Solids =	2.079	lb	Dry Mass of Solids =	2.060	lb	
	Moisture Content =			Moisture Content =			Moisture Content =	27 7%		
	Wet Unit Weight =	122.7	•	Wet Unit Weight =		pcf	Wet Unit Weight =		pcf	
	Dry Unit Weight =	99.1	pcf	Dry Unit Weight =		pcf	Dry Unit Weight =		pcf	
	Void Ratio =	0.62		Void Ratio =			Void Ratio =			
	Percent Saturation =	99%		Percent Saturation =	80%		Percent Saturation =	94%		
	After	· Consoli	dation	A Sto	r Consoli	idation	After	r Consolida	-+:	
	Length =				F Consoli 5 950			r Consolida 5 890		
	Diameter =			Diameter =			Lengtn = Diameter =			
			in ² (Method B)	Area =		in (Method B)	Diameter = Area =		in in ² (Meth	od ID.
	Volume =			Volume =				37.784		.ou . b)
	Moisture Content =		414	Moisture Content =		***	Moisture Content =		111	
	Wet Unit Weight =	121.0	pcf	Wet Unit Weight =		pcf	Wet Unit Weight =		pcf	
	Dry Unit Weight =	96.0	pcf	Dry Unit Weight =		pcf	Dry Unit Weight =		pcf	
	Void Ratio =	0.67	F	Void Ratio =		Por	Void Ratio =		por	
	Percent Saturation =	100%		Percent Saturation =			Percent Saturation =			
	B Parameter =	0.99	0	B Parameter =			B Parameter =	0 97		
	Shear Rate =			Shear Rate =			Shear Rate =			
	t ₅₀ =	5 84	min.	t ₅₀ =		min.	t ₅₀ =		min.	
	Strain at Failure =	3.2%		Strain at Failure =	3.3%		Strain at Failure =	2.3%		
	Cell Pressure =	89.0	psi	Cell Pressure =	98.0	ngi	Cell Pressure =	107.0	-ai	
	Back Pressure =	80.0	psi	Back Pressure =		psi psi	Back Pressure =		psi 	
	Confining Pressure =	9.0	psi	Confining Pressure =		psi	Confining Pressure		psi psi	
	Comming ressure –	9.0	psi	Continuing Fressure -	16.0	psi	Contining Pressure =	27.0	psi	
	Notes: Sample de	scription:	(CL) SILTY CLAY	Y and SAND, fine to c	oarse; yel	lowish brown and g	trav.			
	Atterberg 1		LL = 44	PL = 15	PI =	= 29 (ASTM	1 D4318)			
	Percent fin		3/4 in. = 100%	No. 4 = 100%	No. 200 =	= 54% (ASTM	1 D422, refer to separate	report for	gradation	curve
	Specimen		X Intact	Reconstit						
	Moisture f		Cuttings		ecimen	(*)				
	Saturation		X Wet	Dry	_	-				
	Failure crit		$X = (\sigma'_1/\sigma'_3)_{ma}$			% strain				
	Membrane	effect:	X Correcte	Not Corre	ected					
_	Golder A			Title:			ASTM D4767			
		ta, Ge	orgia	CONS	SOLIDAT	ΓED UNDRAINEI	D TRIAXIAL COMPR	ESSION T	EST RE	PORT
	Atlan		_				LE AND TEST DATA		100	441
b Sho	Atlan									
	ort Title: FTN/ENTERG	Y WHIT	TE BLUFF/AR	Track of the		In automat	lou n	7 1 31	_	in:
	ort Title: FTN/ENTERG	TIHW Y	ΓE BLUFF/AR	Technici		Reviewed	Start Date:	Job Numb	er:	Figur
	ort Title: FTN/ENTERG	THW Y	ΓE BLUFF/AR	PW	an: M/FT	SIL	Start Date:	Job Numb	er:	Figur
b Sho	ort Title: FTN/ENTERG :	THW YOU			M/FT	Reviewed: Approved:	Start Date: 7/17/2018	Job Numb 18103		Figur 1

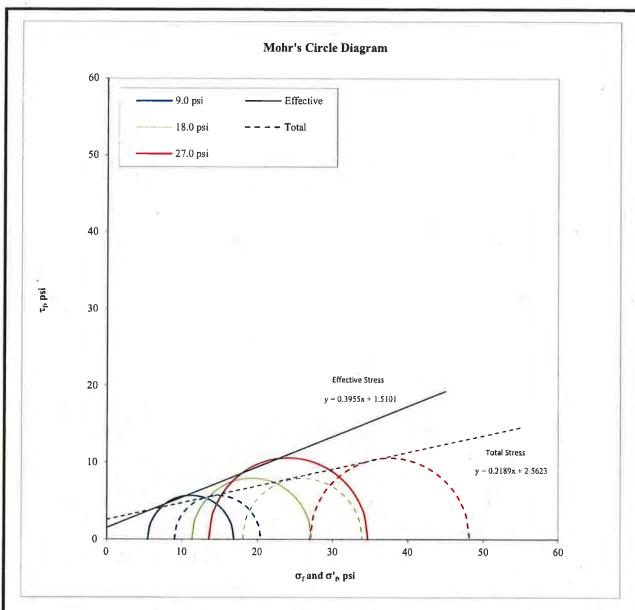
Boring or Test Pit: B-1


Boring or Test Pit: B-1


Boring or Test Pit: B-1

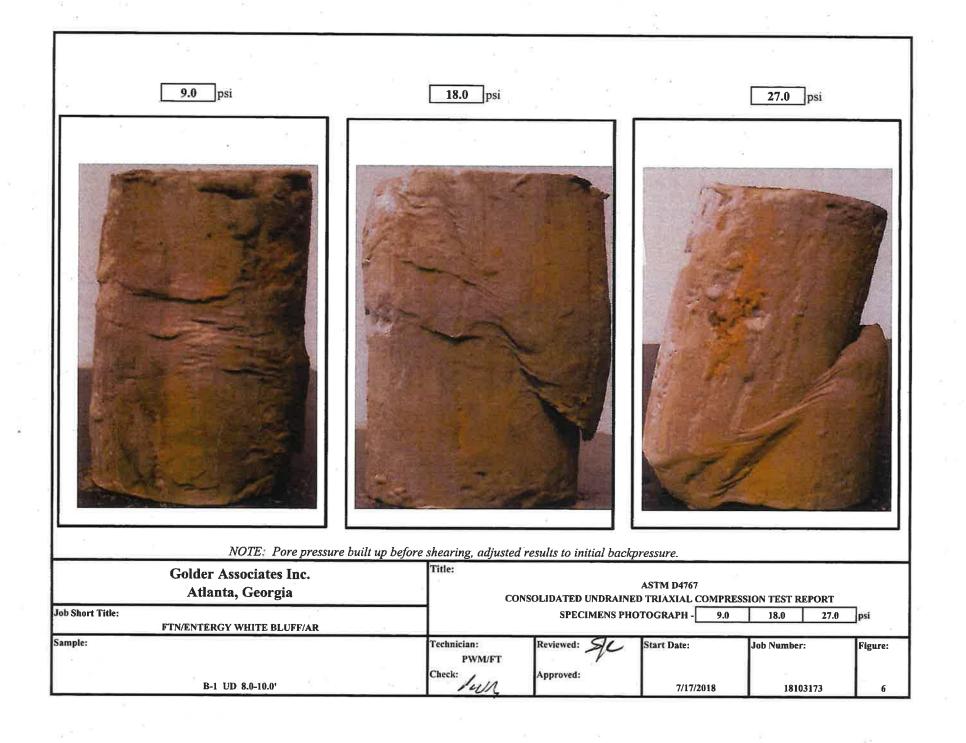


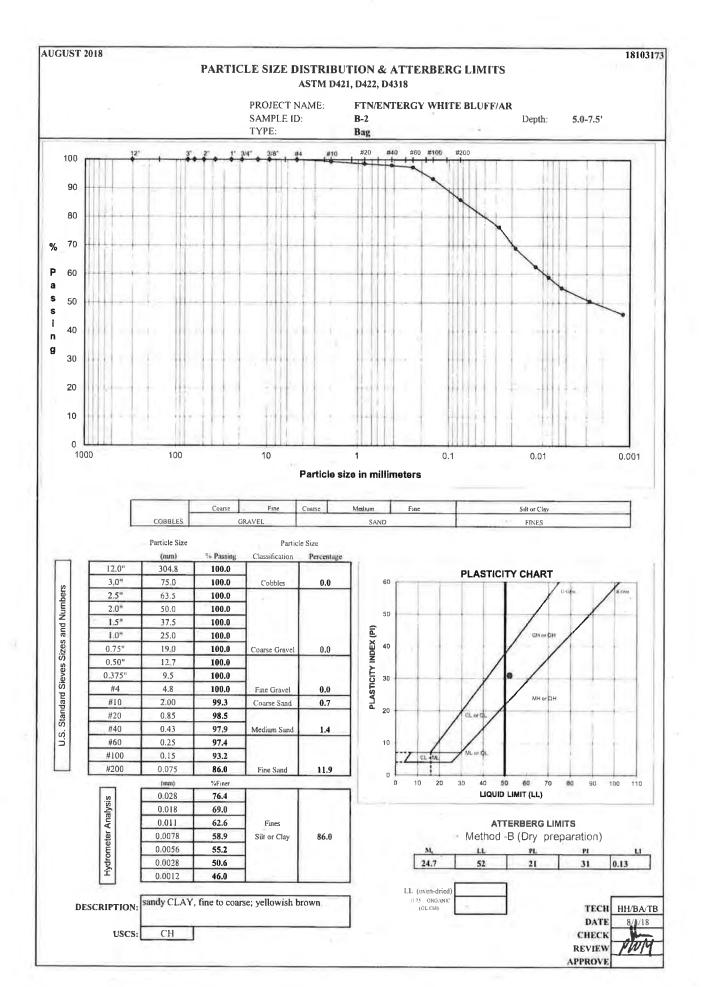
Golder Associates Inc. Atlanta, Georgia	Title:	Title: ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPOR				
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	q AND EXCESS PORE PRESSURE PLOTS					
Sample:	Technician: PWM/FT Check:	Reviewed:	Start Date:	Job Number:	Figure:	
B-1 UD 8.0-10.0'	12/4	and the second second	7/17/2018	18103173	2	

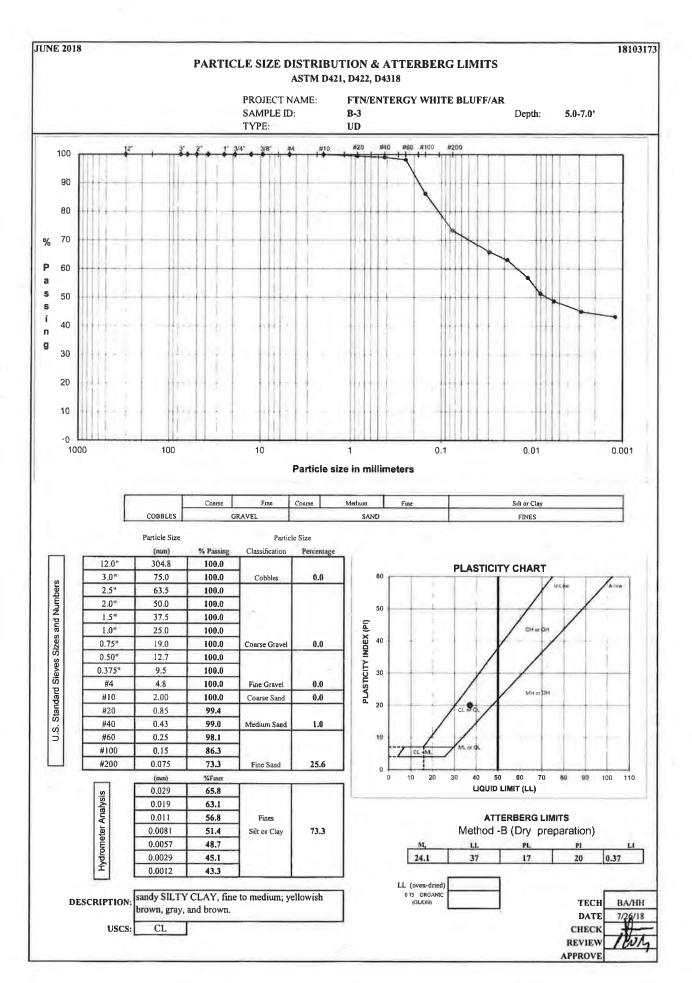

Golder Associates Inc. Atlanta, Georgia	CONSOLID	ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT DEVIATOR STRESS AND PRINCIPAL STRESS RATIO PLOT				
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	DEV					
Sample:	Technician: PWM/FT Check:	Reviewed:	Start Date:	Job Number:	Figure:	
B-1 UD 8.0-10.0'	MNY	100000000000000000000000000000000000000	7/17/2018	18103173	3	

Confining Pressure (psi)	p at failure (psi)	p' at failure (psi)	q at failure (psi)
9.0	14.7	11.1	5,7
18.0	26.0	19.2	8.0
27.0	37.6	24.1	10.6

Effective		
α'=	20.2	degree
a' =	1.4	psi
Total		
α=	12.1	degree
a =	2.5	psi


Golder Associates Inc. Atlanta, Georgia	CONSOLIE	ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT							
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR			STRESS PATH	PLOT					
Sample:	Technician: PWM/FT Check:	Reviewed:	Start Date:	Job Number:	Figure:				
B-1 UD 8.0-10.0'	PevM		7/17/2018	18103173	4				




Confining Pressure (psi)	o' _l at failure (psi)	σ' ₃ at failure (psi)	σ _I at failure (psi)	σ ₃ at failure (psi)
9.0	16.8	5.4	20.4	9.0
18.0	27.2	11.3	33.9	18.0
27.0	34.7	13.5	48.2	27.0

	φ'=	21.6	degree
	c' =	1.5	psi
Total	_		
	φ =	12.3	degree
	c =	2.6	psi

Golder Associates Inc. Atlanta, Georgia	Title: CONSOLIE	OATED UNDRA	ASTM D470 INED TRIAXIAI	67 L COMPRESSION TES	T REPORT	
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR		MC	OHR'S CIRCLE I	DIAGRAM		
Sample:	Technician: PWM/FT Check:	Reviewed: Approved:	Start Date:	Start Date: Job Number:		
B-1 UD 8.0-10.0'	MANY		7/17/2018	18103173	5	

FLEXIBLE WALL PERMEABILITY **ASTM D 5084**

METHOD D, CONSTANT RATE OF FLOW

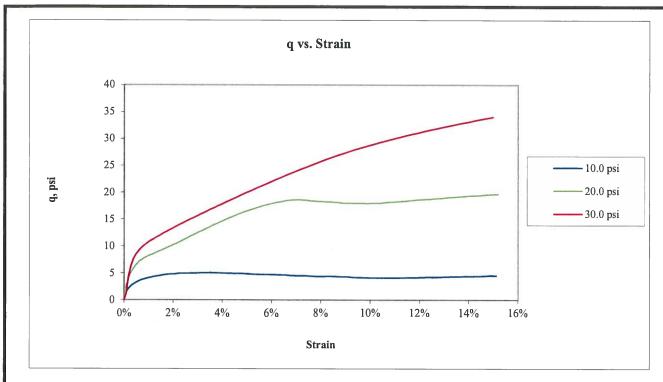
PROJECT TITLE PROJECT NUMBER SAMPLE ID SAMPLE TYPE

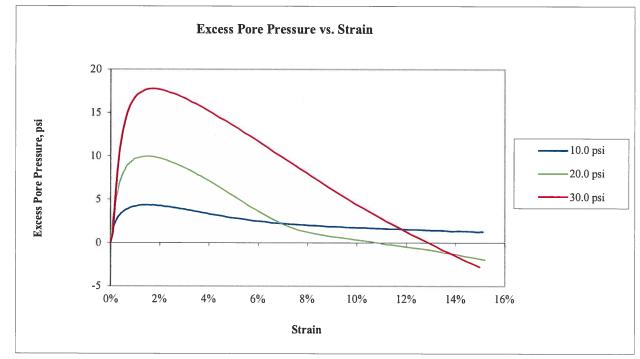
FTN/ENTERGY V	VHITE BLUFF/AR
18103173	
B-3	5.0-7.0
UD	

Board #	9
Flow Pump	2
Flow Pump Speed	10
Technician	FT

COMMENTS

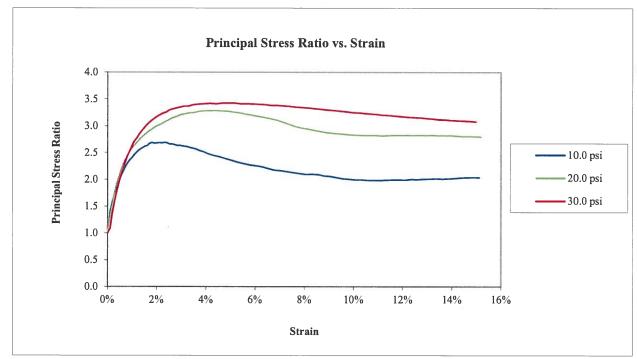
Sample Data, Initial				Sample Data, Final					
Height, inches	3.147	B-Value, f	1.00	Height, inches	3.139			Sample	Sample
Diameter, inches	2.854	Cell Pres.	88.0	Diameter, inches	2.837	WATER CONTENT	'S	Initial	Final
Area, cm²	41.27	Bot. Pres.	80.0	Area, cm²	40.78	Wt Soil & Tare, i	g	647.92	736.33
Volume, cm ³	329.91	Top Pres.	80.0	Volume, cm ³	325.16	Wt Soil & Tare, f	g	522.03	601.84
Mass, g	647.92	Tot. B.P.	80.0	Mass, g	656.52	Wt Tare	g	0.00	79.81
Moisture Content, %	24.12	Head, max.	187.10	Moisture Content, %	25.76	Wt Moisture Lost	g	125.89	134.49
Dry Density, pcf	98.74	Head, min.	187.10	Dry Density, pcf	100.18	Wt Dry Soil	g	522.03	522,03
Spec. Gravity (assumed)	2.750	Max. Grad.	23.47	Volume Solids, cm ³	189.83	Water Content	%	24.12%	25.76%
Volume Solids, cm³	189.83	Min. Grad.	23.47	Volume Voids, cm ³	135.33				
Volume Voids, cm ³	140.08			Void Ratio	0.71				
Void Ratio	0.74			Saturation, %	99.4%	DESCRIPTION			
Saturation, %	89.9%]				sandy SILTY CLAY	, fine to m	edium; yellowish brown, ga	ray, and brown.

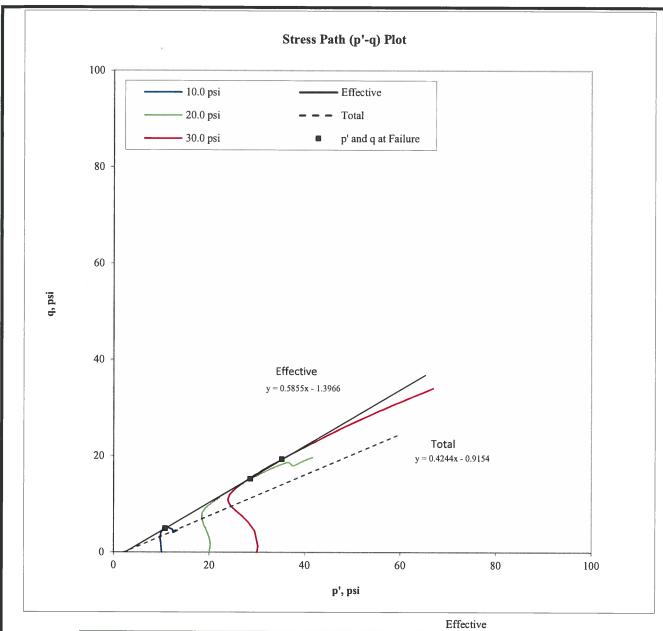

		TIM	E FUNCTIO	ONS, SECO	NDS		dP					
DATE	DAY	HOUR	MIN	TEMP (°C)	dt (min)	dt,acc (min)	dt (sec)	dt,acc (sec)	Reading (psi)	Head (cm)	Gradient	Permeability (cm/sec)
07/26/18	43307	13	0	22.3	0	0	0	0	2.66	187.10	23.47	2.2E-08
07/26/18	43307	13	5	22.3	5	5	300	300	2.66	187.10	23.47	2.2E-08
07/26/18	43307	13	10	22.3	5	10	300	600	2.66	187.10	23.47	2.2E-08
07/26/18	43307	13	15	22.3	5	15	300	900	2.66	187.10	23.47	2.2E-08 *
07/26/18	43307	13	20	22.3	5	20	300	1200	2.66	187.10	23.47	2.2E-08 *
07/26/18	43307	13	25	22.3	5	25	300	1500	2.66	187.10	23.47	2.2E-08 *
07/26/18	43307	13	30	22.3	5	30	300	1800	2.66	187.10	23.47	2.2E-08 *


*TRANSCRIBED FROM ORIGINAL DATA SHEETS

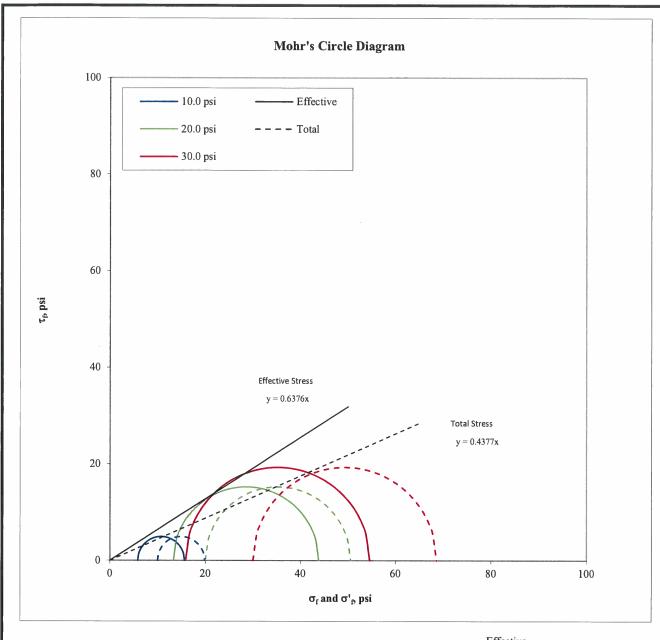
PERMEABILITY REPORTED AS ** 2.2E-08 cm/sec **


CHECK REVIEW APPROVE


	Boring or Test Pit:	B-3		Boring or Te		B-3		Boring or Test Pit:	B-3		
	Sample:	UD) (ample:	UD		Sample:	UD	3	
	Point No.:	10.0-12.0) It		nt No.:	10.0-12.0 2	It	Point No.:	10.0-12.0 f	τ	
	Tome 140	1		1 011	iit 140	2		1 OIIIt 140	J		
		Initial				Initial			Initial		
	Length =	6.001	in	Lei	ngth =	5.995	in	Length =		n	
	Diameter =	2.829	in		neter =	2.871	in	Diameter =			
	Wet Mass =	2.610	lb		Mass =	2.758	lb	Wet Mass =			
	Area =	6.286	in ²		Area =	6.474	in ²	Area =		n ²	
	Volume =					38.810			38.466 i		
	Specific Gravity =	2.58	(ASTM D854)	Specific Gra		2.58	(ASTM D854)	Specific Gravity =		ASTM D	0854)
	Dry Mass of Solids =	2.117	lb	Dry Mass of Sc	-	2.316	lb	Dry Mass of Solids =			,
	Moisture Content =	23.3%		Moisture Con		19.1%		Moisture Content =	22.2%		
	Wet Unit Weight =	119.6	pcf	Wet Unit We	eight =	122.8	pcf	Wet Unit Weight =	125.5 p	ocf	
	Dry Unit Weight =	97.0	pcf	Dry Unit We	eight =	103.1	pcf	Dry Unit Weight =	102.7 p	ocf	
	Void Ratio =	0.65		Void R	Ratio =	0.56		Void Ratio =	0.56		
	Percent Saturation =	92%		Percent Satura	ation =	88%		Percent Saturation =	102%		
	A 54	Compati	3-41		A 64	C !:	1. 4	4.6	G "1	.•	
	Length =	Consolid		τ		Consolic			Consolida		
	Diameter =		in in		_	5.957 2.884		Length =			
	Area =	6.353	in in (Method B)			6.533	in in ² (Method B)	Diameter = Area =		n n ² (Meth	od D)
	Volume =					38.920	in (Method B)	Area = Volume =		n (Meth	ou B)
	Moisture Content =		***	Moisture Con			***	Moisture Content =		11	
	Wet Unit Weight =	121.6	pcf	Wet Unit We		125.2	pcf	Wet Unit Weight =		ocf	
	Dry Unit Weight =	96.9	pcf	Dry Unit We	_	102.8	pcf	Dry Unit Weight =	•	ocf	
	Void Ratio =	0.66	r	Void R	-	0.56	F	Void Ratio =	0.57		
	Percent Saturation =	100%		Percent Satura		100%		Percent Saturation =			
	B Parameter =	0.97		B Param		0.97		B Parameter =	0.99		
	Shear Rate =			Shear I		0.090%		Shear Rate =			
	t ₅₀ =	28.79	min.		t ₅₀ =	2.39	min.	t ₅₀ =		nin.	
	Strain at Failure =	2.3%		Strain at Fai	ilure =	4.3%		Strain at Failure =	4.7%		
	Cell Pressure =	90.0	psi	Cell Pres	sure =	100.0	psi	Cell Pressure =	1100 r	osi	
	Back Pressure =		-	Back Pres			•	Back Pressure =			
	Confining Pressure =		-	Confining Press			psi	Confining Pressure =			
			(SC) SAND and S	ILTY CLAY, fir PL = 20	ne to coa			4 D4210)			
	Atterberg 1 Percent fin		LL = 32 3/4 in. = 100%	PL = 20 No. $4 = 100$	10/. N	PI = Io. 200 =	,	/I D4318)	romont for a	dation	
	Specimen		X Intact		constitut		4270 (ASIN	1 D422, refer to separate	report for g	gradation	curve
	Moisture fi		Cuttings		tire spec						
	Saturation		X Wet	Dry	_	iiiicii					
	Failure crit		X (σ' ₁ /σ' ₃) _{ma}		-σ' ₃) _{max}		% strain				
	Membrane	effect:	X Correcte		t Correc	ted					
	Golder A	Associ	ates Inc.	Tit	le:						
		ita, Ge			CONS	א מו זר	ED HNDD A IND	ASTM D4767 D TRIAXIAL COMPR	ECCIONT	FCT DE	יים חם
Sho	rt Title:				CONSC	JUIVAI		LE AND TEST DATA		ESI KË	rUKI
	FTN/ENTERG	SY WHI	ΓE BLUFF/AR								
				Tec	chniciar		Reviewed:	Start Date:	Job Numb	er:	Figure
ıple:					PWM	/FT	1 IA-/	1			
ıple:							1 1/4				
ıple:		UD 10.0		Che	eck:		Approved:				



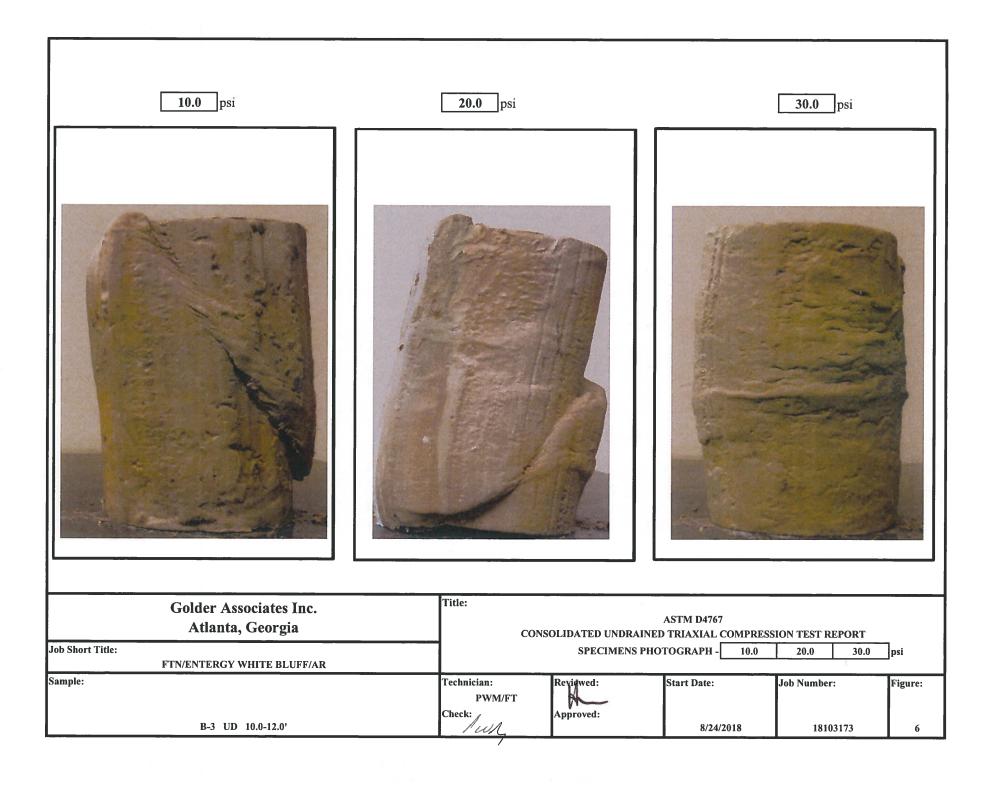
Golder Associates Inc. Atlanta, Georgia	Title: CONSOLID	ATED UNDRAI	ASTM D476 NED TRIAXIAL	67 COMPRESSION TEST	REPORT		
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	q AND EXCESS PORE PRESSURE PLOTS						
Sample:	Technician: PWM/FT Check:	Reviewed:	Start Date:	Job Number:	Figure:		
B-3 UD 10.0-12.0'	IWM		8/24/2018	18103173	2		

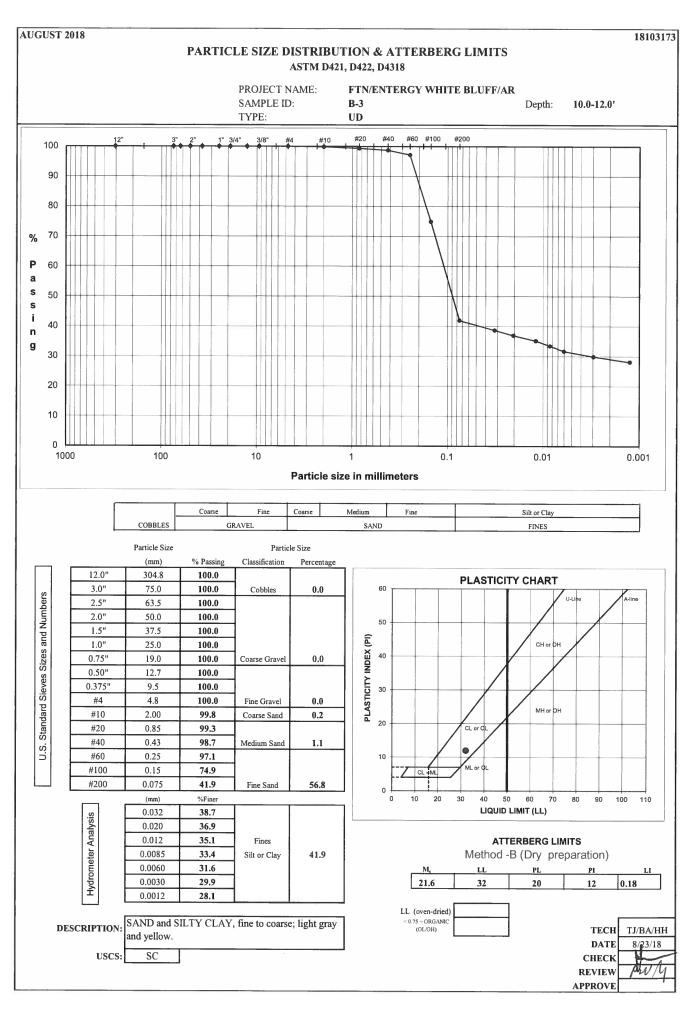

Golder Associates Inc. Atlanta, Georgia	Title:	ATED UNDRA	ASTM D476 INED TRIAXIAL	7 COMPRESSION TEST I	REPORT			
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	DEVIATOR STRESS AND PRINCIPAL STRESS RATIO PLOT							
Sample:	Technician: PWM/FT Check;	Reviewed: Approved:	Job Number:	Figure:				
B-3 UD 10.0-12.0'	/w/y		8/24/2018	18103173	3			

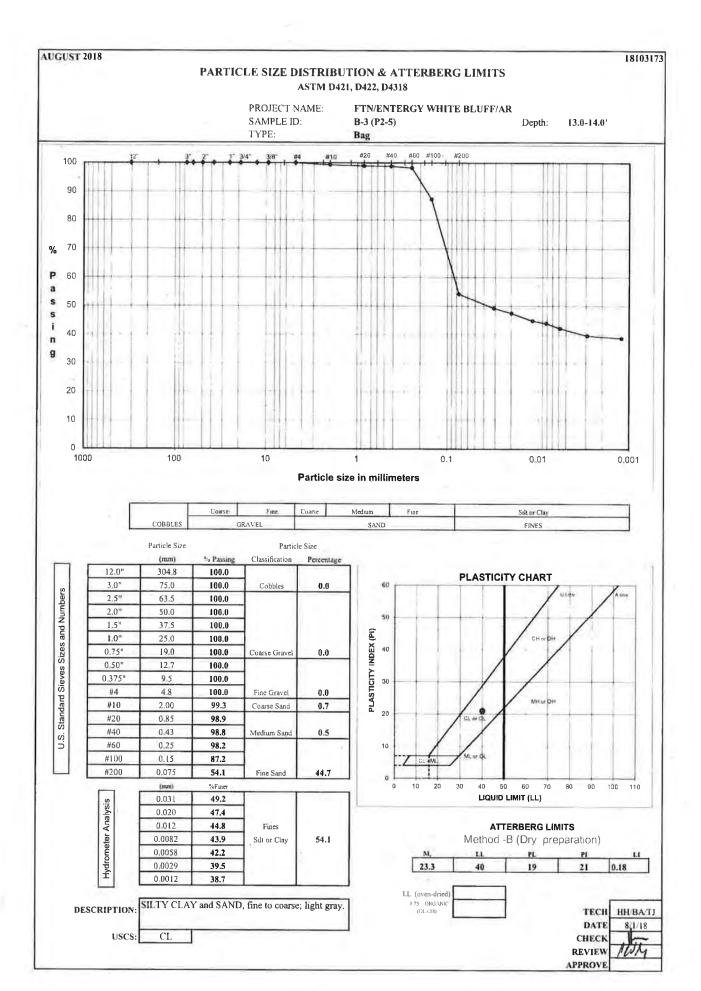
Confining Pressure (psi)	p at failure (psi)	p' at failure (psi)	q at failure (psi)
10.0	14.9	10.8	4.9
20.0	35.2	28.6	15.2
30.0	49.3	35.2	19.3

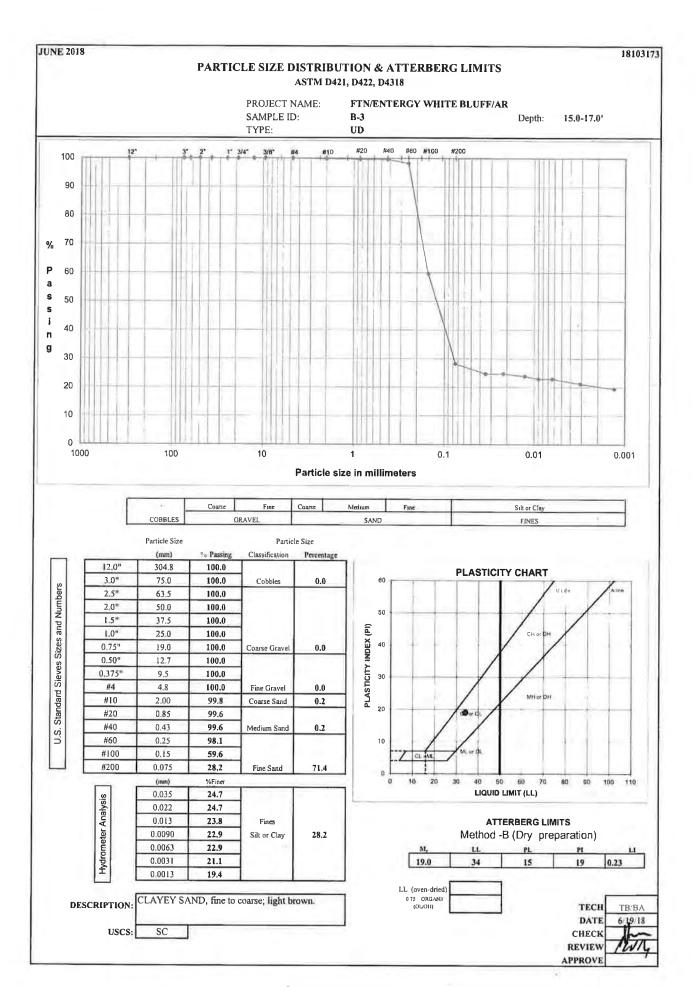
ffective		
α'=[28.3	degree
a' =[0.0	psi
Total		
$\alpha =$	21.9	degree
a =	0.0	psi

Golder Associates Inc. Atlanta, Georgia	Title: ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT					
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	STRESS PATH PLOT					
Sample:	Technician: PWM/FT Check:	Reviewed: Approved:	Start Date:	Job Number:	Figure:	
B-3 UD 10.0-12.0'	My		8/24/2018	18103173	4	



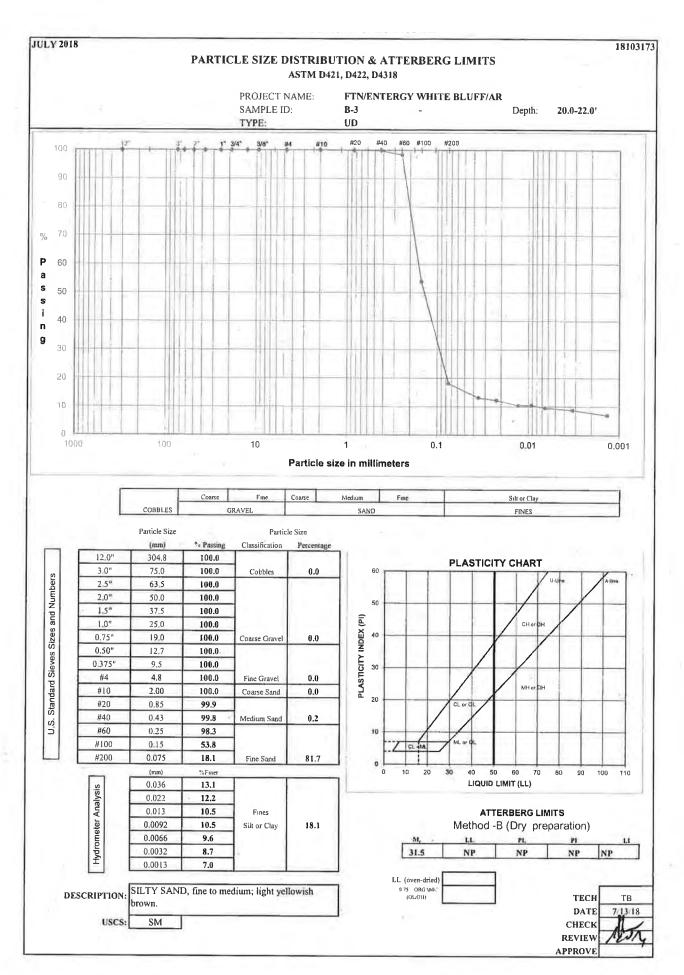

Confining Pressure (psi)	σ' ₁ at failure (psi)	σ' ₃ at failure (psi)	σ ₁ at failure (psi)	σ ₃ at failure (psi)
10.0	15.7	5.8	19.9	10.0
20.0	43.8	13.3	50.5	20.0
30.0	54.5	15.9	68.6	30.0


Title:

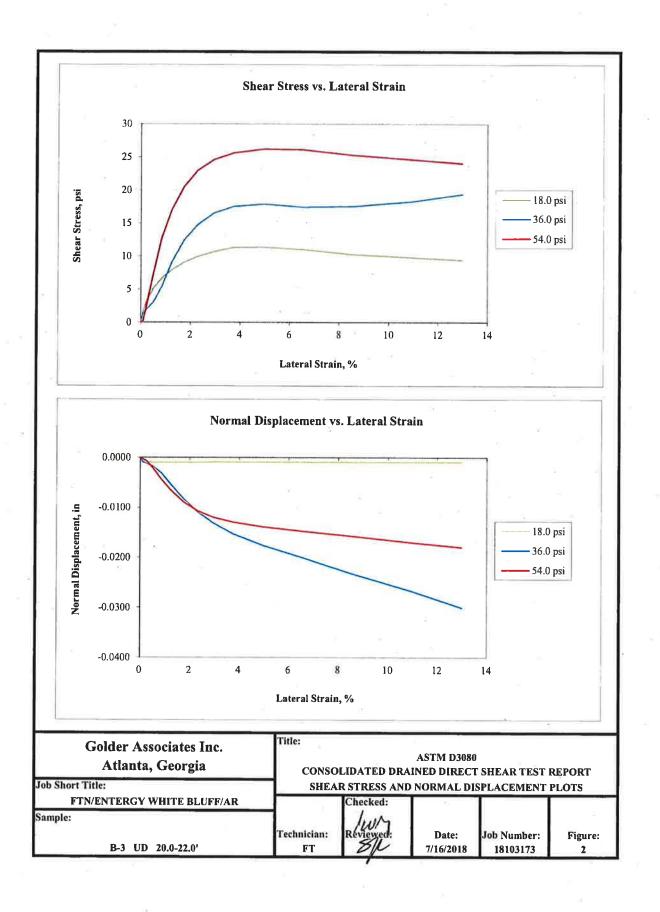

Effective	,			_
	ф'=	32.5		degree
	c' =	0.0		psi
Total				_
	φ =	23.6		degree
	c =	0.0		psi
		,	C.1	

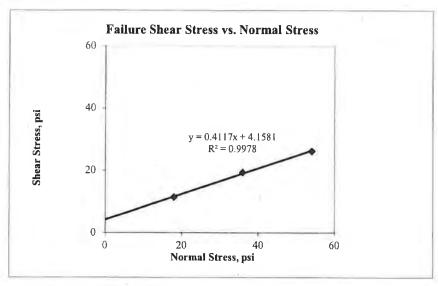
Golder Associates Inc. Atlanta, Georgia	Title: ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT					
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR		MOI	HR'S CIRCLE D	IAGRAM		
Sample:	Technician: PWM/FT Check:	Reviewed:	Start Date:	Job Number:	Figure:	
B-3 UD 10.0-12.0'	PWM		8/24/2018	18103173	5	

FLEXIBLE WALL PERMEABILITY ASTM D 5084 (ETHOD D. CONSTANT RATE OF FLOW


PROJECT TITLE	FTN/ENTE	ERGY WHIT	E BLUFF/AR	Board #	5	COMMENTS			
PROJECT NUMBER	18103173			Flow Pump	2				
SAMPLE ID	B-3	1 11	15.0-17.0'	Flow Pump Speed	5				
SAMPLE TYPE	UD -			Technician	FT				
Sample Data, Initial				Sample Data, Final					
Height, inches	3.008	B-Value, f	0.99	Height, inches	3.009			Sample	Sample
Diameter, inches	2.839	Cell Pres.	88.0	Diameter, inches	2.848	WATER CONTE	NTS	Initial	Final
Area, cm²	40.84	Bot. Pres.	80.0	Area, cm²	41.10	Wt Soil & Tare, i	g	657.54	742,00
Volume, cm ³	312.03	Top Pres.	80.0	Volume, cm ³	314.12	Wt Soil & Tare, f	g	552.54	634.47
Mass, g	657.54	Tot. B.P.	80.0	Mass, g	660.77	Wt Tare	g	0.00	85.52
Moisture Content, %	19.00	Head, max.	33.76	Moisture Content, %	19.59	Wt Moisture Lost	g	105.00	107.53
Dry Density, pcf	110.50	Head, min.	33.76	Dry Density, pcf	109.76	Wt Dry Soil	g	552.54	548.95
Spec. Gravity (assumed)	2.700	Max. Grad.	4.42	Volume Solids, cm ³	204.64	Water Content	%	19.00%	19.59%
Volume Solids, cm ³	204.64	Min. Grad.	4.42	Volume Voids, cm ³	109.47				
Volume Voids, cm3	107.39			Void Ratio	0.53				
Void Ratio	0.52			Saturation, %	98.9%	DESCRIPTION			
Saturation, %	97.8%					CLAYEY SAND,	fine to coars	e; light brown,	
					76.776		fine to coars	e; light brown.	
	Flow Pump	Rate	1.17E-03 cm ³ /sec	USCS	SC				

		TIM	E FUNCTIO	ONS, SECO	NDS .			dP			dP						
DATE	DAY	HOUR	MIN	TEMP (°C)	dt (min)	dt,acc (min)	dt (sec)	dt,acc (sec)	Reading (psi)	Head (cm)	Gradient	Permeability (cm/sec)					
06/19/18	43270	10	0	20.9	0	0	0	0	0.48	33.76	4.42	6.3E-06					
06/19/18	43270	10	5	20.9	5	5	300	300	0.48	33.76	4.42	6.3E-06					
06/19/18	43270	10	10	20.9	5	10	300	600	0.48	33.76	4.42	6.3E-06					
06/19/18	43270	10	15	20.9	5	15	300	900	0.48	33.76	4.42	6.3E-06	*				
06/19/18	43270	10	20	20.9	5	20	300	1200	0.48	33.76	4.42	6.3E-06	*				
06/19/18	43270	10	25	20.9	5	25	300	1500	0.48	33.76	4.42	6.3E-06					
06/19/18	43270	10	30	20.9	5	30	300	1800	0.48	33.76	4.42	6.3E-06	*				


*TRANSCRIBED FROM ORIGINAL DATA SHEETS


PERMEABILITY REPORTED AS ** 6.3E-06 cm/sec **

CHECK
REVIEW / W M
APPROVE

Boring or Test Pit: B-3	Boring or Test Pit: B-		Boring or Test Pit:	
Sample: UD	Sample: U		Sample:	
Depth: 20.0-22.0'	Depth: 20.		-	20.0-22.0'
Point No.: 1	' Point No.:	2	Point No.:	3
·	_			
Initial		tial		Initial
Thickness = 0.750 in	Thickness = 0.		Thickness =	
Diameter = 2.500 in Wet Mass = 0.220 lb	Diameter = 2.5		Diameter =	
$Area = 4.909 in^2$	Wet Mass = 0.3 Area = 4.9		Wet Mass =	
Volume = 3.682 in^3	Area = 4.5 $Volume = 3.6$	3		4.909 in ²
Specific Gravity = 2.67 (Assumed)	Specific Gravity = 2.		Volume =	
	ry Mass of Solids = 0.3			
· ·	Moisture Content = 31.		Dry Mass of Solids = Moisture Content =	
Wet Unit Weight = 103.1 pcf	Wet Unit Weight = 99	- , ,	Wet Unit Weight =	
Dry Unit Weight = 78.4 pcf	Dry Unit Weight = 75	•	Dry Unit Weight =	
Void Ratio = 1.12	Void Ratio = 1.	-	Void Ratio =	•
	Percent Saturation = 70		Percent Saturation =	0.50
x or our butter of 75/0	ordent bataration /	770	recent Saturation –	8076
Pre-Shear	Pre-	Shear	Pı	e-Shear
Thickness = 0.739 in	Thickness = 0.6		Thickness =	
Diameter = 2.500 in	Diameter = 2.5	500 in	Diameter =	
Area = 4.909 in^2	Area = 4.9	009 in ²		4.909 in ²
$Volume = 3.628 in^3$	Volume = 3.2		Volume =	
Moisture Content = 35.1%	Moisture Content = 42.	1%	Moisture Content =	28.2%
Wet Unit Weight = 107.4 pcf	Wet Unit Weight = 12	1.0 pcf	Wet Unit Weight =	125.9 pcf
Dry Unit Weight = 79.5 pcf	Dry Unit Weight = 85	i.2 pcf	Dry Unit Weight =	98.2 pcf
Void Ratio = 1.09	Void Ratio = 0.	95	Void Ratio =	0.70
Percent Saturation = 100%	Percent Saturation = 10	0%	Percent Saturation =	100%
Shear Rate = 0.001 in/min	Shear Rate = 0.0	001 in/min	Shara Data	0.001 1.7.1
Normal Stress = 18 psi	Normal Stress = 3		Shear Rate = Normal Stress =	
Tromai Briess	1401mai Buess – J	o psi	Normai Siless -	54 psi
Notes:				
	Y SAND, fine to mediu			
Atterberg limit: LL = NP	PL = NP	$\mathbf{PI} = \mathbf{I}$	(/	
Percent finer: 3/4 in. = 100%	No. 4 = 100%	No. $200 = 1$	18% (ASTM D422, r	efer to separate report
Specimen type: X Intact	Reconstituted			
	approximately 100 psf	-1343 A-4-1-1-1	170 d 0 0 17	
Apparatus: 2.5 -inch nomin	nal diameter box, Humb	oldi Material	l Testing Software and I	Equipment.
Golder Associates Inc.	Title:			
Atlanta, Georgia	CONSOLIDA		ASTM D3080 NED DIRECT SHEAR	TEST REPORT
Job Short Title:			E AND TEST DATA	LEST REFORT
FTN/ENTERGY WHITE BLUFF/AF	IChe	cked:		
	Che	ecked:		9
FTN/ENTERGY WHITE BLUFF/AF Sample:		ecked:	Date: Job Nur	nber: Figure:

Normal Stress psi	Peak Shear Stress psi
18.0	11.4
36.0	19.4
54.0	26.2

	Post Peak
Normal	Shear
Stress	Stress
psi	psi
18.0	9.4
36.0	19.4
54.0	24.0

Failure	Post Peak
φ = 22.4 °	$\phi = 22.1^{\circ}$
c = 4.2 psi	c = 3.0 psi

Golder Associates Inc. Atlanta, Georgia Title:

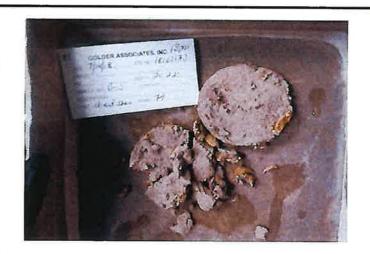
ASTM D3080

CONSOLIDATED DRAINED DIRECT SHEAR TEST REPORT

FAILURE ENVELOPES

Job Short Title:

FTN/ENTERGY WHITE BLUFF/AR
Sample:

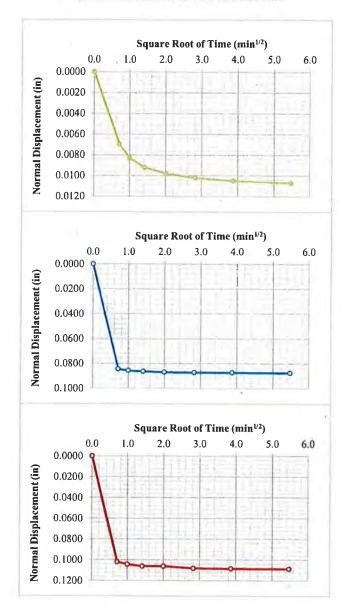

B-3 UD 20.0-22.0'

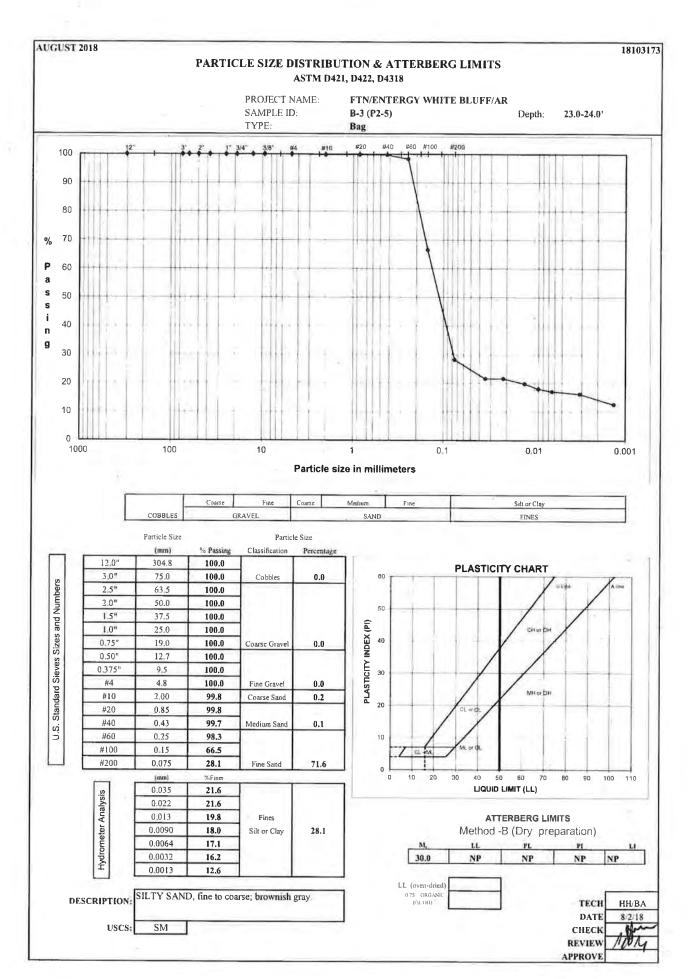
Technician: Reviewed

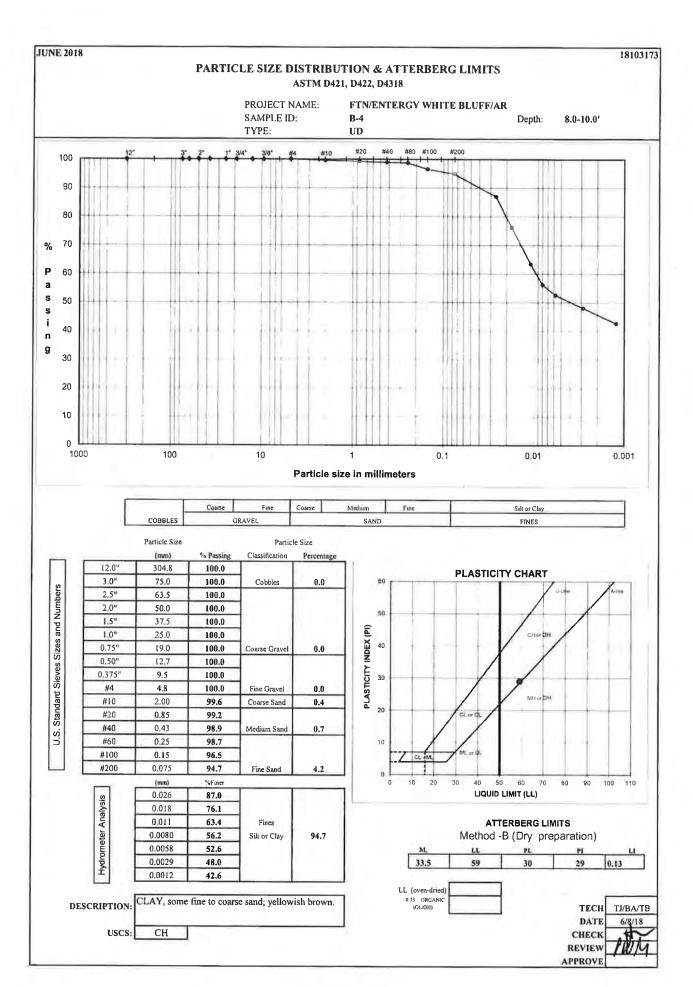
y ed:

Date: 7/16/2018

Job Number: 18103173 Figure:




Golder Associates Inc. Atlanta, Georgia Job Short Title:	Title:	Title: ASTM D3080 CONSOLIDATED DRAINED DIRECT SHEAR TEST REPORT SPECIMEN PHOTOGRAPH - 18 psi			
FTN/ENTERGY WHITE BLUFF/AR					
Sample: B-3 UD 20.0-22.0'	Technician: FT	Reviewed:	Date: 7/16/2018	Job Number: 18103173	Figure:


Consolidation Data Used to Determine Shear Rate

TIME, MIN	SQUARE ROOT OF TIME	DIAL READING
	Point No. 1	
0.000	0.00	0.0000
0.50	0.71	0.0070
1.0	1.00	0.0083
2.0	1.41	0.0092
4.0	2.00	0.0098
8.0	2.83	0.0102
15.0	3.87	0.0105
30.0	5.48	0.0107
	Point No. 2	
0.000	0.00	0.0000
0.50	0.71	0.0846
1.0	1.00	0.0858
2.0	1.41	0.0865
4.0	2.00	0.0870
8.0	2.83	0.0873
15.0	3.87	0.0874
30.0	5.48	0.0877
	Point No. 3	
0.000	0.00	0.0000
0.50	0.71	0.1021
1.0	1.00	0.1044
2.0	1.41	0.1062
4.0	2.00	0.1062
8.0	2.83	0.1082
15.0	3.87	0.1086
30.0	5.48	0.1090

Golder Associates Inc. Atlanta, Georgia	Title: ASTM D3080 CONSOLIDATED DRAINED DIRECT SHEAR TEST REPO		REPORT		
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	CONSOLIDATION DATA				
Sample: B-3 UD 20.0-22.0'	Technician: FT	Reviewed:	Date: 7/16/2018	Job Number: 18103173	Figure:

FLEXIBLE WALL PERMEABILITY ASTM D 5084 METHOD D, CONSTANT RATE OF FLOW

PROJECT TITLE	FTN
PROJECT NUMBER	18
SAMPLE ID	B-4
SAMPLE TYPE	UD

FTN/ENTERGY	WHITE BLUFF/AR
18103173	- 1
B-4	8.0-10.0'
UD	

Board #	2
Flow Pump	2
Flow Pump Speed	9
Technician	FT

COMMENTS

Sample Data, Initial			
Height, inches	2.999	B-Value, f	0.99
Diameter, inches	2.869	Cell Pres.	88.0
Area, cm²	41.71	Bot. Pres.	80.0
Volume, cm ³	317.71	Top Pres.	80.0
Mass, g	585.31	Tot. B.P.	80.0
Moisture Content, %	33.46	Head, max.	162.49
Dry Density, pcf	86.13	Head, min.	162.49
Spec. Gravity (assumed)	2.700	Max. Grad.	21.31
Volume Solids, cm ³	162.43	Min. Grad.	21.31
Volume Voids, cm ³	155.28	1 7	-
Void Ratio	0.96		
Saturation, %	94.5%		

Sample Data, Final	
Height, inches	3.002
Diameter, inches	2.899
Area, cm²	42.58
Volume, cm ³	324.71
Mass, g	596.72
Moisture Content, %	36.07
Dry Density, pcf	84.28
Volume Solids, cm ³	162.43
Volume Voids, cm ³	162.29
Void Ratio	1.00
Saturation, %	97.5%

		Sample
WATER CONTENT	rs	Initial
Wt Soil & Tare, i	g	585.31
Wt Soil & Tare, f	g	438.55
Wt Tare	g	0.00
Wt Moisture Lost	g	146.76
Wt Dry Soil	g	438.55
Water Content	%	33.46%

Sample
Final
686.79
528.69
90.33
158.10
438.36
36.07%

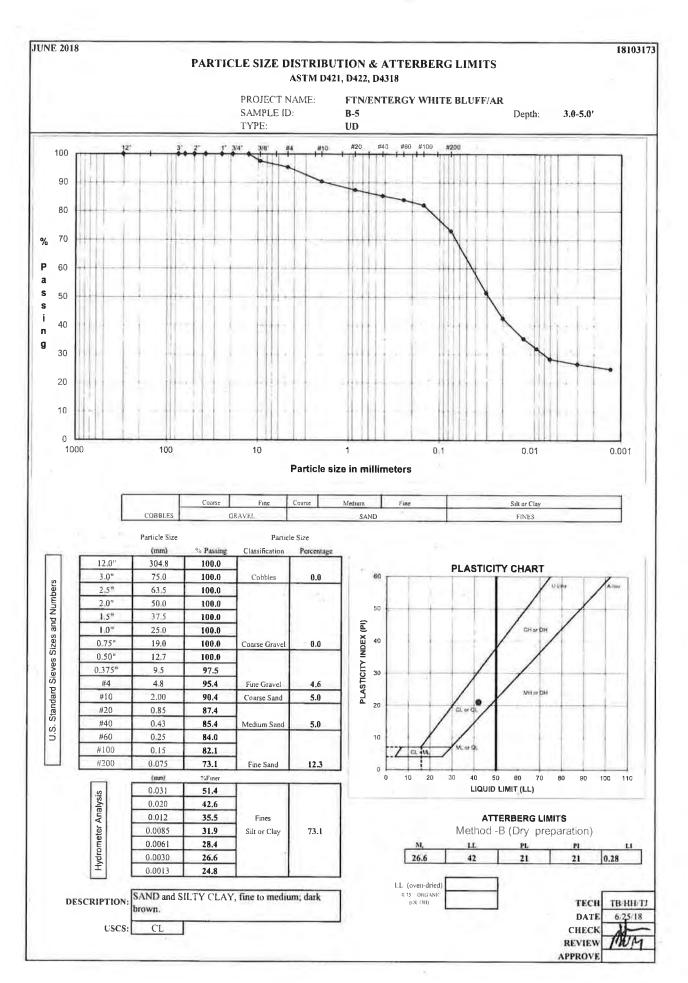
Flow Pump Rate

4.26E-05 cm³/sec

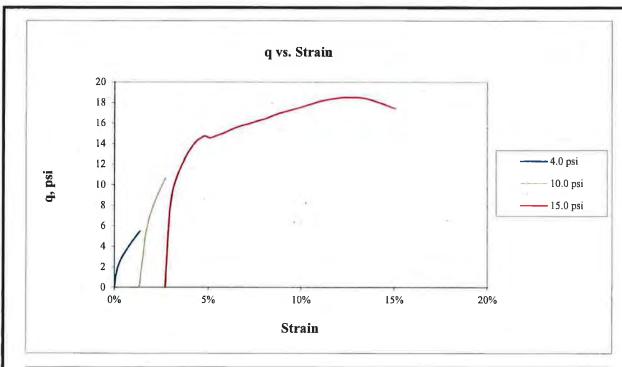
USCS

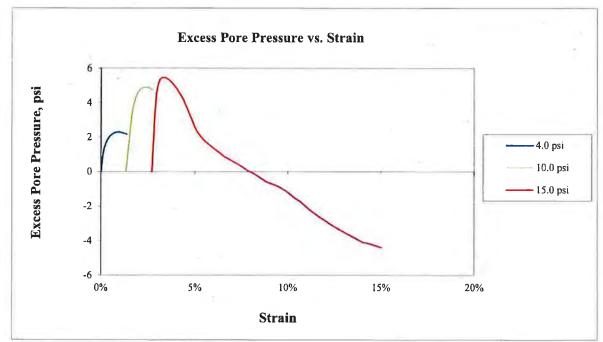
1

DESCRIPTION CLAY, some fine to coarse sand; yellowish brown.

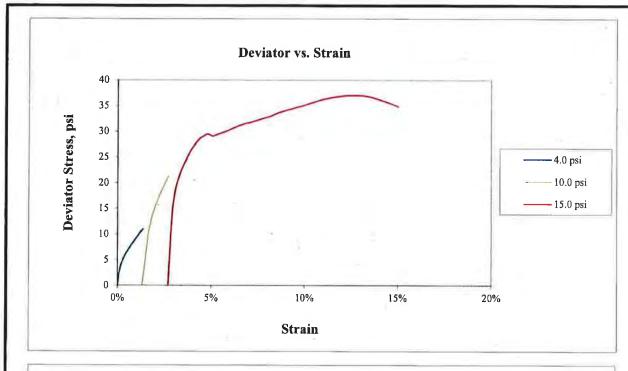

		TIMI	E FUNCTION	ONS, SECO	NDS			dP	dP			
DATE	DAY	HOUR	MIN	TEMP (°C)	dt (min)	dt,acc (min)	dt (sec)	dt,acc (sec)	Reading (psi)	Head (cm)	Gradient	Permeability (cm/sec)
06/08/18	43259	13	0	20.9	0	0	0	0	2.31	162.49	21.31	4.6E-08
06/08/18	43259	13	5	20.9	5	5	300	300	2.31	162.49	21.31	4.6E-08
06/08/18	43259	13	10	20.9	5	10	300	600	2.31	162.49	21.31	4.6E-08
06/08/18	43259	13	15	20.9	5	15	300	900	2.31	162.49	21.31	4.6E-08 *
06/08/18	43259	13	20	20.9	5	20	300	1200	2.31	162.49	21.31	4.6E-08 *
06/08/18	43259	13	25	20.9	5	25	300	1500	2.31	162.49	21.31	4.6E-08 *
06/08/18	43259	13	30	20.9	5	30	300	1800	2.31	162.49	21.31	4.6E-08 *

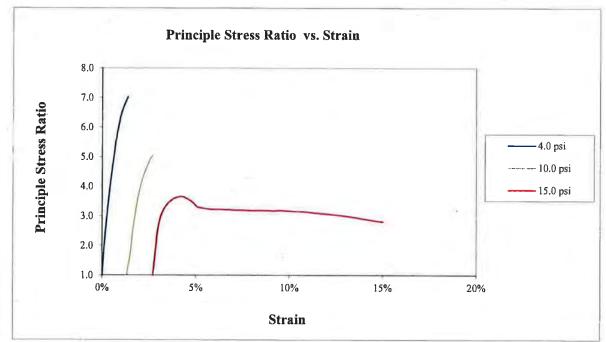
CH

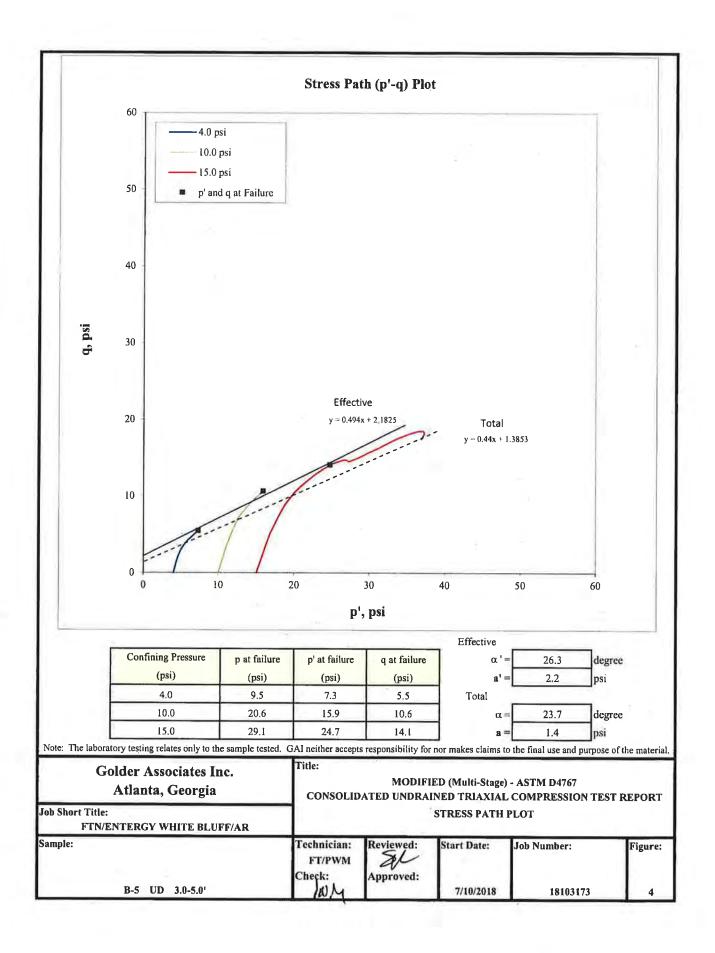

*TRANSCRIBED FROM ORIGINAL DATA SHEETS


PERMEABILITY REPORTED AS ** 4.6E-08 cm/sec **

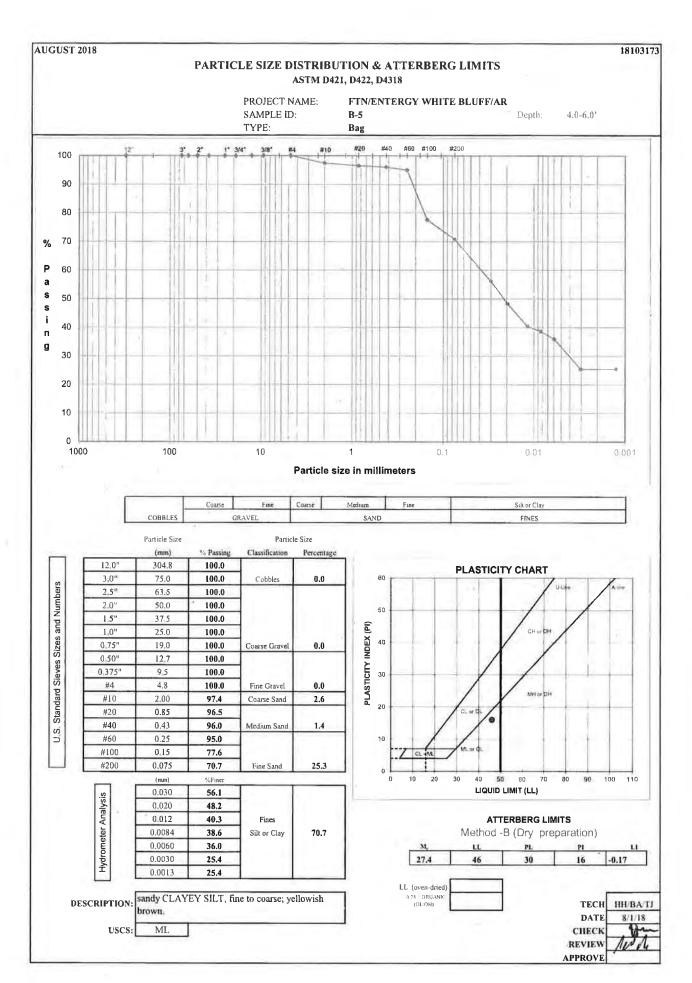
DATE 6/8/18
CHECK
REVIEW / W/A

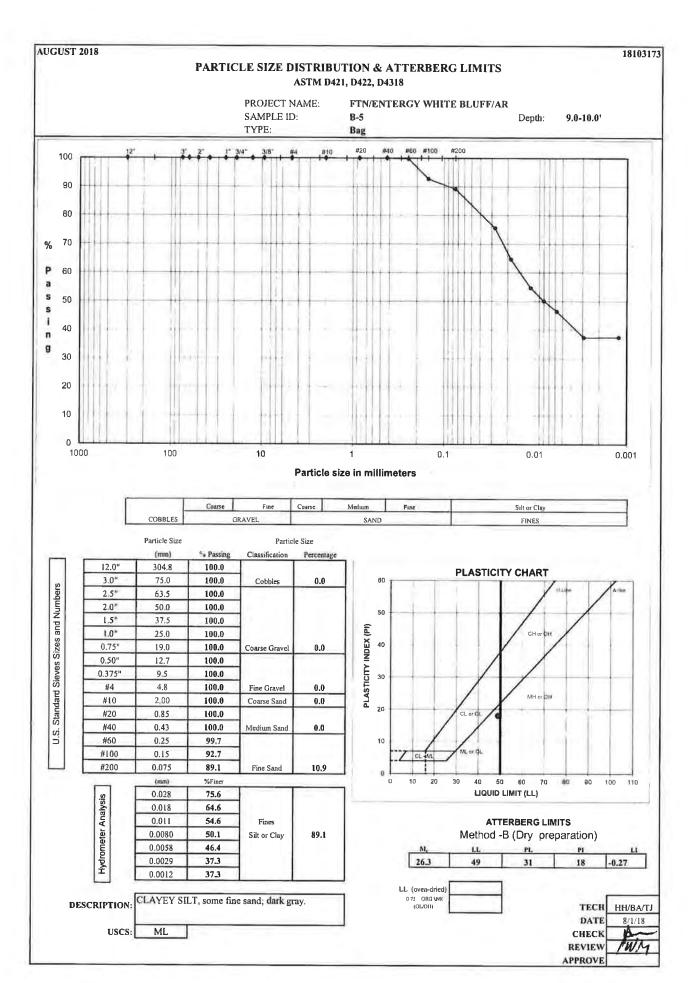


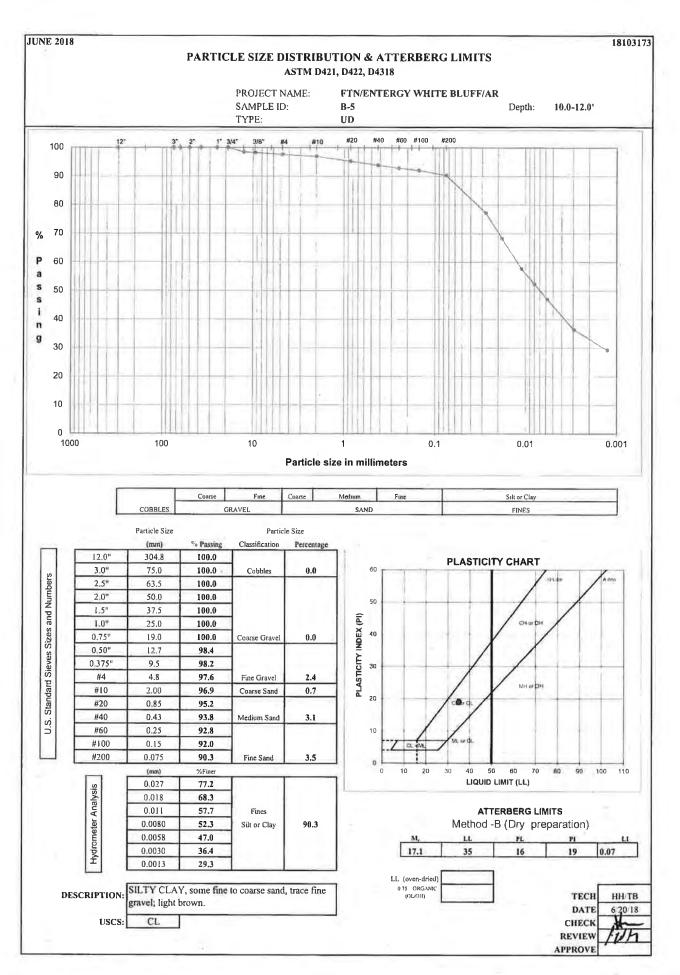

	Boring or Test Pit: Sample:			Boring or Test Pit: Sample:				Boring or Test Pit: Sample:			
	Depth:	3.0-5.0	ſt	Depth:				Depth:			
	Point No.:	1		Point No.:				Point No.:			
		Initial									
	Length =	6.012	in	Length =	6.009			Length =	5.925		
	Diameter =	2.877	in	Diameter =	2.842			Diameter =	2.863		
	Wet Mass =	2.625	1b	Wet Mass =				Wet Mass =			
	Area =	6.501	in ²	Area =				Area =			
	Volume =			Volume =				Volume =			
	Specific Gravity =	2.69	(ASTM D854)	Specific Gravity =			_	Specific Gravity =			
	Dry Mass of Solids =	2.073	lb	Dry Mass of Solids =			1	Ory Mass of Solids =			
	Moisture Content =	26.6%	6	Moisture Content =				Moisture Content =			
	Wet Unit Weight = Dry Unit Weight =	116.1	pcf	Wet Unit Weight =				Wet Unit Weight =			
	Void Ratio =	91.7 0.83	pcf	Dry Unit Weight = Void Ratio =				Dry Unit Weight = Void Ratio =			
	Percent Saturation =	86%		Percent Saturation =				Percent Saturation =			
	relective Battilation	0070		recent Saturation —				r ercent Saturation –			
	After	Consoli	dation	After	Consoli	dation		After	Consoli	dation	
	Length =	6.009	in	Length =	5,925	in		Length =	5.849	in	
	Diameter =	2.842	in	Diameter =	2,863	in		Diameter =	2.881	in	
	Area ==	6.345		Area =	6.436			Area =	6.519	- '	nod B)
	Volume =	38.129		Volume =	38.129			Volume =	38.129	in ³	
	Moisture Content =			Moisture Content =				Moisture Content =	29.2%		
	Wet Unit Weight =			Wet Unit Weight =				Wet Unit Weight =	121.4	pcf	
	Dry Unit Weight =			Dry Unit Weight =				Dry Unit Weight =	94.0	pcf	
	Void Ratio =			Void Ratio =				Void Ratio =	0.78		
	Percent Saturation =			Percent Saturation =				Percent Saturation =	100%		
	B Parameter =	0.99		B Parameter =	-			B Parameter =	- 4		
	Shear Rate =	0.089%	/min.	Shear Rate =	0.099%	/min		Shear Rate =	0.092%	/min.	
	t ₅₀ =	0 3	min.	t ₅₀ =	0.6	min.		t ₅₀ =	0.1	min	
	Strain at Failure =	1.3%		Strain at Failure =	2.7%			Strain at Failure =	4.3%		
	Cell Pressure =	74.0	ngi.	Cell Pressure =	80.0	nai		Cell Pressure =	950	z ai	
	Back Pressure =	70.0	psi	Back Pressure =	70.0	psi		Back Pressure =	85.0 70.0	psi	
	Confining Pressure =	4.0	psi psi	Confining Pressure =	10.0	psi psi	(Confining Pressure =	15.0	psi psi	
	Continuing Fressure —	4.0	psi	Contining Pressure –	10.0	ры	`	Zonfinning Flessure –	13.0	psi	
	Notes: Sample de	scription		SILTY CLAY, fine to me	edium; da	ark brown.					
	Atterberg I		LL = 42	PL = 21		= 21	(ASTM D	4318)			
	Percent fin		3/4 in. = 100.0		No. 200 =	73.1%	(ASTM D	422, refer to separate	report fo	r gradatio	ı curve)
	Specimen	- 1	X Intact	Reconstitu							
	Moisture f		Cuttin		cimen						
	Saturation Failure crit		X Wet	Dry		Jay:-					
	Membrane		X (σ' ₁ /σ' ₃		J	% strain					
	Memorane	ertect.	X Correc	nor Corre	ctea						
	Call		4 T	Title:					_		
	Golder A					MOD	IFIED (M	ulti-Stage) - ASTM l	D4767		
	A 41	ta, Ge	orgia	CONS	OLIDAT		RAINED 1	RIAXIAL COMPR	ESSION	TEST RI	EPORT
							SAMPLE	AND TEST DATA			
b Sho	rt Title:	Y WHI	TE BLUFF/AR								
	rt Title: FTN/ENTERG	Y WHI	TE BLUFF/AR	Technicia	n:	Reviewe	10/	Start Date:	Job Nun	ıber:	Figure
	rt Title: FTN/ENTERG	Y WHI	TE BLUFF/AR	ET/D	33/3/	Reviewe	SIL	Start Date:	Job Nun	iber:	Figure
b Sha	rt Title: FTN/ENTERG	Y WHI	TE BLUFF/AR		33/3/	Reviewer	20	Start Date:	Job Nun	nber:	Figure




Golder Associates Inc. Atlanta, Georgia	Title: MODIFIED (Multi-Stage) - ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REF								
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR		q AND EXCESS PORE PRESSURE PLOTS							
Sample:	Technician: FT/PWM Check:	Reviewed:	Start Date:	Job Number:	Figure:				
B-5 UD 3.0-5.0'	IWM	7.00	7/10/2018	18103173	2				

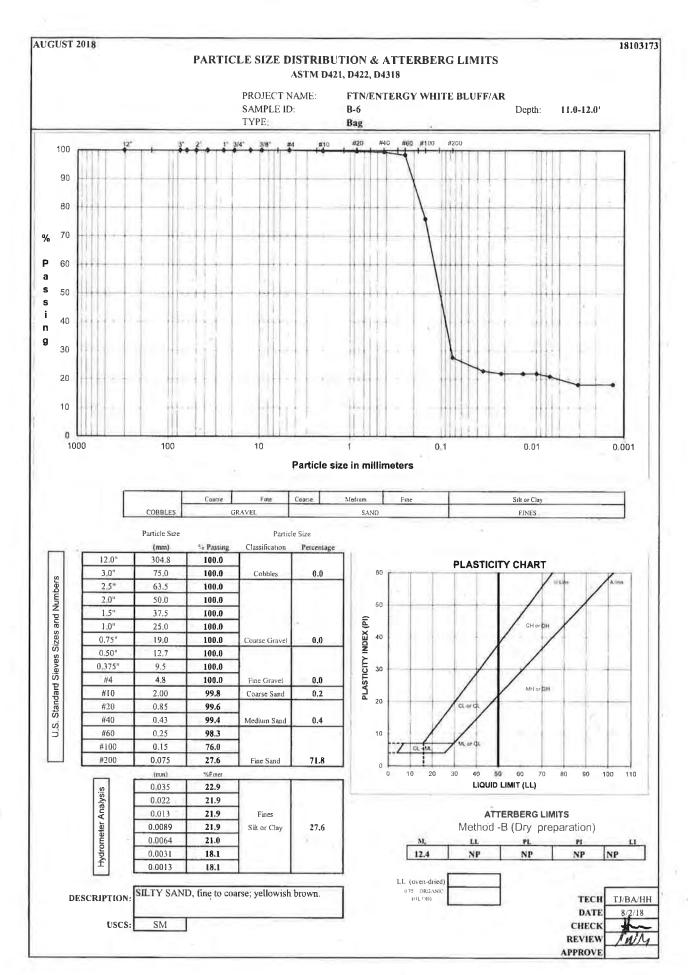

Golder Associates Inc. Atlanta, Georgia	Title: CONSOLIE	Title: MODIFIED (Multi-Stage) - ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT 4 AND EXCESS PORE PRESSURE PLOTS							
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR									
Sample:	Technician: FT/PWM Check:	Reviewed: Approved:	Start Date:	Job Number:	Figure:				
B-5 UD 3.0-5.0'	JWM		7/10/2018	18103173	3				



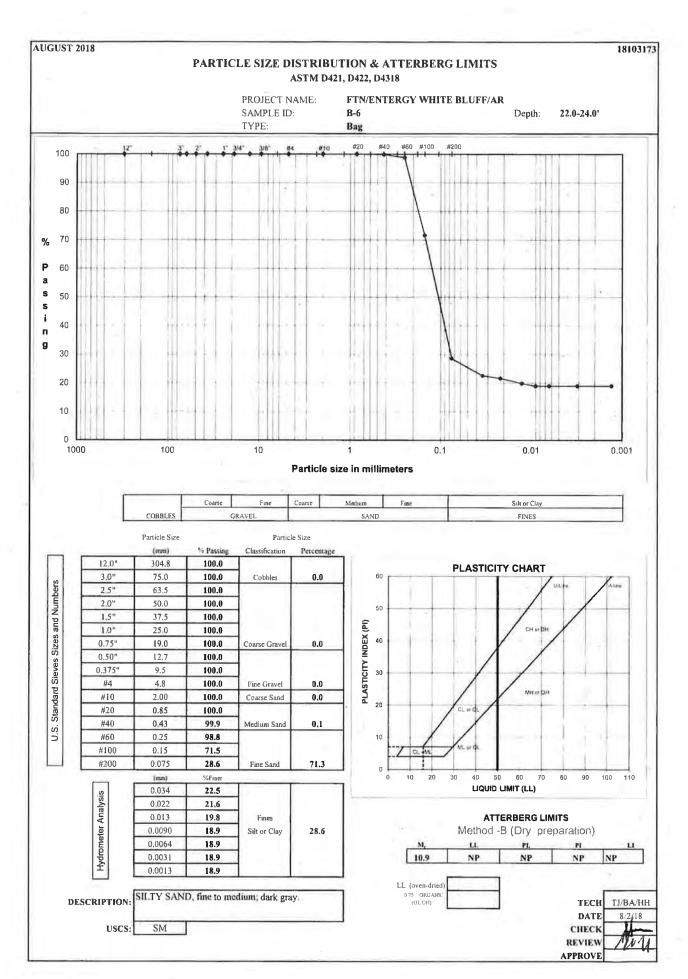


Golder Associates In Atlanta, Georgia	Title: MODIFIED (Multi-Stage) - ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT	
Job Short Title: FTN/ENTERGY WHITE BLUFF	SPECIMEN PHOTOGRAPH - Single Specimen	
Sample:	FT/PWM	igure:
B-5 UD 3.0-5.0'	Check: Approved: 7/10/2018 18103173	6

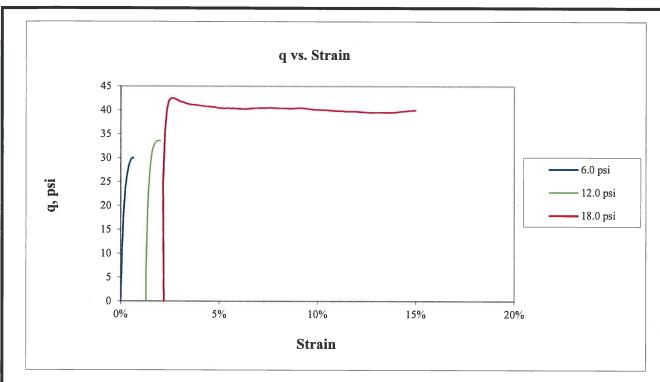
FLEXIBLE WALL PERMEABILITY

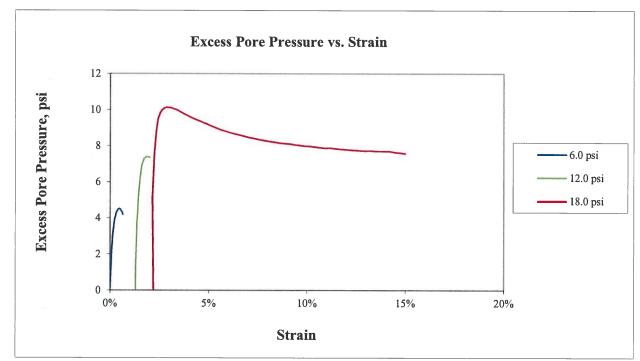

PROJECT TITLE	FTN/ENT	ERGY WHITI	E BLUFF/AR	Board #	8	COMMENTS			
PROJECT NUMBER	18103173	3		Flow Pump	2				
SAMPLE ID	B-5		10.0-12.0'	Flow Pump Speed	11				
SAMPLE TYPE	UD			Technician	FT	1		_	
Sample Data, Initial				Sample Data, Final					1
Height, inches	3.000	B-Value, f	1.00	Height, inches	3.004			Sample	Sample
Diameter, inches	2.836	Cell Pres.	88.0	Diameter, inches	2.898	WATER CONTEN	TS	Initial	Final
Area, cm²	40.75	Bot, Pres.	80.0	Area, cm ^z	42.56	Wt Soil & Tare, i	g	663.16	756.65
Volume, cm ³	310.55	Top Pres.	80.0	Volume, cm ³	324.70	Wt Soil & Tare, f	g	566.46	648.69
Aass, g	663.16	Tot. B.P.	80.0	Mass, g	674.45	Wt Tare	g	0.00	82.40
Moisture Content, %	17.07	Head, max.	135.05	Moisture Content, %	19.06	Wt Moisture Lost	g	96.70	107.96
Dry Density, pcf	113.82	Head, min.	135.05	Dry Density, pcf	108.86	Wt Dry Soil	g	566.46	566.29
pec. Gravity (assumed)	2,700	Max. Grad.	17.70	Volume Solids, cm	209.80	Water Content	%	17.07%	19.06%
olume Solids, cm ³	209.80	Min. Grad.	17.70	Volume Voids, cm ³	114.90				1
olume Voids, cm3	100.75			Void Ratio	0.55				
oid Ratio	0.48			Saturation, %	94.0%	DESCRIPTION			
Saturation, %	96.0%					SILTY CLAY, som	e fine to co	arse sand, trace fine gravel;	light brown.

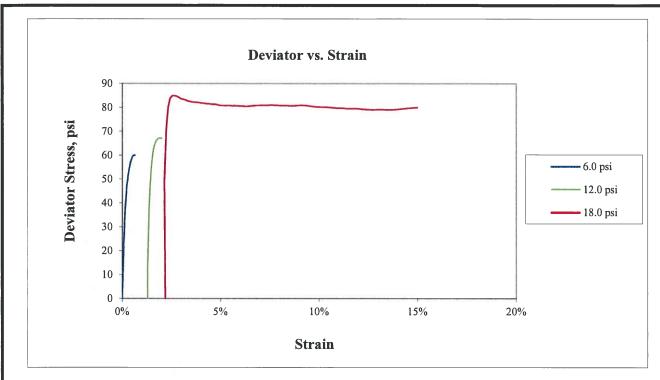

		TIM	E FUNCTIO	ONS, SECO	NDS			dP					
DATE	DAY	HOUR	MIN	TEMP (°C)	dt (min)	dt,acc (min)	dt (sec)	dt,acc (sec)	Reading (psi)	Head (cm)	Gradient	Permeability (cm/sec)	
06/25/18	43276	12	0	21.7	0	0	0	0	1.92	135.05	17.70	1.5E-08	
06/25/18	43276	12	5	21.7	5	5	300	300	1.92	135.05	17.70	1.5E-08	
06/25/18	43276	12	10	21.7	5	10	300	600	1.92	135.05	17.70	1.5E-08	
06/25/18	43276	12	15	21.7	5	15	300	900	1.92	135.05	17.70	1.5E-08	*
06/25/18	43276	12	20	21.7	5	20	300	1200	1.92	135.05	17.70	1.5E-08	*
06/25/18	43276	12	25	21.7	5	25	300	1500	1.92	135.05	17.70	1.5E-08	*
06/25/18	43276	12	30	21.7	5	30	300	1800	1.92	135.05	17.70	1.5E-08	*

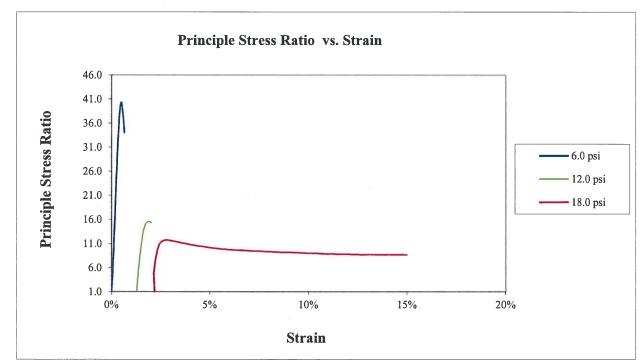

*TRANSCRIBED FROM ORIGINAL DATA SHEETS

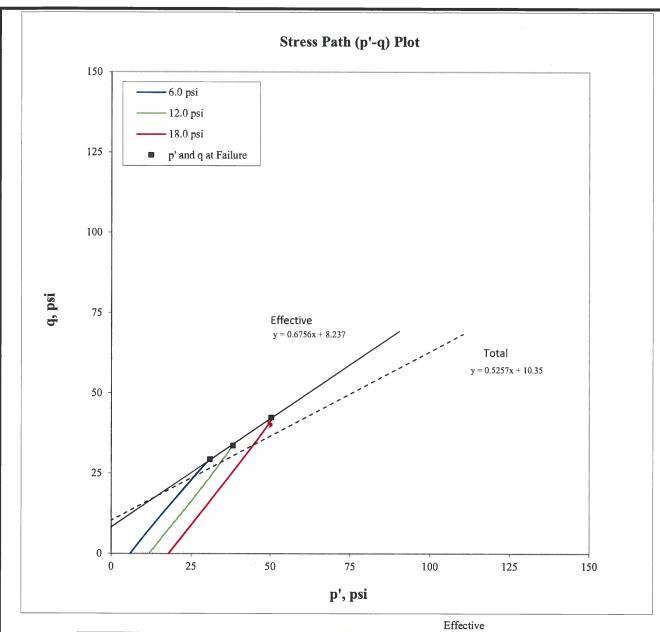
PERMEABILITY REPORTED AS ** 1.5E-08 cm/sec **


APPROVE

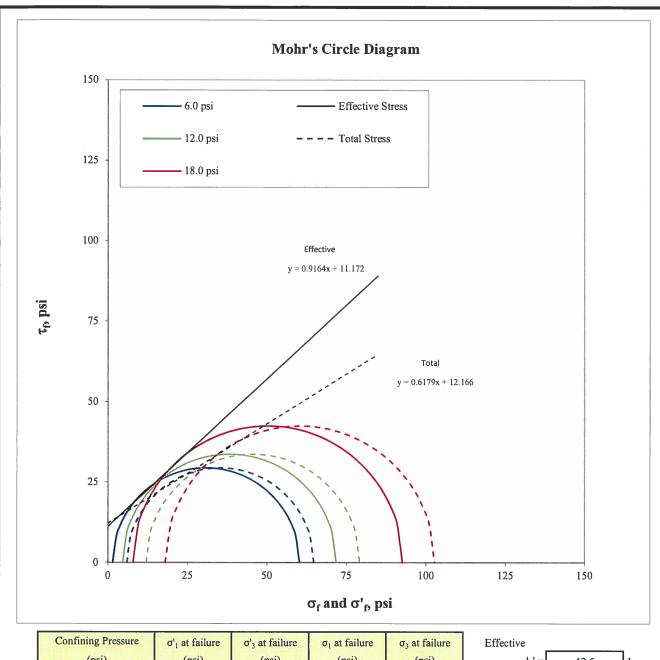





	Boring or Test Pit:	B-7		Boring or Test Pit:			Boring or Test Pit:			
	Sample:	1		Sample:	:		Sample:			
	Depth:	5.0-7.0	ft	Depth:	;		Depth:			
	Point No.:	1		Point No,:			Point No.:			
		Initial								
	Length =	6.041	in	Length =	6.023		Length =	5.966		
	Diameter =	2.848	in	Diameter =	2.883		Diameter =	2.897		
	Wet Mass =	2.811	lb	Wet Mass =	:		Wet Mass =			
	Area =	6.370	in ²	Area =	;		Area =			
	Volume =	38 484		Volume =			Volume =			
	Specific Gravity =	2.66	(ASTM D854)	Specific Gravity =			Specific Gravity =			
1	Dry Mass of Solids =	2.332	lb	Dry Mass of Solids =			Dry Mass of Solids =			
	Moisture Content =		10	Moisture Content =			Moisture Content =			
	Wet Unit Weight =	126.2	pcf	Wet Unit Weight =						
	•		•	•			Wet Unit Weight =			
	Dry Unit Weight =	104.7	pcf	Dry Unit Weight =			Dry Unit Weight =			
	Void Ratio =	0.58		Void Ratio =			Void Ratio =			
	Percent Saturation =	94%		Percent Saturation =	ē		Percent Saturation =			
		Consoli			r Consolio			Consoli		
	Length =			Length =		in	Length =		in	
	Diameter =		in	Diameter =		ın	Diameter =		in	
	Area =			Area =			Area =		in ² (Meth	od B)
	Volume =	39.326		Volume =	39.326		Volume =	39.326	in ³	
	Moisture Content =			Moisture Content =	1		Moisture Content =	23.2%		
	Wet Unit Weight =			Wet Unit Weight =	:		Wet Unit Weight =	126.3	pcf	
	Dry Unit Weight =			Dry Unit Weight =	:		Dry Unit Weight =	102.5	pcf	
	Void Ratio =			Void Ratio =	:		Void Ratio =	0.62	•	
	Percent Saturation =			Percent Saturation =	E		Percent Saturation =	100%		
	B Parameter =	0.96		B Parameter =			B Parameter =			
	Shear Rate =		/min.	Shear Rate =		/min.	Shear Rate =		/min.	
	t ₅₀ =	1.2	min.	t ₅₀ =	0.9	min.	$t_{50} =$	0.8	min.	
	Strain at Failure =	0.5%		Strain at Failure =	1.9%		Strain at Failure =	2.8%		
	Cell Pressure =	66.0	psi	Cell Pressure =	72.0	psi	Cell Pressure =	78.0	psi	
	Back Pressure =	60.0	psi	Back Pressure =	60.0	psi	Back Pressure =	60.0	psi	
(Confining Pressure =	6.0	psi	Confining Pressure =			Confining Pressure =		-	
	_	-	: (SM) SILTY SAN LL = 34	ND, fine to coarse, some	e fine grave PI =		(407747410)			
	Atterberg			PL = 26			(ASTM D4318)			
	Percent fir		3/4 in. = 100.0%			40.0%	(ASTM D422, refer to separate	report to	r gradation	curve)
	Specimen		X Intact	Reconstit						
	Moisture f		Cutting	-	ecimen					
	Saturation		X Wet	Dry		,				
	Failure cri	terion:	$X = (\sigma'_1/\sigma'_3)_{rr}$	$(\sigma'_1 - \sigma'_3)_{max}$		% strain				
	Membrane	e effect:	X Correct	tedNot Corre	ected					
			_	_						
	Coldon	A ssc -	otos Inc	Title:						
			ates Inc.			MOD	IFIED (Multi-Stage) - ASTM	D4767		
C!		ıta, Ge	or gra	CONS	SOLIDAT	ED UND	RAINED TRIAXIAL COMPR		TEST RE	PORT
Shor	t Title: FTN/ENTER(GY WHI	ΓE BLUFF/AR	1			SAMPLE AND TEST DATA			
SHOT				Technicia	an:	Reviewe	d: Start Date:	Job Nun	ıber:	Figur
				TOTAL (1)	PWM	I IA	. [1
				[F1/1	1 44 141					
				Check:		Approve	d:			ľ
mple:	R-7	UD 5.	0-7.0'	Check:	W/G	Approve	d: 8/29/2018	191	03173	1



Golder Associates Inc. Atlanta, Georgia	CONSOLID	MODIFIED (Multi-Stage) - ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT							
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR		q AND E	XCESS PORE PR	ESSURE PLOTS					
Sample:	Technician: FT/PWM Check:	Reviewed: Approved:	Start Date:	Job Number:	Figure:				
B-7 UD 5.0-7.0'	/W/		8/29/2018	18103173	2				


Golder Associates Inc. Atlanta, Georgia	Title: CONSOLID	Title: MODIFIED (Multi-Stage) - ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT							
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	q AND EXCESS PORE PRESSURE PLOTS								
Sample:	Technician: FT/PWM Check:	Reviewed:	Start Date:	Job Number:	Figure:				
B-7 UD 5.0-7.0'	IWA		8/29/2018	18103173	3				

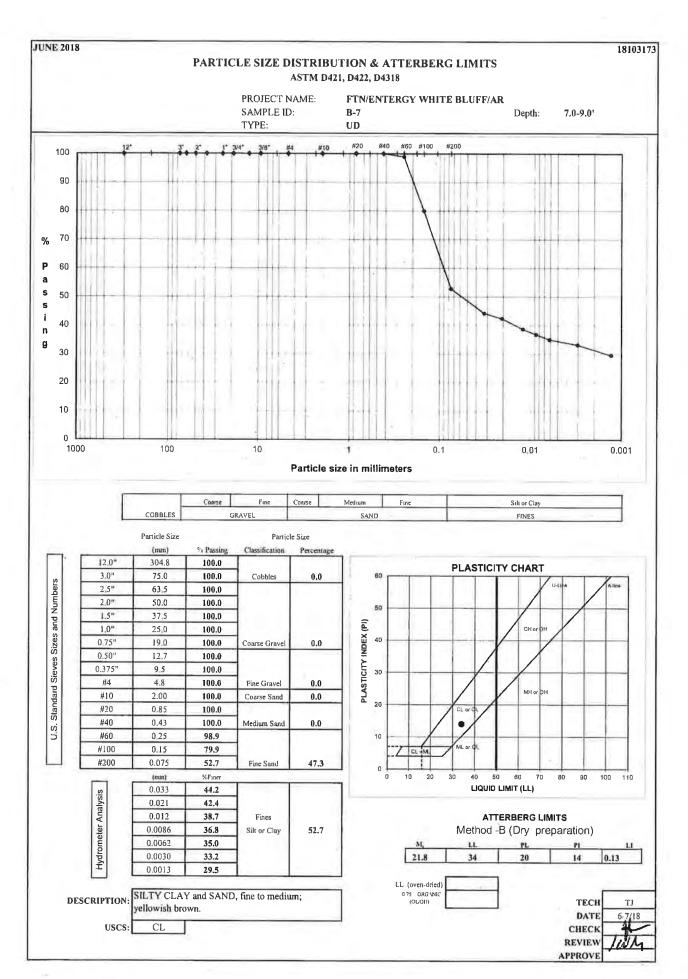
Confining Pressure	p at failure	p' at failure	q at failure
(psi)	(psi)	(psi)	(psi)
6.0	35.4	30.9	29.4
12.0	45.6	38.2	33.6
18.0	60.4	50.3	42.4

Effectiv	e		_
	α'=	34.0	degree
	a' =	8.2	psi
Total			_
	α=	27.7	degree
	a =	10.3	psi

Golder Associates Inc. Atlanta, Georgia	Title: CONSOLIDA		ED (Multi-Stage) NED TRIAXIAL	- ASTM D4767 COMPRESSION TEST I	REPORT		
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR			STRESS PATH PLOT				
Sample:	Technician: FT/PWM Check:	Reviewed: Approved:	Start Date:	Job Number:	Figure:		
B-7 UD 5.0-7.0'	164/4		8/29/2018	18103173	4		

Confining Pressure (psi)	σ' ₁ at failure (psi)	σ' ₃ at failure (psi)	σ ₁ at failure (psi)	σ ₃ at failure (psi)
6.0	60.2	1.5	64.7	6.0
12.0	71.8	4.6	79.2	12.0
18.0	92.7	7.9	102.8	18.0

Golder Associates Inc.


Title:

Effective $\phi' = \begin{bmatrix} 42.5 & \text{degree} \\ \mathbf{c'} = 11.2 & \text{psi} \end{bmatrix}$ Total $\phi = \begin{bmatrix} 31.7 & \text{degree} \\ \mathbf{c} = 12.2 & \text{psi} \end{bmatrix}$

Atlanta, Georgia	CONSOLID		IED (Multi-Stage) .INED TRIAXIAL	- ASTM D4767 COMPRESSION TES	T REPORT
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR		MO	OHR'S CIRCLE I	DIAGRAM	
Sample:	Technician: FT/PWM Check:	Reviewed: Approved:	Start Date:	Job Number:	Figure:
B-7 UD 5.0-7.0'	MNA	1	8/29/2018	18103173	5

Golder Associates Inc. Atlanta, Georgia	Title:	MODIFIED (OLIDATED UNDRAINEL	Multi-Stage) - ASTM D47					
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	SPECIMEN PHOTOGRAPH - Single Specimen							
Sample:	Technician: FT/PWM Check:	Reviewed:	Start Date:	Job Number:	Figure:			
B-7 UD 5.0-7.0'	PW1,		8/29/2018	18103173	6			

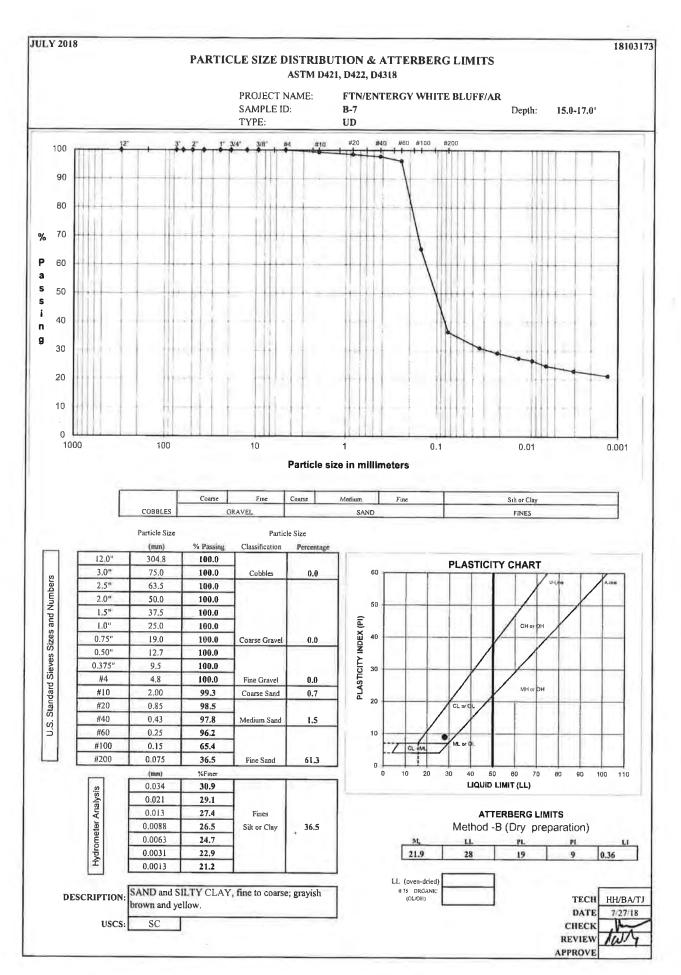
FLEXIBLE WALL PERMEABILITY ASTM D 5084

METHOD D, CONSTANT RATE OF FLOW

FTN/ENTERGY WHITE BLUFF/AR					
18103173					
B-7	7.0-9.0'				
UD					
	18103173 B-7				

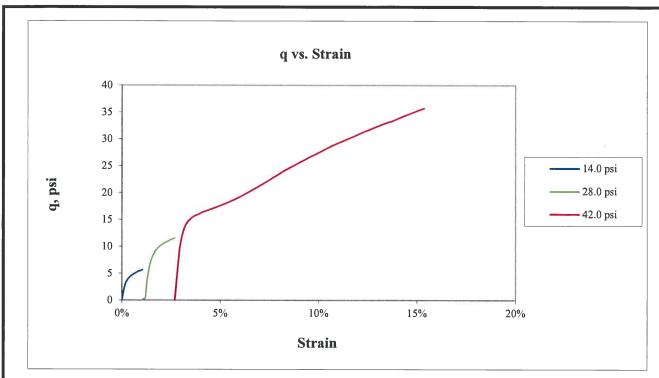
Board #	15
Flow Pump	2
low Pump Speed	7
Technician	FT

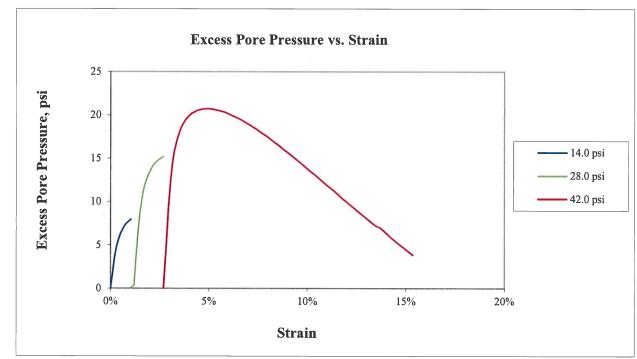
COMMENTS			
	1		
- 1			

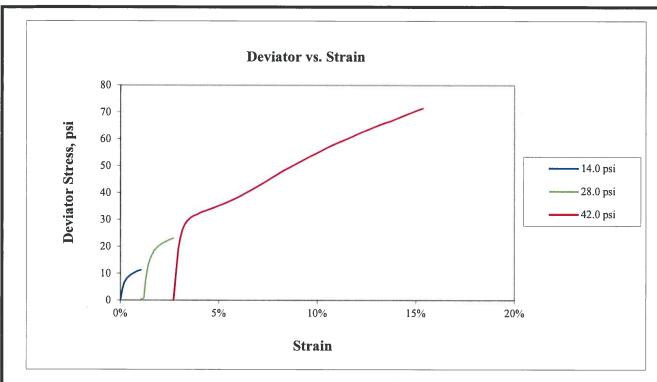

Sample Data, Initial				Sample Data, Final						
Height, inches	3.000	B-Value, f	0.98	Height, inches	3.001			Sample		Sample
Diameter, inches	2.883	Cell Pres.	88.0	Diameter, inches	2.874	WATER CONTENT	S	Initial		Final
Area, cm²	42.12	Bot. Pres.	80.0	Area, cm²	41.85	Wt Soil & Tare, i	g	614.74		714.76
Volume, cm ³	320.92	Top Pres.	80.0	Volume, cm ³	319.03	Wt Soil & Tare, f	g	504.72		586.83
Mass, g	614,74	Tot. B.P.	80.0	Mass, g	632.69	Wt Tare	g	0.00		82.29
Moisture Content, %	21.80	Head, max.	61.90	Moisture Content, %	25.36	Wt Moisture Lost	g	110.02		127.93
Dry Density, pcf	98.14	Head, min.	61.90	Dry Density, pcf	98.72	Wt Dry Soil	g	504.72		504.54
Spec. Gravity (assumed)	2.700	Max. Grad.	8.12	Volume Solids, cm ³	186.93	Water Content	%	21.80%		25.36%
Volume Solids, cm ³	186.93	Min. Grad.	8.12	Volume Voids, cm3	132.10					17
Volume Voids, cm ³	133.99			Void Ratio	0.71					
Void Ratio	0.72			Saturation, %	96.9%	DESCRIPTION				
Saturation, %	82.1%					SILTY CLAY and SA	AND, fine	to medium; yellov	vish brown.	

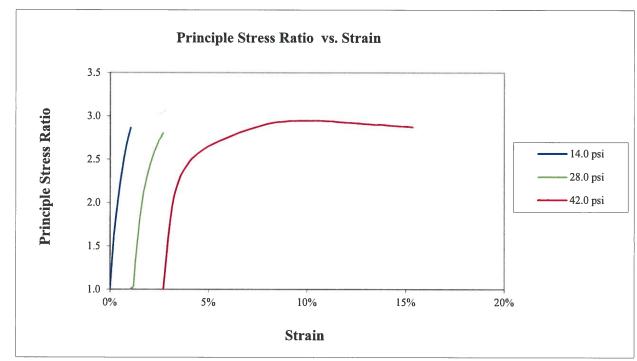
		TIM	E FUNCTIO	ONS, SECO	NDS			dP	P			
DATE	DAY	HOUR	MIN	TEMP (°C)	dt (min)	dt,acc (min)	dt (sec)	dt,acc (sec)	Reading (psi)	Head (cm)	Gradient	Permeability (cm/sec)
06/08/18	43259	14	30	21.8	0	0	0	0	0.88	61.90	8.12	6.7E-07
06/08/18	43259	14	35	21.8	5	5	300	300	0.88	61.90	8.12	6.7E-07
06/08/18	43259	14	40	21.8	5	10	300	600	0.88	61.90	8.12	6.7E-07
06/08/18	43259	14	45	21.8	5	15	300	900	0.88	61.90	8.12	6.7E-07 *
06/08/18	43259	14	50	21.8	5	20	300	1200	0.88	61.90	8.12	6.7E-07 *
06/08/18	43259	14	55	21.8	5	25	300	1500	0.88	61.90	8.12	6.7E-07 *
06/08/18	43259	15	0	21.8	5	30	300	1800	0.88	61.90	8.12	6.7E-07 *

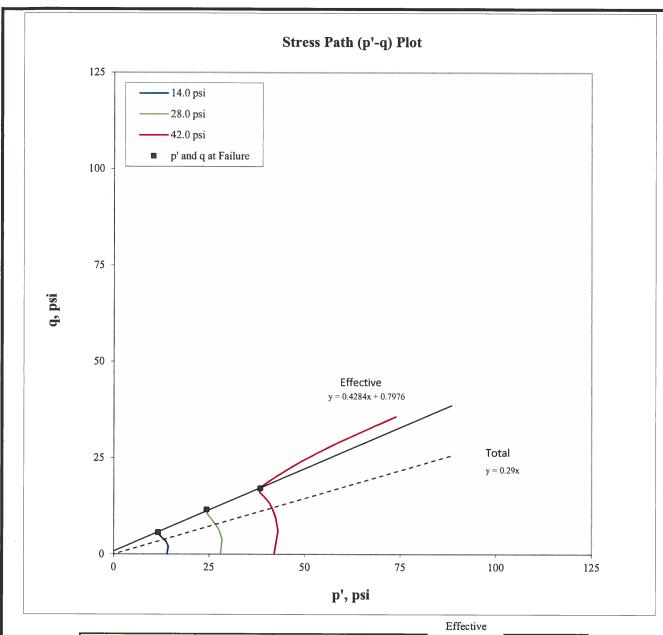
*TRANSCRIBED FROM ORIGINAL DATA SHEETS


PERMEABILITY REPORTED AS ** 6.7E-07 cm/sec **

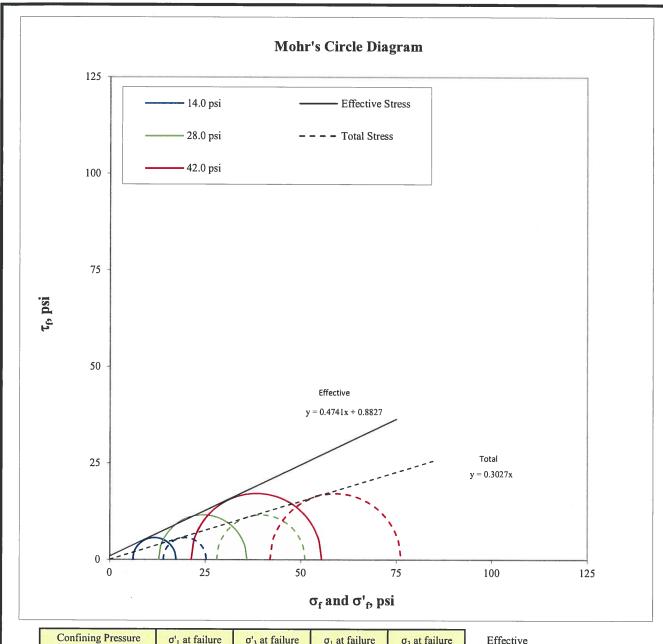

DATE 6/8/18
CHECK
REVIEW / APPROVE


SPECIFIC GRAVITY OF SOILS **ASTM D-854** PYCNOMETER METHOD PROJECT TITLE FTN/ENTERGY WHITE BLUFF/AR PROJECT NUMBER 18103173 SAMPLE ID B-7 SAMPLE TYPE UD TESTED FOR SAMPLE DEPTH Gs 15.0-17.0 MOISTURE CONTENT OF MATERIAL PASSING THE #4 SIEVE Weight Soil and Tare, Initial (gm) 166.24 Weight Soil and Tare, Final (gm) 165.14 Weight Of Tare (gm) 42.93 Weight Of Moisture (gm) 1.10 Weight Of Dry Soil (gm) 122.21 Hygroscopic Moisture In (%) 0.9% Test Method Method - B **Pycnometer Number** 11 Weight Pycnometer Empty (gm) 159.54 Volume of Pycnometer (gm) 499.57 Weight Pycnometer and Water (gm) 658.13 Mass of Pycnometer and Water at the test Temperture 657.81 Observed Temperature (Tb), for (Mb) In Degrees C 23.50 Weight of Soil, Water & Pycnometer (gm) (B) 688.66 Temperature, C 23.5 Density of water @ tested temperature (g/ml) 1.00 Tare Number Weight of Dry Soil Slurry plus Tare 49.87 Weight of Tare 0.00 Weight of Dry Soil (gm) (C) 49.87 Temperature Coefficient 0.9992 2.620 SPECIFIC GRAVITY (G) $G @ 20^{\circ} C = [C/(A-(B-C))]*(K)$ **METHOD - A** WET METHOD METHOD OF AIR REMOVAL **METHOD - B** OVEN-DRIED METHOD VACUUM Recommended Mass for Test Specimen Specimen Dry Mass when using 500 ml Soil Type Pycnometer SP, SP-SM 100 SP-SC, SM, SC 75 SILT OR CLAY 50 **TECH** FT DATE 7/31/18 **CHECK** REVIEW APPROVE


	Boring or Test Pit: Sample: Depth:) ft	Boring o	or Test Pit: Sample: Depth:				Boring or Test Pit: Sample: Depth:			
	Point No.:	1			Point No.:				Point No.:			
		Initial										
	Length =	6.012	in		Length =	5.936			Length =	5.798		
	Diameter =	2.877	in	D	Diameter =	2.889			Diameter =	2.923		
	Wet Mass =	2.817	lb	W	et Mass =				Wet Mass =			
	Area =		in ²		Area =				Area =			
	Volume =	39.083			Volume =				Volume =			
	Specific Gravity =	2.62	(ASTM D85	*	Gravity =				Specific Gravity =			
	ry Mass of Solids =	2.311	lb	Dry Mass o				Ι	Ory Mass of Solids =			
	Moisture Content =				Content =				Moisture Content =			
	Wet Unit Weight =	124.5	pcf		Weight =				Wet Unit Weight =			
	Dry Unit Weight =	102.2	pcf	-	Weight =				Dry Unit Weight =			
	Void Ratio =	0.60		Vo Percent Sa	id Ratio =				Void Ratio =			
F	Percent Saturation =	96%		Percent Sa	turation =				Percent Saturation =			
	After	· Consoli	dation		After	Consolio	lation		After	Consolic	lation	
	Length =		in		Length =		in		Length =			
	Diameter =	2.889	in	Γ	Diameter =	2.923	in		Diameter =	2.947	in	
	Area =	6.556			Area =	6.712			Area =		in ² (Meth	od B)
	Volume =	38.914			Volume =	38.914			Volume =	38.914	in ³	
	Moisture Content =			Moisture	Content =				Moisture Content =	22.5%		
	Wet Unit Weight =			Wet Unit	Weight =				Wet Unit Weight =	125.8	pcf	
	Dry Unit Weight =			Dry Unit	Weight =				Dry Unit Weight =	102.6	pcf	
	Void Ratio =			Vo	id Ratio =				Void Ratio =	0.59		
F	Percent Saturation =			Percent Sa	turation =				Percent Saturation =	100%		
	B Parameter =	1.00		B Pa	nrameter =				B Parameter =			
	Shear Rate =	0.094%	/min.	Sh	ear Rate =	0.100%	/min.		Shear Rate =	0.099%	/min.	
	t ₅₀ =	1.0	min.		t ₅₀ =	0.7	min.		t ₅₀ =	0.8	min.	
	Strain at Failure =	1.0%		Strain a	t Failure =	2.7%			Strain at Failure =	4.7%		
	Cell Pressure =	64.0	mai.	Call	Decaration —	79.0			Call Brangura =	02.0	i	
	Back Pressure =	64.0	psi :		Pressure =	78.0	psi		Cell Pressure =		psi	
С	onfining Pressure =	50.0 14.0	psi psi	Confining	Pressure = Pressure =	50.0 28.0	psi psi	(Back Pressure = Confining Pressure =	50.0 42.0	psi psi	
	-						58		-			
1	_	-	LL = 28	and SILTY CLAY PL =		arse; gray PI =		(ASTM D				
	Atterberg Percent fir		3/4 in. = 10		190.0%		-	`	94318) 9422, refer to separate	roport fo	r amdation	aum(a)
	Specimen			tact	Reconstitu		30.376	(ASTM D	1422, Telef to Separate	report to	giauation	curve
	Moisture f	- 1		attings X	Entire spec							
	Saturation				Dry	Difficit						
	Failure cri			1/0'3) _{max}	$(\sigma'_1 - \sigma'_3)_{\text{max}}$		% strain					
	Membrane		——	orrected	Not Correc	cted						
····	Golder	Associ	ates Inc.		Title:							
		ita, Ge						•	ulti-Stage) - ASTM			
ob Short		iu, U	A1 21tt		CONS	OLIDAT	ED UND		TRIAXIAL COMPR AND TEST DATA		TEST RE	PORT
	FTN/ENTER	GY WHI	TE BLUFF/A	R								
ample:					Technicia		Reviewe	ed:	Start Date:	Job Num	ıber:	Figure
					FT/P	WM						
					Check:	NY	Approv	ed:				
	B-7	UD 15.0	-17.0'		ı /'		1		7/10/2018	1810	03173	1



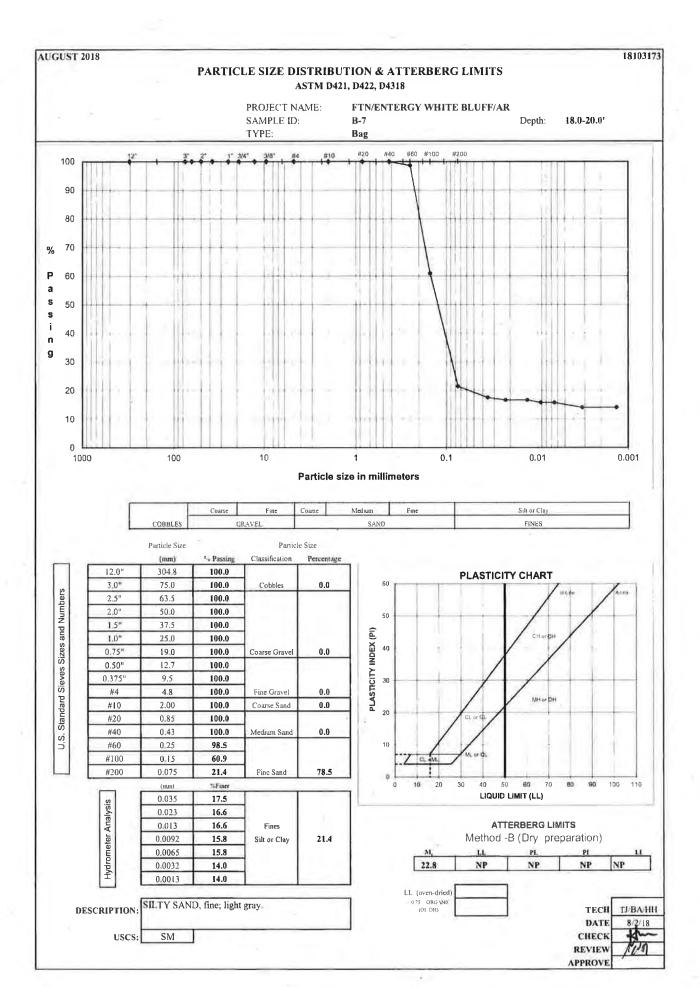
Golder Associates Inc. Atlanta, Georgia	Title: CONSOLID		ED (Multi-Stage) NED TRIAXIAI	- ASTM D4767 COMPRESSION TEST	REPORT		
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	q AND EXCESS PORE PRESSURE PLOTS						
Sample:	Technician: FT/PWM Check:	Reviewed:	Start Date:	Job Number:	Figure:		
B-7 UD 15.0-17.0'	INM		7/10/2018	18103173	2		

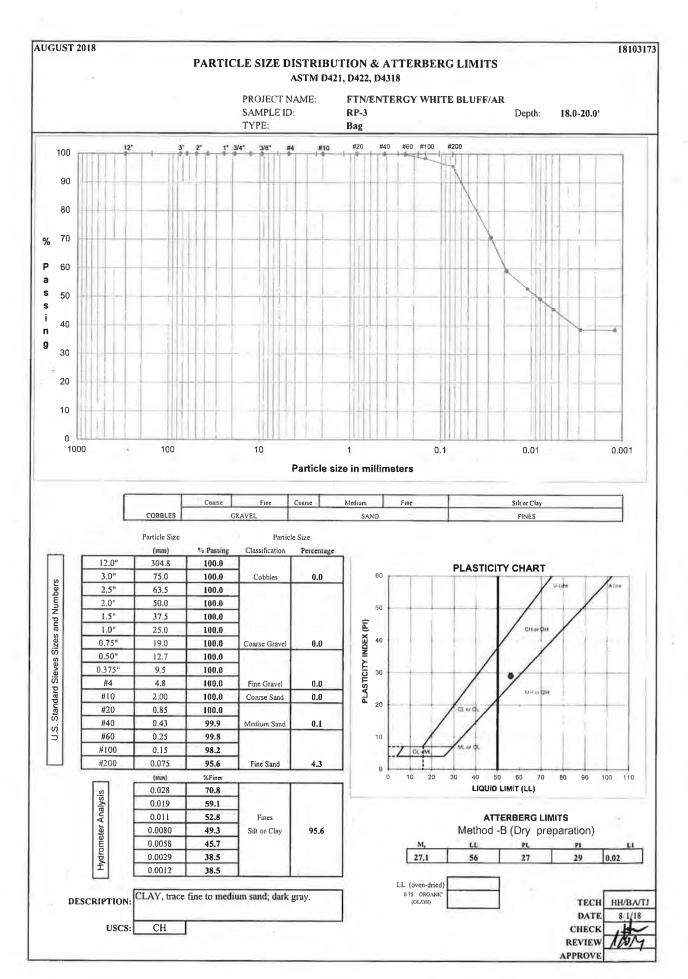


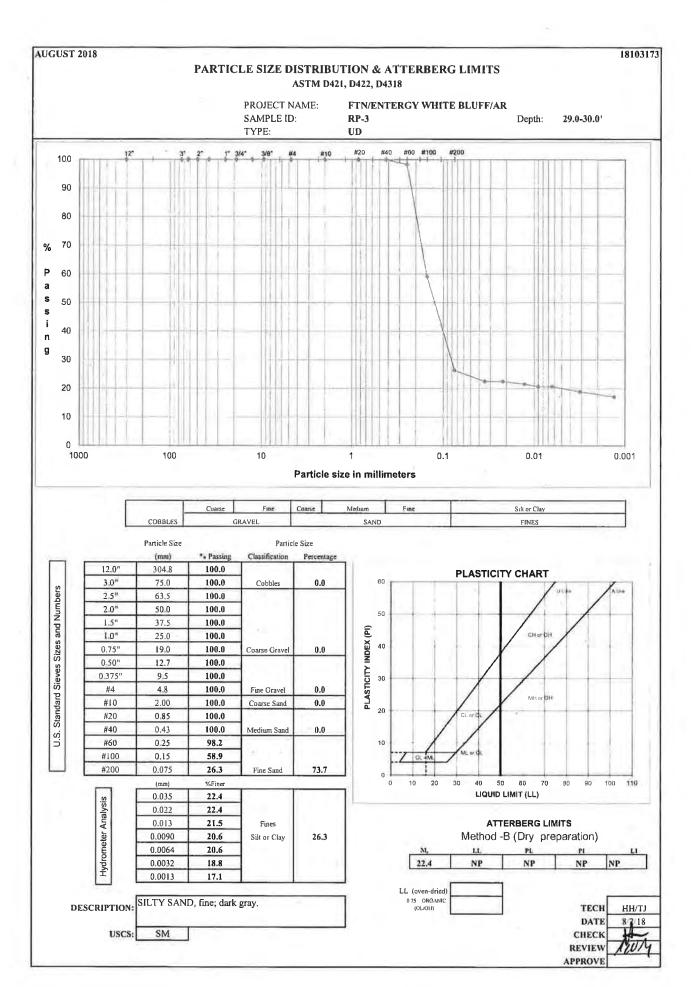
Golder Associates Inc. Atlanta, Georgia		Title: MODIFIED (Multi-Stage) - ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT q AND EXCESS PORE PRESSURE PLOTS				
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR						
Sample:	Technician: FT/PWM Check:	Reviewed:	Start Date:	Job Number:	Figure:	
B-7 UD 15.0-17.0'	IWA		7/10/2018	18103173	3	

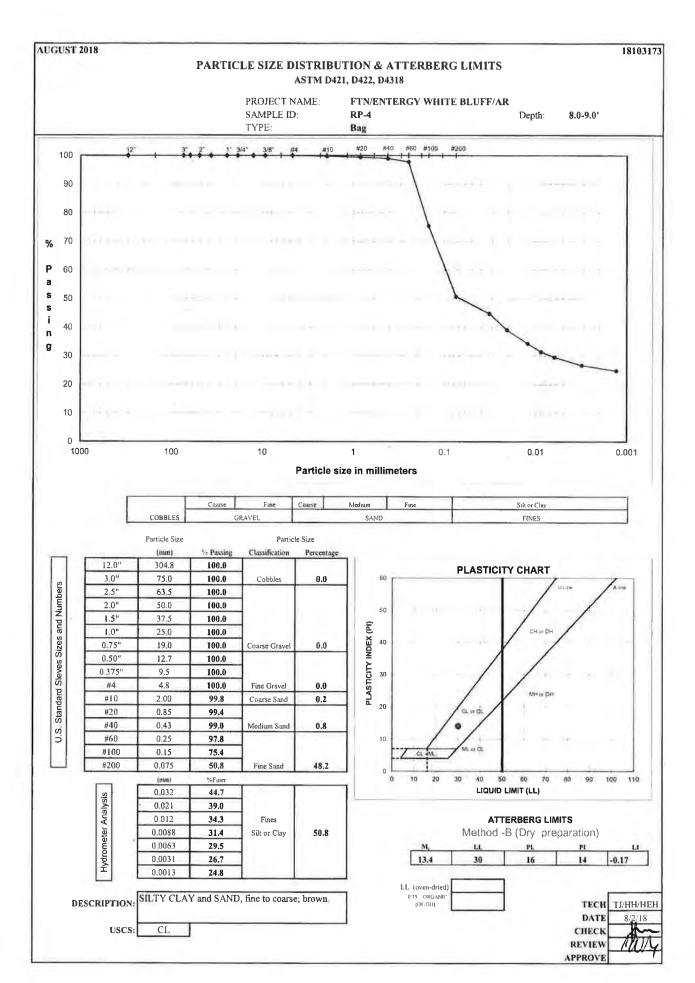
Confining Pressure	p at failure	p' at failure	q at failure
(psi)	(psi)	(psi)	(psi)
14.0	19.6	11.7	5.6
28.0	39.6	24.4	11.6
42.0	59.1	38.4	17.1

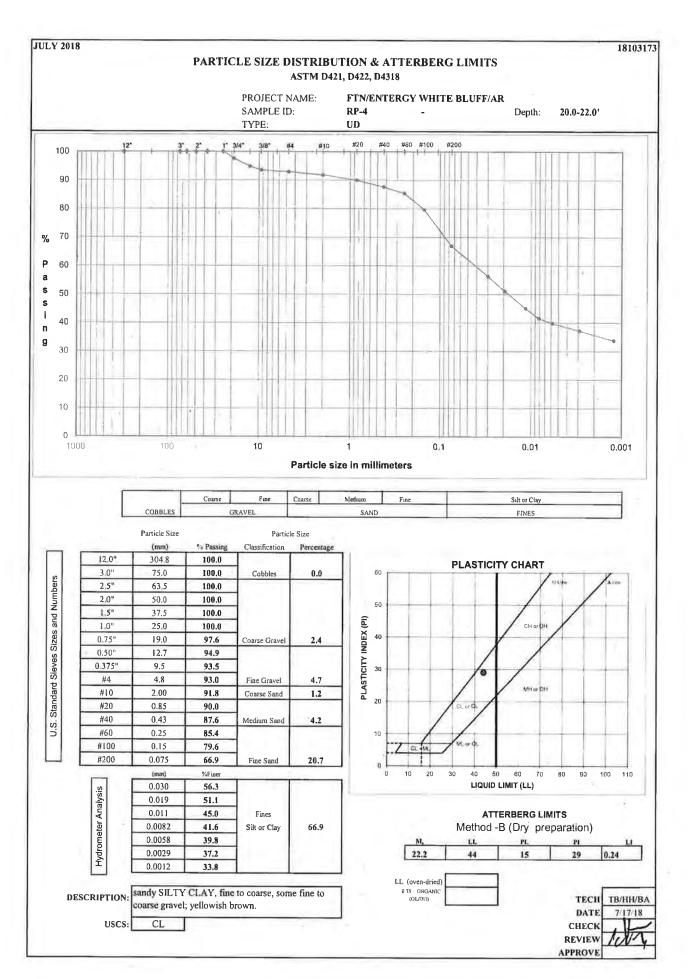
Golder Associates Inc. Atlanta, Georgia	Title: CONSOLID	Title: MODIFIED (Multi-Stage) - ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT				
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR		STRESS PATH PLOT				
Sample:	Technician: FT/PWM Check:	Reviewed:	Start Date:	Job Number:	Figure:	
B-7 UD 15.0-17.0'	IWA		7/10/2018	18103173	4	

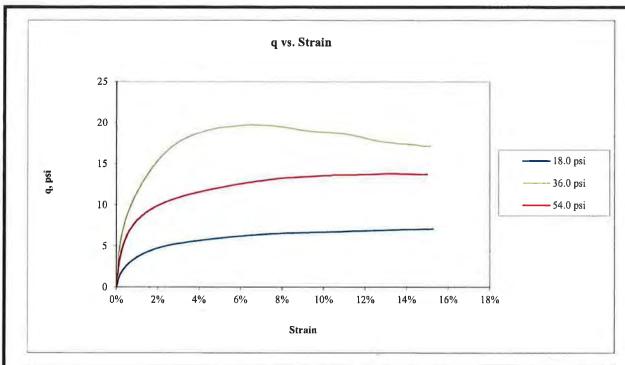

Confining Pressure	σ' ₁ at failure	σ' ₃ at failure	σ ₁ at failure	σ ₃ at failure
(psi)	(psi)	(psi)	(psi)	(psi)
14.0	17.3	6.0	25.3	14.0
28.0	35.9	12.8	51.1	28.0
42.0	55.5	21.3	76.2	42.0

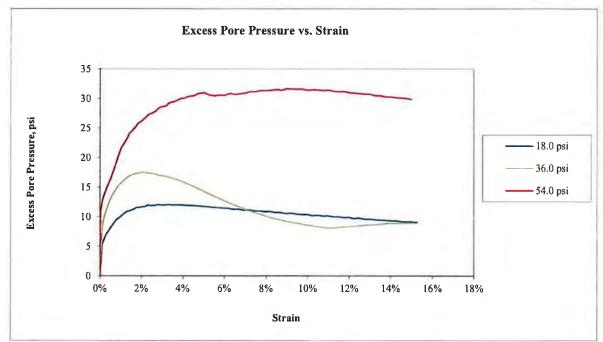

Effective $\phi' = \begin{array}{ccc} & 25.4 & \text{degree} \\ & \mathbf{c'} = & 0.9 & \text{psi} \end{array}$ Total $\phi = \begin{array}{ccc} & 16.9 & \text{degree} \\ & \mathbf{c} = & 0.0 & \text{psi} \end{array}$


Golder Associates Inc. Atlanta, Georgia	Title:	Title: MODIFIED (Multi-Stage) - ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT				
Job Short Title: FTN/ENTERGY WHITE BLUFF/AI	R	MOHR'S CIRCLE DIAGRAM				
Sample:	Technician: FT/PWM Cheçk:		Start Date:	Job Number:	Figure:	
B-7 UD 15.0-17.0'	1W4		7/10/2018	18103173	5	

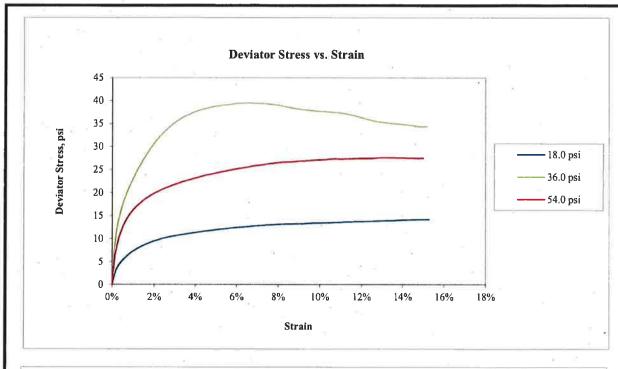


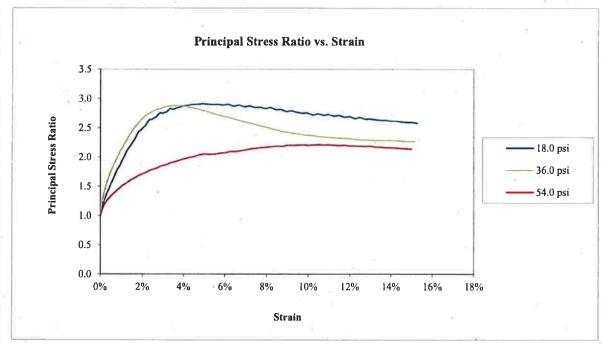

Golder Associates Inc. Atlanta, Georgia	Title:	Title: MODIFIED (Multi-Stage) - ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT				
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	ш.	SPECIMEN	PHOTOGRAPH - Single Spe	cimen		
Sample:	Technician: FT/PWM Check:	Reviewed:	Start Date:	Job Number:	Figure:	
B-7 UD 15.0-17.0'	CHECK: /WIL	Approved:	7/10/2018	18103173	6	

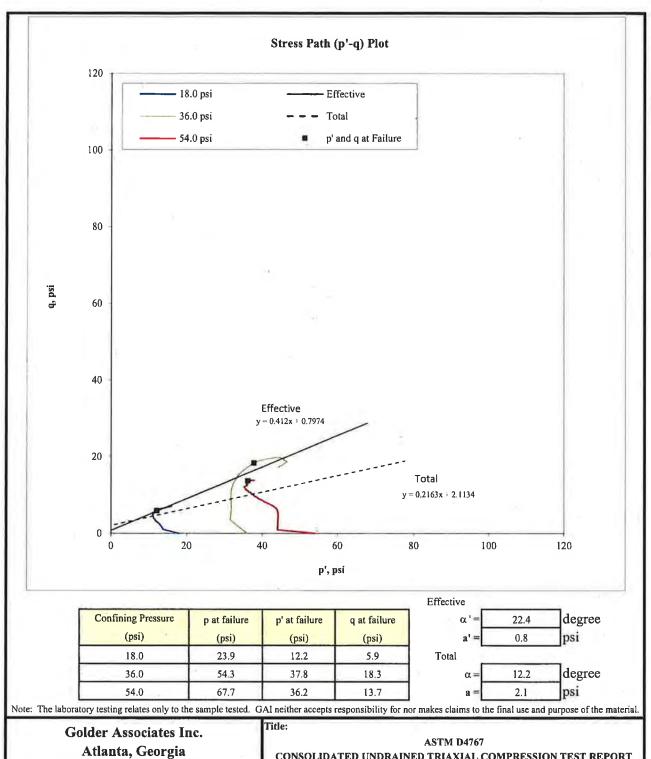




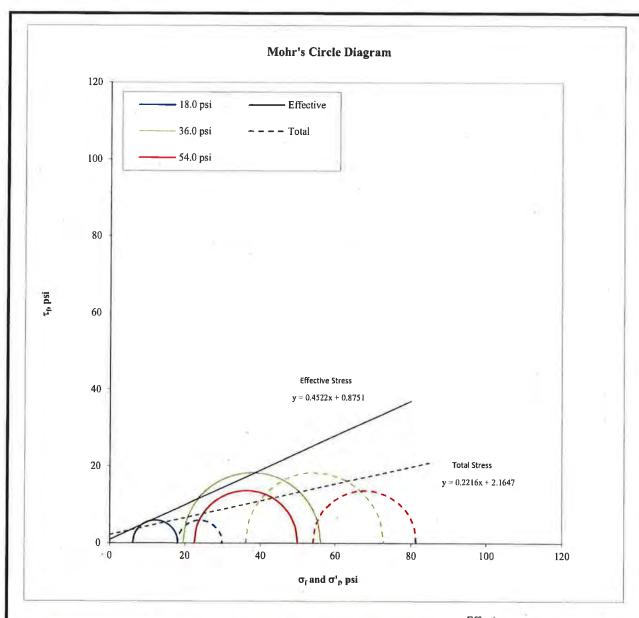
SPECIFIC GRAVITY OF SOILS **ASTM D-854** PYCNOMETER METHOD PROJECT TITLE FTN/ENTERGY WHITE BLUFF/AR PROJECT NUMBER 18103173 SAMPLE ID RP-4 SAMPLE TYPE UD TESTED FOR SAMPLE DEPTH Gs 20.0-22.01 MOISTURE CONTENT OF MATERIAL PASSING THE #4 SIEVE Weight Soil and Tare, Initial (gm) 196.37 Weight Soil and Tare, Final (gm) 192.05 Weight Of Tare (gm) 51.66 Weight Of Moisture (gm) 4.32 Weight Of Dry Soil (gm) 140.39 Hygroscopic Moisture In (%) 3.1% **Test Method** Method - B **Pycnometer Number** 14 Weight Pycnometer Empty (gm) 185.81 Volume of Pycnometer (gm) 499.41 Weight Pycnometer and Water (gm) 684.20 683.75 Mass of Pycnometer and Water at the test Temperture (A) Observed Temperature (Tb), for (Mb) In Degrees C 25.00 Weight of Soil, Water & Pycnometer (gm) (B) 714.40 Temperature, C 25.0 Density of water @ tested temperature (g/ml) 1.00 Tare Number Weight of Dry Soil Slurry plus Tare 48.92 Weight of Tare 0.00 Weight of Dry Soil (gm) (C) 48.92 Temperature Coefficient 0.9988 SPECIFIC GRAVITY (G) 2.674 $G @ 20^{\circ} C = [C/(A-(B-C))]*(K)$ **METHOD - A** WET METHOD METHOD OF AIR REMOVAL **METHOD - B** OVEN-DRIED METHOD VACUUM Recommended Mass for Test Specimen Specimen Dry Mass when using 500 ml Soil Type Pycnometer SP, SP-SM 100 SP-SC, SM, SC 75 SILT OR CLAY 50 TECH BA DATE 7/18/18 CHECK REVIEW


APPROVE


	Boring or Test Pit: Sample:	RP-4 UD		Boring or Test Pit			Boring or Test Pit:	RP-4 UD		
	•	20.0-22.0	n n	Sample	: 20.0-22.	0 #	Sample:	20.0-22.0	e e	
	Point No.:	1	o ii	Point No.		O II	Point No.:	3		
		* * * *								
	T4b	Initial	5.	7 41	Initial		7 .1	Initial		
	Length =		īn	Length =		in ·	Length =			
	Diameter =		in	Diameter =		in	Diameter =		in	
	Wet Mass =		lb in ²	Wet Mass		lb in²	Wet Mass =		b 2	
	Area = Volume =			Area =			Area =		in ²	
					= 39.360			38.559 i		0.54
	Specific Gravity =	2,67	(ASTM D854)	Specific Gravity		(ASTM D854)	Specific Gravity =		(ASTM D	1854)
	Dry Mass of Solids = Moisture Content =	2.261 22.9%	ID	Dry Mass of Solids = Moisture Content =		lb	Dry Mass of Solids =		ID	
			C			c	Moisture Content =		- 6	
	Wet Unit Weight =	124.8	pcf	Wet Unit Weight		pcf	Wet Unit Weight =		ocf	
	Dry Unit Weight =	101.5	pcf	Dry Unit Weight = Void Ratio =		pcf	Dry Unit Weight =	-	ocf	
	Void Ratio =	0.64					Void Ratio =	0.65		
	Percent Saturation =	95%		Percent Saturation =	= 91%		Percent Saturation =	93%		
	A Fear	Consoli	dation	A Ca.	er Consoli	dation	A 54	· Consolida	ution	
			uation in	Atte		dation in	Alter Length =			
	Diameter =	2.862	in	Length = Diameter =		in in	Lengtn = Diameter =		in in	
	Diameter =		in in ² (Method B)			in in ² (Method B)	Diameter = Area =		in in ² (Meth	od D/
	Volume =		in (Welfield B)	Volume =				38.050 i		ou b)
	Moisture Content =		111	Moisture Content =		ш	Moisture Content =		111	
	Wet Unit Weight =	127.7	pcf							
	_	104.4	•	Wet Unit Weight		pcf	Wet Unit Weight =		ocf	
	Dry Unit Weight = Void Ratio =	0.60	pcf	Dry Unit Weight		pcf	Dry Unit Weight =		pcf	
	Percent Saturation =	100%		Void Ratio = Percent Saturation =			Void Ratio =	0.63		
	reicent Saturation –	100%		reiceni Saturation -	- 100%		Percent Saturation =	100%		
	B Parameter =	0 96		B Parameter =	= 0.98		B Parameter =	0.98		
	Shear Rate =		/min.	Shear Rate		/min.	Shear Rate =		min.	
	t ₅₀ =	6.94	min.	t ₅₀ =		min	t ₅₀ =		min.	
	Strain at Failure =	4.9%		Strain at Failure =	3.5%		Strain at Failure =	10.5%		
	Cell Pressure =	68.0	psi	Cell Pressure =	86.0	psi	Cell Pressure =	104.0 p	osi	
	Back Pressure =	50.0	psi	Back Pressure =	50.0	psi	Back Pressure =	50.0	osi	
	Confining Pressure =	18.0	psi	Confining Pressure =	36.0	psi	Confining Pressure =	54.0 į	psi	
	Notes: Sample de Atterberg l Percent fin Specimen Moisture f Saturation Failure cri Membrane	limits: ner: type: from: method: terion:	(CL) sandy SIL LL = 44 3/4 in. = 100% X Intac Cutti X Wet X Corre	Reconstitute	PI = No. 200 = tuted ecimen	= 29 (ASTM	y <mark>ellowish brown.</mark> 1 D4318) 1 D422, refer to separate	e report for g	gradation	curve)
	Golder	Associ	ates Inc.	Title:					_	
	Atlan	ıta, Ge	orgia	CON	SOLIDAT	ΓED UNDRAINEI	ASTM D4767 D TRIAXIAL COMPR	ESSION T	EST RE	PORT
Shor	rt Title:	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	DE DE COMPANIE				LE AND TEST DATA			
	FTN/ENTERO	Y WHI	FE BLUFF/AR	Technic	ian:	Reviewed:	Start Date:	Job Numb	er:	Figure
nple:					M/FT	SIL	/			
nple:					AT AV A B	4		1		
nple:				Chacle		Annroyadı		ŀ		
nple:	RP-4	UD 20.	0-22.0'	Check:	J ja	Approved:	7/17/2018	18103	1173	1

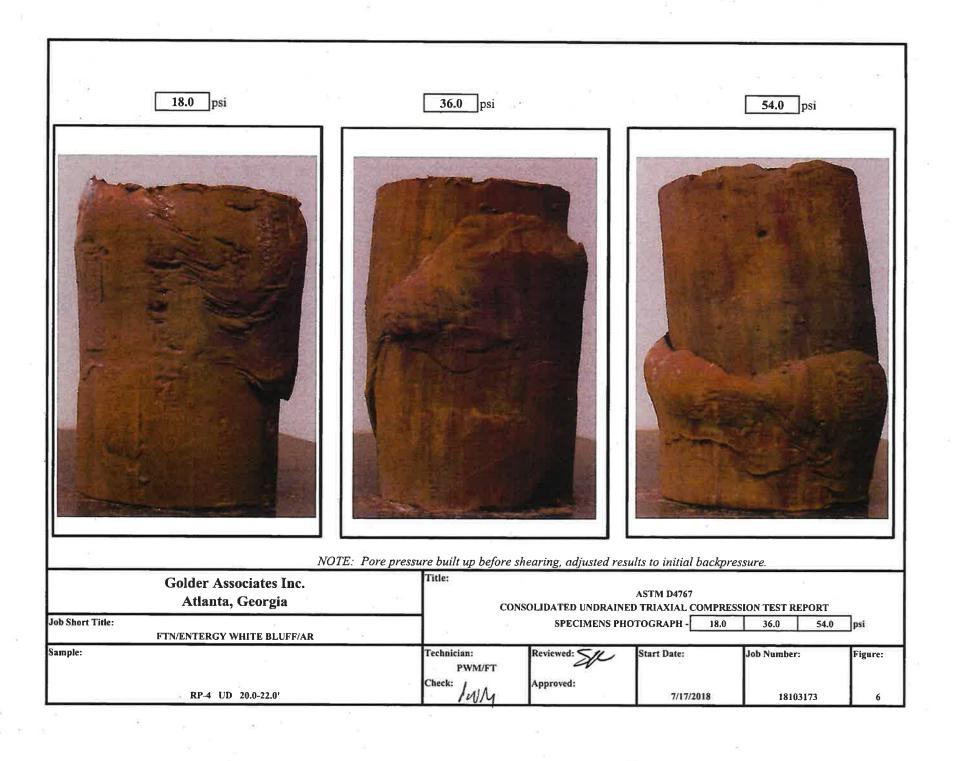


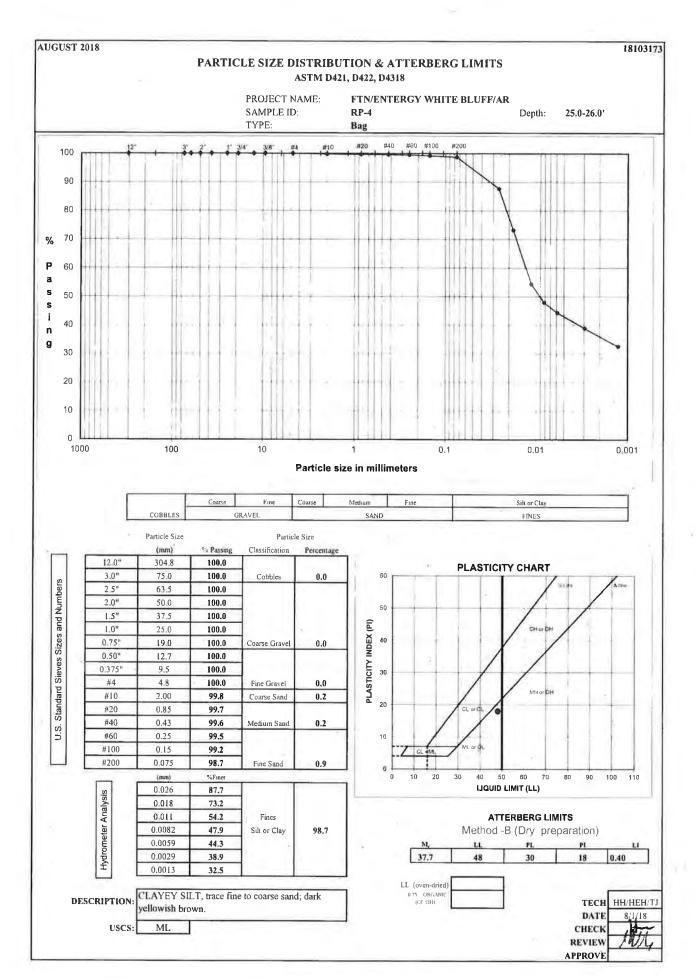
Golder Associates Inc. Atlanta, Georgia	Title: ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT				
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR		q AND EX	KCESS PORE PE	RESSURE PLOTS	
Sample:	Technician: PWM/FT Check:	Reviewed: S/V Approved:	Start Date:	Job Number:	Figure:
RP-4 UD 20.0-22.0'	lun	1	7/17/2018	18103173	2

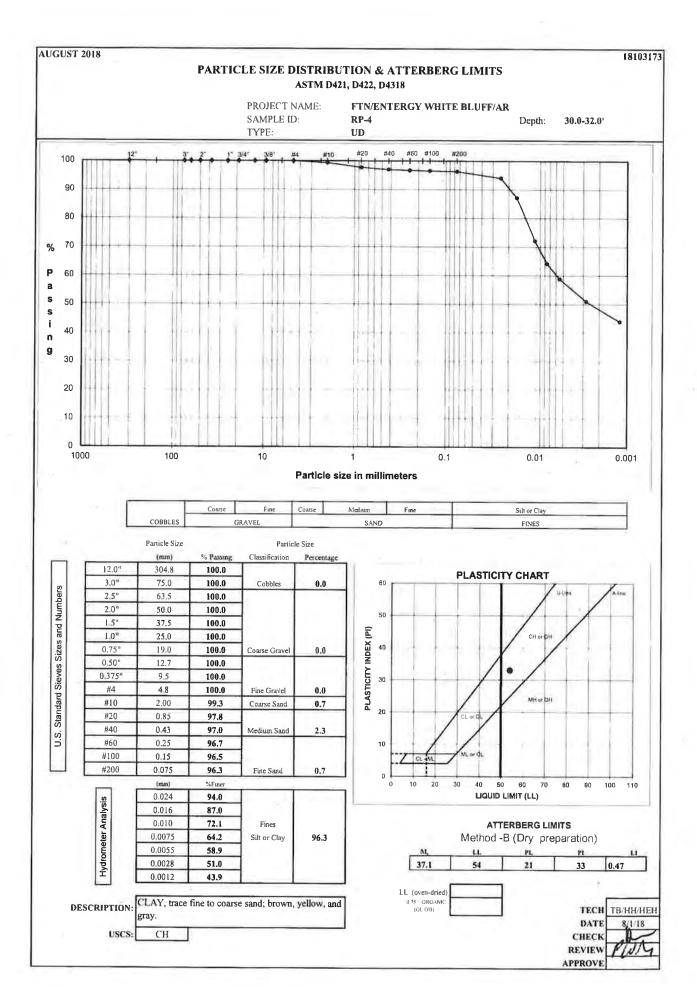


Golder Associates Inc. Atlanta, Georgia	Title:	Title: ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT			
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	DEV	TATOR STRES	SS AND PRINCIP	AL STRESS RATIO PI	LOT
Sample:	Technician: PWM/FT	Reviewed: Approved:	Start Date:	Job Number:	Figure:
RP-4 UD 20.0-22.0'	Check:	Approved:	7/17/2018	18103173	3

Golder Associates Inc. Atlanta, Georgia	Title: ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT				
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	11/20		STRESS PATH	PLOT	
Sample:	Technician: PWM/FT Check:	Reviewed: Approved:	Start Date:	Job Number:	Figure:
RP-4 UD 20.0-22.0'	IWM	, , , , , , ,	7/17/2018	18103173	4




Confining Pressure (psi)	σ' ₁ at failure (psi)	σ' ₃ at failure (psi)	σ ₁ at failure (psi)	σ ₃ at failure (psi)
18.0	18.1	6.2	29.9	18.0
36.0	56.1	19.5	72.6	36.0
54.0	49.9	22.6	81.3	54.0


	φ'=	24.3	degree
	c' =	0.9	psi
Total			
	φ =	12.5	degree
		2.2	psi

Note: The laboratory testing relates only to the sample tested. GAI neither accepts responsibility for nor makes claims to the final use and purpose of the material.

Golder Associates Inc. Atlanta, Georgia	Title: ASTM D4767 CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST REPORT MOHR'S CIRCLE DIAGRAM				
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR					
Sample:	Technician: PWM/FT Check:	Reviewed: Approved:	Start Date:	Job Number:	Figure:
RP-4 UD 20.0-22.0'	MULY		7/17/2018	18103173	5

FLEXIBLE WALL PERMEABILITY **ASTM D 5084**

METHOD D, CONSTANT RATE OF FLOW

PROJECT TITLE
PROJECT NUMBER
SAMPLE ID

SAMPLE TYPE

Saturation, %

FTN/ENTERGY	WHITE BLUFF/AR
18103173	
RP-4	30.0-32.0
LID	

Board #	7
Flow Pump	2
Flow Pump Speed	7
Technician	FT

COMMENTS

3.137	B-Value, f	1.00
2.879	Cell Pres.	90.0
42.00	Bot. Pres.	80.0
334.65	Top Pres.	80.0
589.95	Tot. B.P.	80.0
37.08	Head, max.	123.80
80.25	Head, min.	123.80
2.700	Max. Grad.	15.55
159.40	Min. Grad.	15.55
175.25		
1.10		
	2.879 42.00 334.65 589.95 37.08 80.25 2.700 159.40 175.25	2.879 Cell Pres. 42.00 Bot. Pres. 334.65 Top Pres. 589.95 Tot. B.P. 37.08 Head, max. 80.25 Head, min. 2.700 Max. Grad. 159.40 Min. Grad.

Sample Data, Final
Height, inches
Diameter, inches
Area, cm ²
Volume, cm ³
Mass, g
Moisture Content, %
Dry Density, pcf Volume Solids, cm ³
Volume Voids, cm ³
Void Ratio

Saturation, %

es	3.135
ches	2.878
	41.97
3	334.20
	596.75
ontent, %	38.66
, pcf	80.36
ds, cm	159.40
ds, cm³	174.81
	1.10
%	95.2%

		Sample
WATER CONTENT	rs	Initial
Wt Soil & Tare, i	g	589.95
Wt Soil & Tare, f	g	430.37
Wt Tare	g	0.00
Wt Moisture Lost	g	159.58
Wt Dry Soil	g	430.37
Water Content	%	37.08%

Sample
Final
711.15
544.79
114.47
166.36
430.32
38.66%

Flow Pump Rate

91.1%

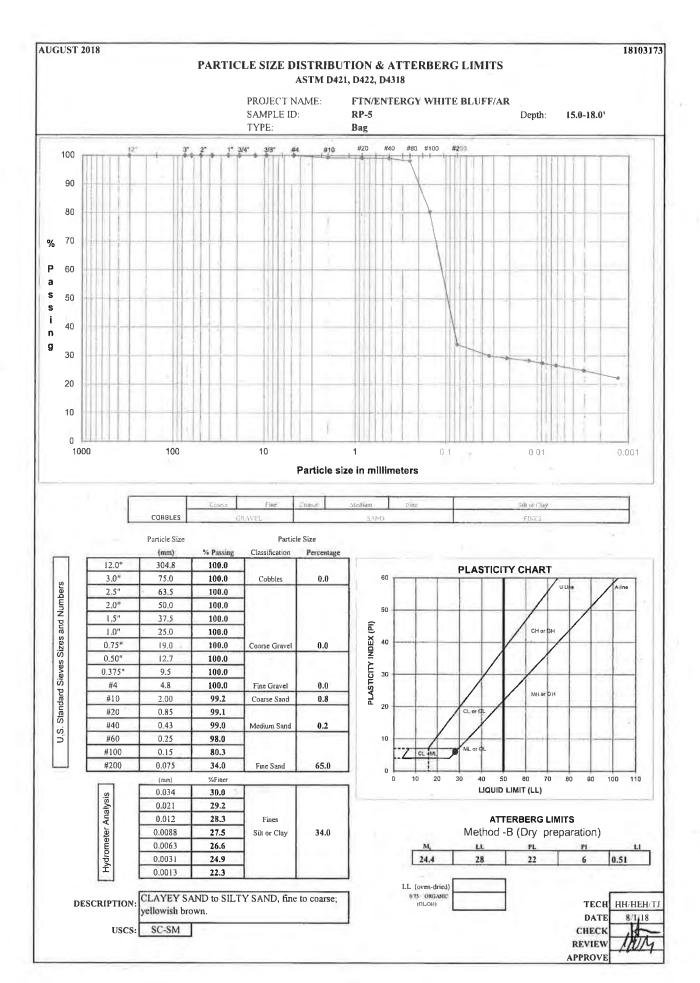
2.38E-04 cm³/sec

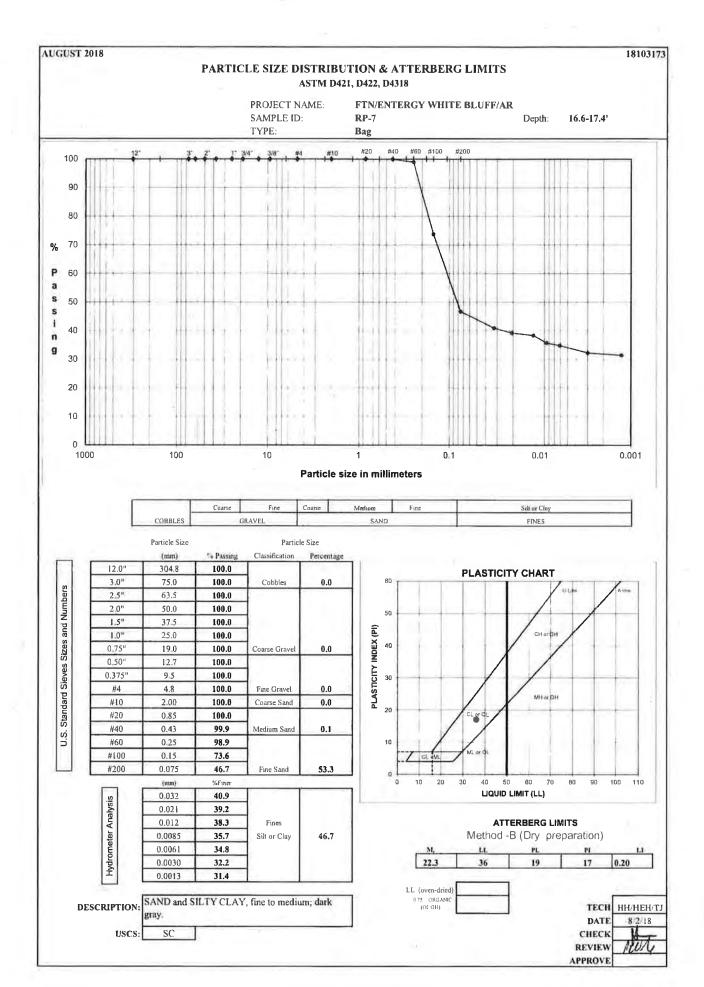
USCS

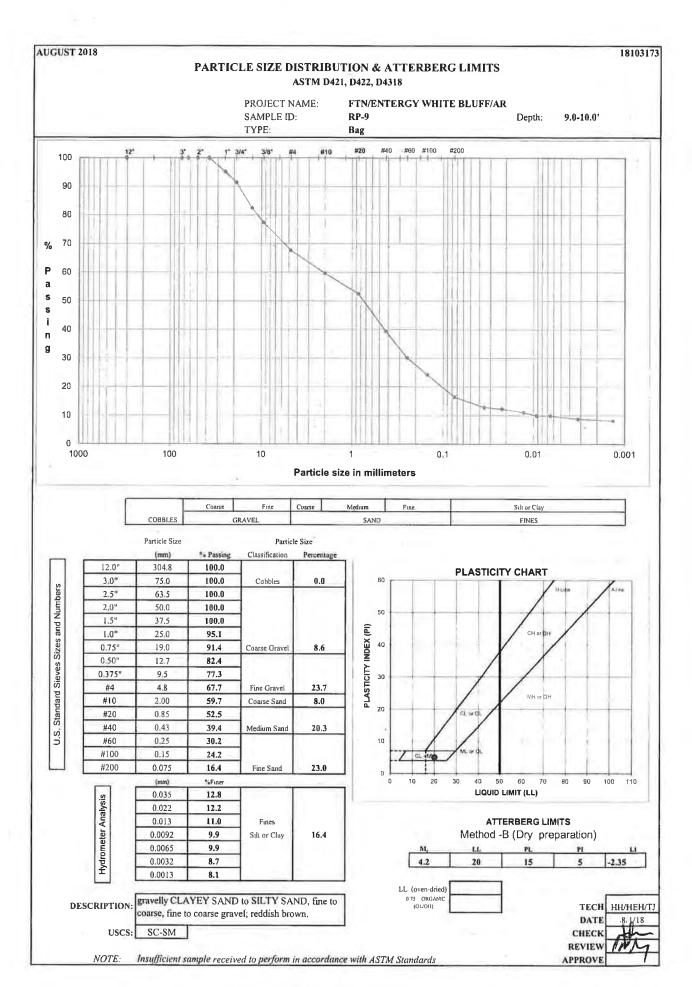
CH

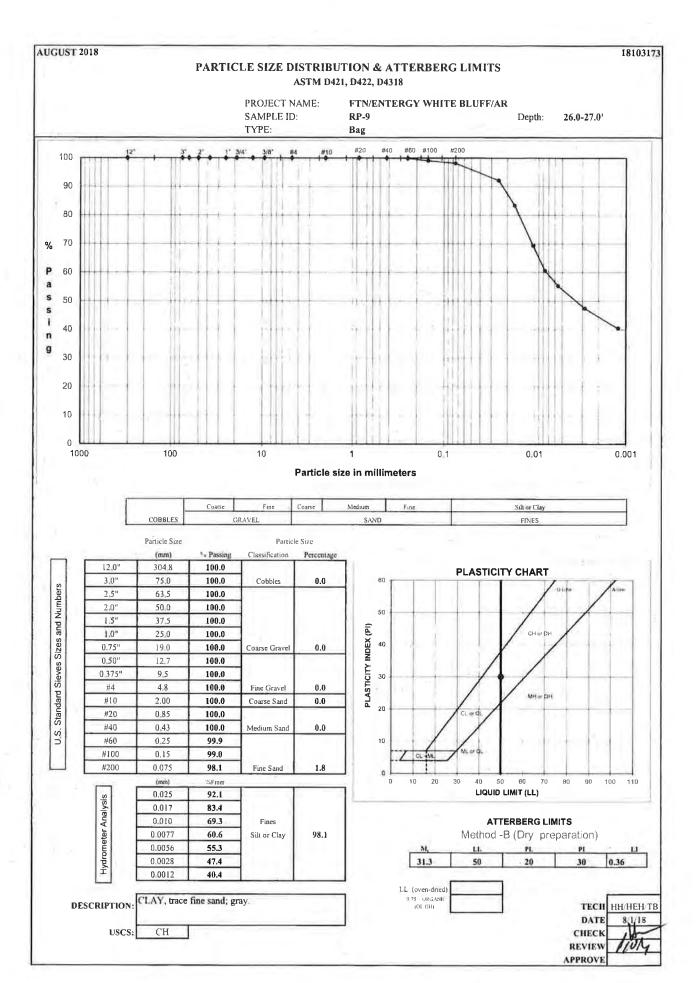
DESCRIPTION CLAY, trace fine to coarse sand; brown, yellow, and gray.

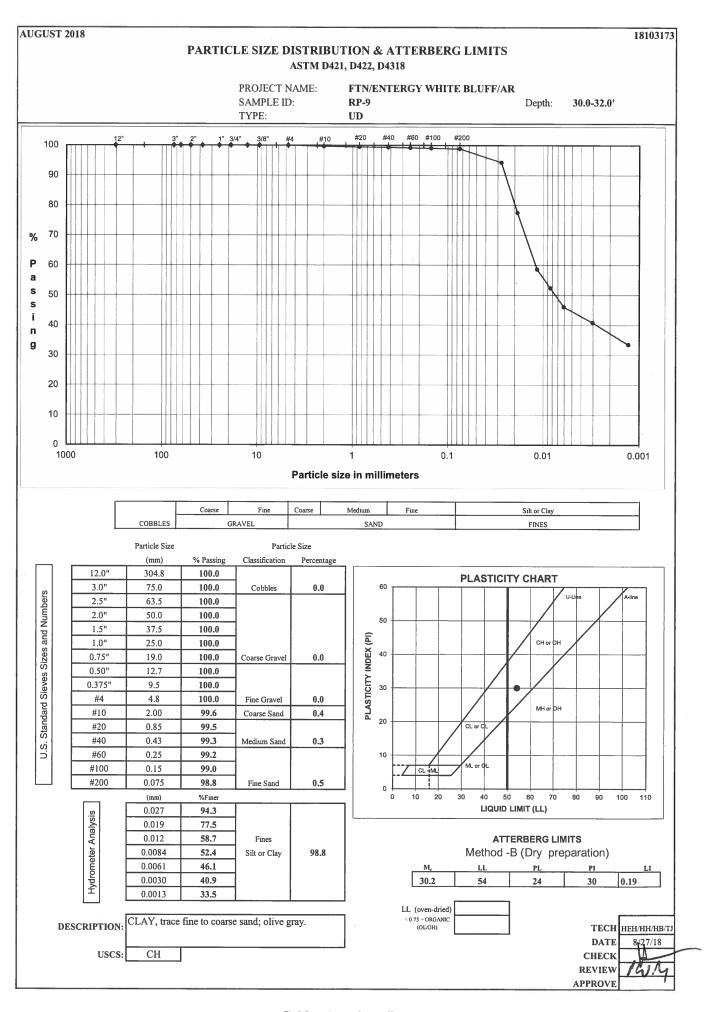
	TIME FUNCTIONS, SECONDS							dP			77		
DATE	DAY	HOUR	MIN	TEMP (°C)	dt (min)	dt,acc (min)	dt (sec)	dt,acc (sec)	Reading (psi)	Head (cm)	Gradient	Permeability (cm/sec)	
08/02/18	43314	10	0	21.4	0	0	0	0	1.76	123.80	15.55	3.5E-07	
08/02/18	43314	10	5	21.4	5	5	300	300	1.76	123.80	15.55	3.5E-07	
08/02/18	43314	10	10	21.4	5	10	300	600	1.76	123.80	15.55	3.5E-07	
08/02/18	43314	10	15	21.4	5	15	300	900	1.76	123.80	15.55	3.5E-07	
08/02/18	43314	10	20	21.4	5	20	300	1200	1.76	123.80	15.55	3.5E-07	
08/02/18	43314	10	25	21.4	5	25	300	1500	1.76	123.80	15.55	3.5E-07	
08/02/18	43314	10	30	21.4	5	30	300	1800	1.76	123.80	15.55	3.5E-07	

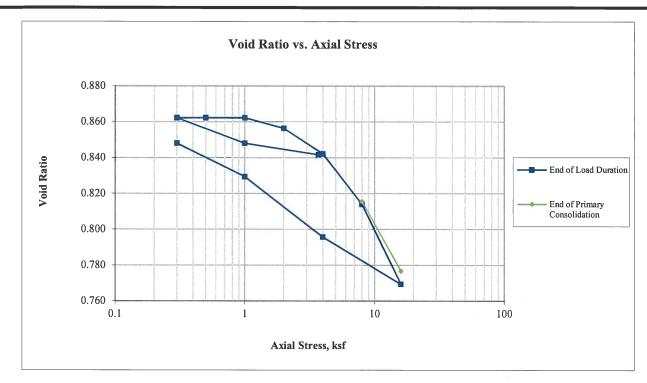

^{*}TRANSCRIBED FROM ORIGINAL DATA SHEETS

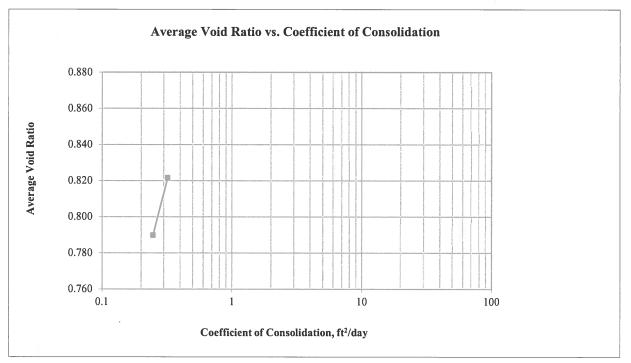

PERMEABILITY REPORTED AS ** 3.5E-07 cm/sec **

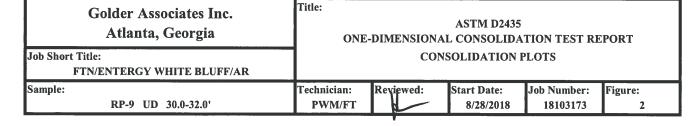

DATE CHECK

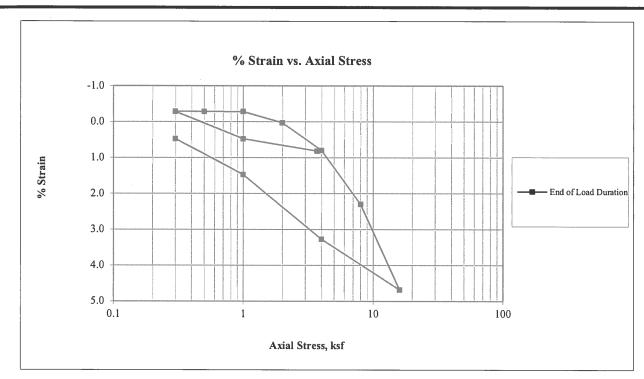

REVIEW

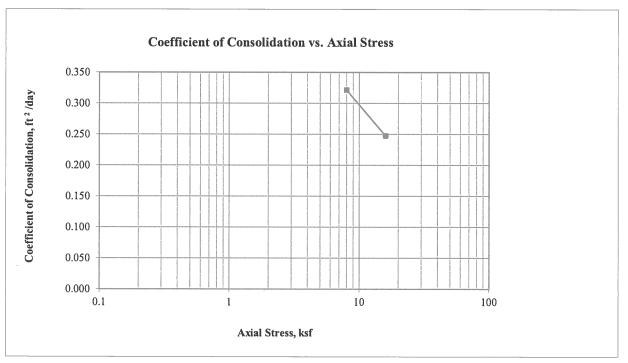

APPROVE

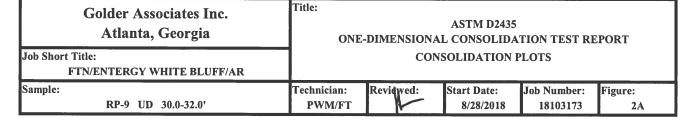


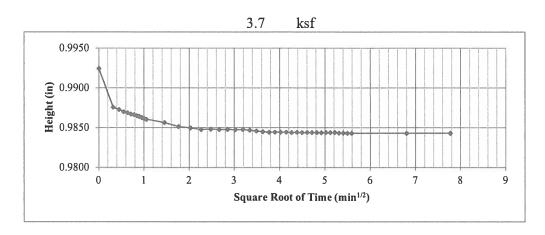


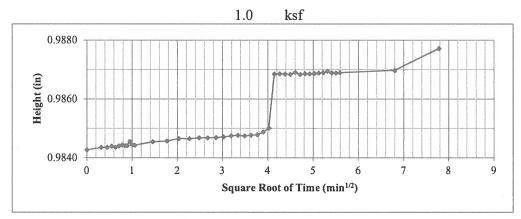


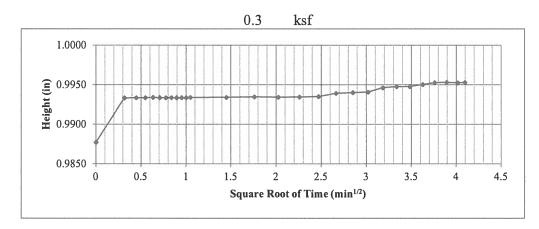


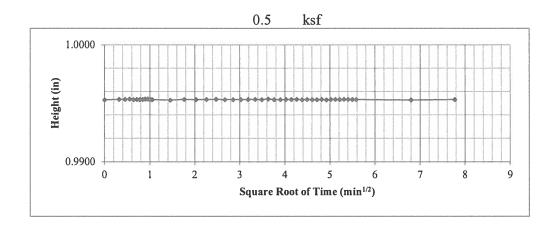

								******			*				
		Ini	tial	F	inal	Notes									
	Height =		in	0.988	in	Visual descript	ion (Golder pro	cedure):	(CH) CLAY, tr	ace fine to coars	se sand: olive gr	av.			
	Diameter =		in	2.500	in	Atterberg Limits (ASTM D4318):			LL = 54 $PL = 24$ $PI = 1$					30	
	Area =	4.909	in ²	4.909	in^2	Percent Finer (ASTM D422):			3/4 in. =	100%	No. 4 =	100%	No. 200 =	99%	
	Volume =	4.909	in ³	4.848	in^3	Specimen Type	:		X	Intact		Reconstituted			
v	Vater Content =	30.2%		34.0%		Remold Target	s:			•		•			
Sp	ecific Gravity =	2.67	(ASTM D854)	2.67	(ASTM D854)	Water Content	of Trimmings (ASTM D2216):	-						
He	ight of Solids =	0.5345	in	0.5345	in	Trimming Proc	edure:		Trimming ring	_		_			
	Void Ratio =	0.871		0.848		Inundation:				Not inundated	X	Inundated at	1.70	ksf	
Degree	of Saturation =	92.5%		100.0%		Test Method:				A	X	В			
	Wet Mass =	0.329	lb	0.338	lb	Apparatus:			GeoTac automa	ted consolidom	eter				
	Dry Mass =	0.253	lb	0.253	lb	Final Water Co	ntent Specimer	1:	X	Entire		Partial			
	t Unit Weight =		pcf	120.6	pcf	Final Different	_		0.0000	in					
Dry	Unit Weight =	88.9	pcf	90.0	pcf	Estimated Prec	onsolidation St	ress:		ksf					
				A t End of Drive	ary Consolidatio			At End of Lo	and Dunation						
			Í		T Consolidatio	n I		At End of Lo	ad Duration	<u> </u>	Time	i	G. m.:c	l l	
	A	I and Donation	D-6	Specimen	A!-1 ()!	Wald Bar	D. C	G	A 1-1 G4 1-	77-11 D-41-	Deformation	Average Void	Coefficient of Consolidation	Time to 50%	
	Axial Stress (ksf)	Load Duration (min)	Deformation (in)	Height (in)	Axial Strain (%)	Void Ratio	(in)	Specimen Height (in)	Axial Strain (%)	Void Ratio	Method	Ratio	(ft²/day)	Consolidation (min)	
Seating*	1.70	60	(111)	(111)	(/0)	 	0.0000	0.9925	0.00	0.857		.	(It /day)	(11111)	
1	3.7	60			 		0.0082	0.9843	0.82	0.842					
2	1,0	60				 	0.0047	0.9877	0.47	0.848					
3	0.3	17			 		-0.0028	0.9953	-0.28	0.862					
4	0.5	60					-0.0029	0.9953	-0.29	0.862		· · · · · · · · · · · · · · · · · · ·			
5	1.0	60					-0.0028	0.9953	-0.28	0.862					
6	2.0	60					0.0003	0.9922	0.03	0.856					
7	4.0	60					0.0080	0.9845	0.80	0.842					
8	8.0	240	0.0221	0.9704	2.21	0.816	0.0230	0.9695	2.30	0.814	2 (Root time)	0.822	0.322	1.3	
9	16.0	240	0.0429	0.9496	4.29	0.777	0.0468	0.9457	4.68	0.769	2 (Root time)	0.790	0.247	1.8	
10	4.0	240					0.0327	0.9597	3.27	0.796					
11		120					0.0147	0.9777	1.47	0.829					
12	0.3	27					0.0048	0.9877	0.48	0.848					
				.=											
	L				L	l						L			
		(-1-1 A	!			Title:						3.000			
	G	older Ass		c.						ASTM I	D2435				
		Atlanta,	Georgia					0	NE-DIMENSIONE	ONAL CONSC	LIDATION T	EST REPORT			
Job Short Titl		Transport of the second							SPEC	IMEN AND S	UMMARY DA	TA			
Samula:	FT	N/ENTERGY W	VHITE BLUFF	/AR		Trakati		Charles	n.t:L.	A	Carrie D. d	T.L.NI.		E:	
Sample:		RP-9 UD	30.0-32.01			Technician: PW	4/FT	Checked:	Reviewed:	Approved:	Start Date: 8/28/2018	Job Number: 181(3173	Figure:	

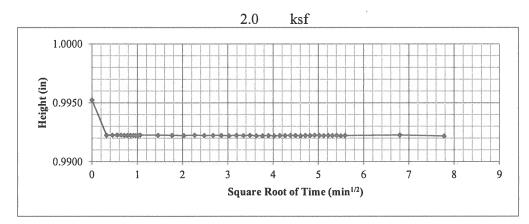


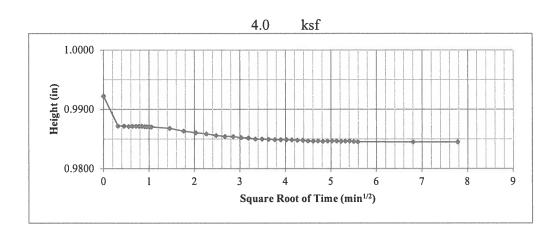


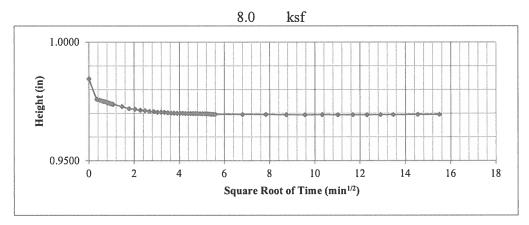


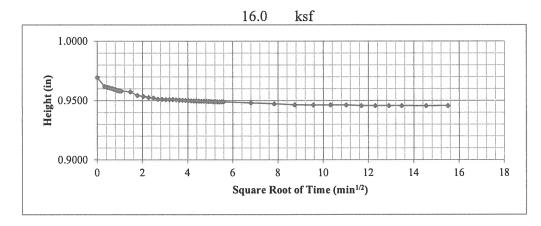


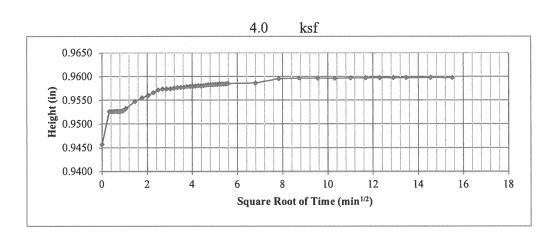


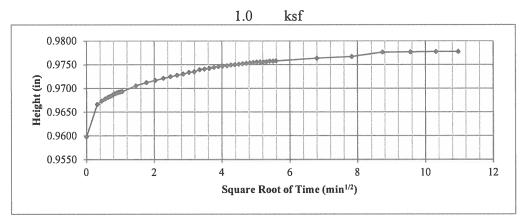



Golder Associates Inc. Atlanta, Georgia	Title: ASTM D2435 ONE-DIMENSIONAL CONSOLIDATION TEST REPORT						
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	TIME-DEFORMATION PLOTS (1)						
Sample: RP-9 UD 30.0-32.0'	Technician: Reviewed: Start Date: Job Number: Figure: 8/28/2018 18103173 3						





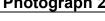

Golder Associates Inc. Atlanta, Georgia	Title: ASTM D2435 ONE-DIMENSIONAL CONSOLIDATION TEST REPORT						
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	TIME-DEFORMATION PLOTS (2)						
Sample: RP-9 UD 30.0-32.0'	Technician: PWM/FT	Reviewed:	Start Date: 8/28/2018	Job Number: 18103173	Figure:		





Golder Associates Inc. Atlanta, Georgia	Title: ASTM D2435 ONE-DIMENSIONAL CONSOLIDATION TEST REPORT						
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	TIME-DEFORMATION PLOTS (3)						
Sample: RP-9 UD 30.0-32.0'	Technician: PWM/FT	Reviewed:	Start Date: 8/28/2018	Job Number: 18103173	Figure: 5		

Golder Associates Inc. Atlanta, Georgia	Title: ASTM D2435 ONE-DIMENSIONAL CONSOLIDATION TEST REPORT						
Job Short Title: FTN/ENTERGY WHITE BLUFF/AR	TIME-DEFORMATION PLOTS (4)						
Sample: RP-9 UD 30.0-32.0'	Technician: PWM/FT	Reviewed:	Start Date: 8/28/2018	Job Number: 18103173	Figure: 6		


Appendix E Site Photographs

Photograph 3

Photograph 9

Photograph: 12 Site building taken from ...insert caption

