

ARKANSAS

2024 Integrated Resource Plan Set 5 Stakeholder Question & Answer

September 2024

2024 Integrated Resource Planning ("IRP")

Question and Answer

The following slides contain questions 1–9 below refer to the "2024 Integrated Resource Plan Stakeholder Meeting #2" slide deck, dated August 15, 2024. Questions 10-12 refer to the Set 3 Questions and Answers (i.e., EAL's Responses to Stakeholder Questions submitted by the Arkansas AG and AEEC).

•

- 1. With reference to the thermal resource options shown on slides 8–9:
 - a. Which resources did EAL model with carbon capture and storage (CCS)?

Response: EAL modeled CCS for a 1x1 CCCT with duct firing and a 2x1 CCCT in future 2B only.

- b. Which of the futures (1, 2A, 2B, 3) include CCS?
- Response: Future 2B.

c. What costs did EAL model for CCS? Please provide data in excel for each resource type and each year 2025–2045 for capital costs (\$/kW), fixed operations and maintenance (\$/kW-year) and variable operations and maintenance (\$/MWh).

Response: Refer to the following slide CCS cost information.

	1x1 w/ DF
	Capture
2024	
2025	
2026	
2027	
2028	
2029	
2030	
2031	2,088
2032	2,130
2033	2,172
2034	2,216
2035	2,260
2036	2,305
2037	2,352
2038	2,399
2039	2,447
2040	2,496
2041	2,545
2042	2,596
2043	2,648
2044	2,701
2045	2,755
2046	2,810
2047	2,867
2048	2,924
2049	2,982
2050	3,042
	N /

	Installed Capital Cost (Nominal \$/kw)					
/ DF			2x1 w/o DF			
re	Pipeline		Capture	Pipeline		
088	161		1,884	97		
130	164		1,922	99		
172	168		1,961	101		
216	171		2,000	103		
260	175		2,040	105		
305	178		2,081	107		
352	182		2,122	109		
399	185		2,165	111		
447	189		2,208	113		
496	193		2,252	116		
545	197		2,297	118		
596	200		2,343	120		
648	204		2,390	123		
701	209		2,438	125		
755	213		2,487	128		
810	217		2,536	130		
867	221		2 <i>,</i> 587	133		
924	226		2,639	135		
982	230		2,691	138		
042	235		2,745	141		
MW	' :729		MW	:1,216		

Installed Capital Cost

Fixed O&M Cost (Nominal \$/kw-yr)

	1x1 w/ DF	2x1 w/o DF
	ccs	CCS
2023	35.40	32.05
2024	36.10	32.69
2025	36.83	33.34
2026	37.56	34.01
2027	38.31	34.69
2028	39.08	35.38
2029	39.86	36.09
2030	40.66	36.81
2031	41.47	37.55
2032	42.30	38.30
2033	43.15	39.07
2034	44.01	39.85
2035	44.89	40.64
2036	45.79	41.46
2037	46.70	42.29
2038	47.64	43.13
2039	48.59	43.99
2040	49.56	44.87
2041	50.55	45.77
2042	51.57	46.69
2043	52.60	47.62
2044	53.65	48.57
2045	54.72	49.55
2046	55.82	50.54
2047	56.93	51.55
2048	58.07	52.58
2049	59.23	53.63
2050	60.42	54.70

Variable O&M Cost (Nominal \$/MWh)

1x1 w/ DF CCS Fuel & 45Q Consumables 2023 n/a n/a 2024 n/a n/a 2025 n/a n/a 2026 (45.61) 11.42 (46.52) 11.59 2027 (47.45) 11.86 2028 (48.40) 2029 11.95 2030 (49.37) 12.15 (50.36) 12.44 2031 2032 (51.36) 12.82 2033 (47.15) 13.23 2034 (48.09) 13.51 (49.06) 14.09 2035 2036 (50.04) 14.42 2037 (51.04) 14.94 (52.06) 2038 15.33 2039 (53.10) 15.67 16.31 2040 (54.16) 2041 (55.25) 16.94 17.33 2042 (56.35) (57.48) 2043 17.84 2044 (58.63) 18.16 2045 (59.80) 18.56 2046 (61.00) 18.94 19.31 2047 (62.21) 2048 (63.46) 19.65 (64.73) 20.09 2049 2050 (66.02) 20.50

2x1 w/o DF		
45Q	CCS Fuel & Consumables	
n/a	n/a	
n/a	n/a	
n/a	n/a	
(44.72)	12.31	
(45.61)	12.50	
(46.52)	12.78	
(47.45)	12.85	
(48.40)	13.08	
(49.37)	13.40	
(50.36)	13.81	
(46.23)	14.28	
(47.15)	14.58	
(48.09)	15.24	
(49.06)	15.59	
(50.04)	16.22	
(51.04)	18.01	
(52.06)	16.76	
(53.10)	17.10	
(54.16)	17.90	
(55.25)	18.86	
(56.35)	19.43	
(57.48)	19.78	
(58.63)	20.22	
(59.80)	20.62	
(61.00)	21.03	
(62.22)	(62.22) 21.41	
(63.46)	21.88	
(64.73)	22.32	

d. What source did EAL use for its CCS cost data?

Response: EAL used a CO2 Capture Feasibility Study completed by Sargent and Lundy for the CCS cost data.

e. Did the Company model costs for CO2 transportation and storage? If so, please provide the cost assumptions and explain how they were developed

Response: The Company modeled costs for transportation & storage. The transportation capital costs were \$2 million per mile with an assumption for 50 miles. For O&M, the project team assumed a cost of \$20 per metric tonne for transportation and sequestration, split evenly between Fixed O&M and Variable O&M.

f. With reference to Slide 8, footnote 2, please provide the transmission interconnection costs included in the LCOE for thermal resources and any data supporting the cost calculations.

Response: Generic transmission interconnection cost assumptions are as follows:

CT: \$9,000,000 / brownfield interconnection at 230kV CCCT (1x1) w/DF: \$18,000,000 / brownfield interconnection at 230kV CCCT (2x1): \$27,000,000 / brownfield interconnection at 230kV Aero: \$9,000,000 / brownfield interconnection at 230kV RICE: \$9,000,000 / brownfield interconnection at 230kV SMR: \$9,000,000 / brownfield interconnection at 230kV The supporting data was provided by Entergy's transmission organization.

2. With reference to slide 10, footnote 2, please provide the transmission interconnection costs included in the LCOE for renewable and storage resources and any data supporting the cost calculations:

Response: Generic transmission interconnection cost assumptions are as follows: Solar: \$20,000,000 / 230kV Hybrid Solar + BESS: No LCOE Onshore Wind: \$20,000,000 / 230kV Offshore Wind: HVCD assumes \$3,100,000,000 (2026\$) in capital costs on COD in addition to annual O&M costs starting at \$8,060,000 and grown at 2% annually. These costs represent a line capacity of 1,000MWs Storage: No LCOE

Q3. With reference to slide 10, footnote 3, please provide more information regarding EAL's decision to project a 600-mile HVDC transmission line to obtain on-shore, off-system wind from SPP, including answers to the following questions:

a. What are the projected costs of the proposed 600-mile HVDC transmission line?

Response: See response to Question No. 2.

3. With reference to slide 10, footnote 3, please provide more information regarding EAL's decision to project a 600mile HVDC transmission line to obtain on-shore, off-system wind from SPP, including answers to the following questions:

a. What are the projected costs of the proposed 600-mile HVDC transmission line?

Response: See response to Question No. 2.

b. How did EAL determine that a 600-mile HVDC transmission line is the most optimal solution for obtaining on-shore, off-system wind?

Response: EAL submits that for its IRP capacity expansion modeling, the alternatives should represent resources physically interconnected to or near its region (i.e., MISO South). Therefore, in considering off-system wind, it is appropriate to assume HVDC delivery to a point of interconnection within MISO South as opposed to relying on AC transmission service from SPP, which EAL assumes would be subject to congestion to deliver to MISO South, with limited or no ability for EAL to procure financial hedging mechanisms to protect its customers from the basis between the SPP LMP and its load LMP in LRZ 8.

c. What is the origin and destination of the 600-mile HVDC transmission line?

Response: : EAL assumes the origin is within SPP and the destination is within MISO South.

d. What assumptions about siting of renewable resources are included in the projected transmission project?

Response: The model assumes that the renewable resources are sited in SPP and able to achieve a 44% delivered, net capacity factor (improving by 0.1% per year as noted in footnote 2 on slide 11 of the Stakeholder Meeting 2 presentation).

e. Did EAL consider or model the costs and benefits of developing an HVDC transmission line to MISO North (as well as SPP)? Please explain.

Response: No; EAL based its HVDC estimates on proposed HVDC projects it is aware of from the SPP region to MISO South.

4. With reference to the capital cost trajectories for new resources on slides 12–15:

a. Please provide this data in excel format, including annual data for each of the four resource categories (rotating turbine, solar, wind, and BESS) and each of the three renewable cost options (reference, low, high).

Response: Refer to the following slide for capital cost trajectories for new resources information.

Capital Cost Trajectories For New Resources

Specific Technology COD Nominal	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045
On-shore_Wind High			\$2,732	\$2,796	\$2,860	\$2,926	\$2,993	\$3,063	\$3,134	\$3,183	\$3,232	\$3,282	\$3,333	\$3,385	\$3,438	\$3,490	\$3,545	\$3,599	\$3,655	\$3,712	\$3,769
On-shore_Wind			\$2,672	\$2,714	\$2,755	\$2,796	\$2,838	\$2,880	\$2,923	\$2,961	\$2,999	\$3,037	\$3,076	\$3,115	\$3,155	\$3,194	\$3,235	\$3,275	\$3,316	\$3,357	\$3,398
On-shore_Wind Low			\$2,651	\$2,685	\$2,718	\$2,751	\$2,784	\$2,816	\$2,849	\$2,881	\$2,914	\$2,946	\$2,979	\$3,012	\$3,045	\$3,077	\$3,111	\$3,144	\$3,177	\$3,211	\$3,243
On-shore_Wind_Off-system High			\$2,602	\$2,666	\$2,729	\$2,795	\$2,863	\$2,934	\$3,008	\$3,057	\$3,107	\$3,157	\$3,209	\$3,261	\$3,315	\$3,368	\$3,423	\$3,480	\$3,536	\$3,594	\$3,654
On-shore_Wind_Off-system			\$2,521	\$2,555	\$2,586	\$2,618	\$2,650	\$2,682	\$2,715	\$2,751	\$2,787	\$2,823	\$2,860	\$2,896	\$2,934	\$2,971	\$3,009	\$3,048	\$3,086	\$3,125	\$3,165
On-shore_Wind_Off-system Low			\$2,486	\$2,507	\$2,524	\$2,541	\$2,557	\$2,572	\$2,587	\$2,618	\$2,648	\$2,679	\$2,710	\$2,739	\$2,771	\$2,802	\$2,833	\$2,865	\$2,895	\$2,927	\$2,959
Utility_Solar_+BESS_Ll4 High			\$3,116	\$3,313	\$3,331	\$3,340	\$3,354	\$3,371	\$3,406	\$3,469	\$3,540	\$3,616	\$3,698	\$3,787	\$3,818	\$3,851	\$3,883	\$3,916	\$3,950	\$3,985	\$4,023
Utility_Solar_+BESS_Ll4			\$2,889	\$2,892	\$2,886	\$2,872	\$2,860	\$2,849	\$2,852	\$2,854	\$2,860	\$2,866	\$2,873	\$2,881	\$2,893	\$2,906	\$2,918	\$2,930	\$2,942	\$2,954	\$2,968
Utility_Solar_+BESS_LI4 Low			\$2,519	\$2,590	\$2,551	\$2,503	\$2,455	\$2,404	\$2,363	\$2,327	\$2,293	\$2,255	\$2,215	\$2,173	\$2,184	\$2,197	\$2,208	\$2,220	\$2,232	\$2,244	\$2,258
Off-System Utility-Scale Solar (SPP) High			\$1,831	\$1,871	\$1,912	\$1,955	\$2,002	\$2,050	\$2,102	\$2,157	\$2,217	\$2,280	\$2,349	\$2,424	\$2,430	\$2,435	\$2,440	\$2,444	\$2,447	\$2,449	\$2,450
Off-System Utility-Scale Solar (SPP)			\$1,773	\$1,781	\$1,788	\$1,794	\$1,800	\$1,805	\$1,810	\$1,814	\$1,818	\$1,821	\$1,823	\$1,825	\$1,831	\$1,836	\$1,841	\$1,845	\$1,849	\$1,852	\$1,854
Off-System Utility-Scale Solar (SPP) Low			\$1,731	\$1,716	\$1,698	\$1,677	\$1,654	\$1,628	\$1,599	\$1,566	\$1,530	\$1,489	\$1,443	\$1,392	\$1,402	\$1,412	\$1,422	\$1,432	\$1,441	\$1,451	\$1,459
Utility-Scale Solar High			\$1,820	\$1,860	\$1,902	\$1,944	\$1,990	\$2,039	\$2,090	\$2,145	\$2,205	\$2,268	\$2,336	\$2,411	\$2,417	\$2,422	\$2,427	\$2,431	\$2,434	\$2,436	\$2,437
Utility-Scale Solar			\$1,763	\$1,771	\$1,778	\$1,784	\$1,790	\$1,795	\$1,800	\$1,804	\$1,808	\$1,811	\$1,813	\$1,815	\$1,821	\$1,826	\$1,831	\$1,835	\$1,839	\$1,842	\$1,844
Utility-Scale Solar Low			\$1,722	\$1,707	\$1,689	\$1,668	\$1,645	\$1,619	\$1,590	\$1,557	\$1,521	\$1,481	\$1,435	\$1,384	\$1,395	\$1,404	\$1,414	\$1,424	\$1,434	\$1,443	\$1,452
Lithium_lon_4 High	\$2,748	\$3,098	\$3,067	\$3,013	\$2,942	\$2,875	\$2,810	\$2,832	\$2,850	\$2,882	\$2,919	\$2,959	\$3,005	\$3,052	\$3,105	\$3,159	\$3,217	\$3,278	\$3,341	\$3,415	\$3,485
Lithium_lon_4	\$2,417	\$2,422	\$2,411	\$2,382	\$2,340	\$2,302	\$2,266	\$2,264	\$2,258	\$2,263	\$2,271	\$2,280	\$2,293	\$2,306	\$2,322	\$2,338	\$2,355	\$2,374	\$2,392	\$2,417	\$2,437
Lithium_lon_4 Low	\$1,787	\$1,939	\$1,910	\$1,866	\$1,810	\$1,757	\$1,705	\$1,700	\$1,691	\$1,691	\$1,693	\$1,696	\$1,701	\$1,706	\$1,713	\$1,720	\$1,728	\$1,736	\$1,744	\$1,756	\$1,764

b. Are these cost trajectories expressed in real or nominal dollars? If nominal, what inflation rate did Entergy assume? If real, what is the dollar year?

Response: The cost trajectories are in nominal dollars. The rate of change for natural gas resources escalated at roughly 2% inflation. The escalation rate for renewables and storage resources utilized NREL annual technology baseline conservative case growth rates, with scalars included for the low and high scenarios.

c. Please explain how these cost trajectories were developed. How did Entergy combine the sources that it lists on slides 8 and 10 (Sargent & Lundy, S&P Global, Wood Mackenzie, EPRI, NREL, ArcVera, Burns & McDonnel, and Entergy Power Development) to arrive at the trajectories shown?

Response: See the response to Question No. 4b regarding the annual growth rates. The low and high scalars apply the percentage difference between each of the three NREL annual technology baseline cases to EAL's reference case.

5. With reference to slide 17, which describes the peak load growth in each IRP future:

a. Please provide summer and winter peak load (in MW) in excel for each year 2024–2045 under the Low, Reference, and High load growth assumptions.

Response: Refer to the following slide for the peak load growth in each IRP future information.

Peak Load Growth- IRP Future

	IRP Low Load S	Scenario CP (MW)		IRP Reference Loa	d Scenario CP (MW)		IRP High Load Sc	enario CP (MW)
	Summer	Winter		Summer	Winter		Summer	Winter
2024	4,772	4,406	2024	4,846	4,628	2024	4,846	4,628
2025	5,236	4,460	2025	5,456	4,704	2025	5,456	4,704
2026	5,293	4,473	2026	5,547	4,879	2026	5,705	5,510
2027	5,308	4,449	2027	5,707	5,049	2027	6,850	6,624
2028	5,327	4,482	2028	5,935	5,289	2028	7,986	8,557
2029	5,350	4,488	2029	6,158	5,359	2029	9,514	8,822
2030	5,412	4,540	2030	6,289	5,483	2030	9,638	8,958
2031	5,451	4,544	2031	6,369	5,457	2031	9,716	8,930
2032	5,490	4,546	2032	6,421	5,529	2032	9,767	9,011
2033	5,545	4,614	2033	6,496	5,628	2033	9,840	9,110
2034	5,608	4,683	2034	6,579	5,722	2034	9,922	9,203
2035	5,683	4,795	2035	6,672	5,869	2035	10,015	9,350
2036	5,756	4,906	2036	6,765	6,017	2036	10,107	9,497
2037	5,837	5,032	2037	6,872	6,181	2037	10,215	9,661
2038	5,921	5,168	2038	7,019	6,364	2038	10,414	9,842
2039	6,009	5,302	2039	7,237	6,541	2039	10,631	10,019
2040	6,182	5,404	2040	7,476	6,676	2040	10,871	10,152
2041	6,338	5,580	2041	7,670	6,886	2041	11,063	10,355
2042	6,476	5,629	2042	7,839	6,935	2042	11,233	10,426
2043	6,605	5,692	2043	8,002	7,067	2043	11,395	10,543
2044	6,762	5,850	2044	8,196	7,249	2044	11,587	10,725
2045	6,917	5,946	2045	8,388	7,366	2045	11,779	10,842

b. Please provide data breaking down the load growth in each projection (Reference, Low, and High) by source, including but not limited to: EVs, building electrification, new industrial customers, new data centers, new industrial/manufacturing facilities, economic growth, and any other sources of load growth EAL modeled. Please provide annual data in excel for each year from 2024–2050 with formulas intact and sources and assumptions clearly identified.

Response: EAL does not have load growth projections by source.

6. With reference to slide 18:

a. Please explain the difference between Future P2A-REF and P2A-CC.

Response: : The difference in modeling is in P2A-CC, EAL manually replaces two CTs selected by the model in 2030 with a 1x1 CCCT in 2030.

b. Why did EAL choose to hard-code a combined cycle unit in 2030 in Future P2A-CC? Please explain.

Response: In P2A- REF, AURORA builds 2CTs in 2030. In P2A-CC, EAL ran a sensitivity to replace the 2CTs with a 1x1 CCCT in 2030, which has a higher capacity factor than the 2 CTs providing higher energy coverage and mitigates customer exposure to the energy market by providing a physical hedge. The CCCT is less capital intensive and reduces developmental risk (e.g., one interconnection, one EPC, etc). Additionally, new-build CCCT technologies modeled are H2-capable and will be planned in a manner that allows CCS to be added post-COD without significant modifications to the site design, providing multiple pathways for lower carbon operations in the event CCS or hydrogen is not feasible or economic for specific resources.

7. With reference to slide 19:

a. Please confirm that the CAA 111 assumptions shown are only used in Future 2B. If not, please specify which scenarios include these assumptions.

Response: Confirmed.

b. For existing coal units, does the term "deactivation" include coal-to-gas conversions in addition to unit retirement? If yes, please explain how EAL decides which units will convert to gas rather than retiring and provide the Company's assumptions on coal-to-gas conversion costs.

Response: The term deactivation for existing EAL coal units mean "Cease to use coal". For the MISO market capacity expansion analysis, 'deactivate' means that the units are removed from the modeling and do not provide capacity or energy to the market. EAL does not possess the relevant information to assume which units in the market may choose to cofire natural gas, restrict capacity factors, or otherwise comply with current or future revisions to CAA 111(d). Therefore, it has made the simplifying assumption in the IRP modeling to remove such units from the market by 2030 in Future 2B.

8. With reference to slides 26–32, please provide the MISO capacity expansion results in excel. The data should include builds of each resource type (in MW) for each of the four modeled scenarios for each year 2024–2045.

Response: Refer to the following slide for the MISO capacity expansion results information.

MISO capacity expansion results

EAL IRP F1	MISO Market Build (Summer	Installed MW)
BuildYear	Name	MW
2026	MISO_2x1_CCCT_NoDF	8,612
2027	MISO_2x1_CCCT_NoDF	8,612
2027	MISO_CT	856
2027	MISO_Solar	400
2029	MISO_2x1_CCCT_NoDF	1,230
2030	MISO_2x1_CCCT_NoDF	1,230
2031	MISO_2x1_CCCT_NoDF	3,691
2032	MISO_2x1_CCCT_NoDF	8,612
2032	MISO_CT	428
2033	MISO_2x1_CCCT_NoDF	2,461
2034	MISO_2x1_CCCT_NoDF	2,461
2035	MISO_2x1_CCCT_NoDF	4,921
2036	MISO_2x1_CCCT_NoDF	2,461
2037	MISO_2x1_CCCT_NoDF	8,612
2037	MISO_CT	2,567
2038	MISO_2x1_CCCT_NoDF	2,461
2039	MISO_2x1_CCCT_NoDF	3,691
2039	MISO_CT	428
2040	MISO_2x1_CCCT_NoDF	4,921
2041	MISO_2x1_CCCT_NoDF	6,152
2041	MISO_CT	428
2042	MISO_2x1_CCCT_NoDF	3,691
2043	MISO_2x1_CCCT_NoDF	8,612
2043	MISO_CT	1,711
2044	MISO_2x1_CCCT_NoDF	3,691
2045	MISO_2x1_CCCT_NoDF	4,921
Total		97,859

EAL IRP 2A	MISO Market Build (Summer I	nstalled MW)
BuildYear	Name	MW
2025	MISO_2x1_CCCT_NoDF	2,461
2026	MISO_2x1_CCCT_NoDF	8,612
2027	MISO_2x1_CCCT_NoDF	8,612
2027	MISO_CT	856
2027	MISO_Solar_2027	800
2028	MISO_CT	428
2029	MISO_2x1_CCCT_NoDF	1,230
2030	MISO_2x1_CCCT_NoDF	2,461
2031	MISO_2x1_CCCT_NoDF	3,691
2032	MISO_2x1_CCCT_NoDF	8,612
2033	MISO_2x1_CCCT_NoDF	2,461
2033	MISO_Solar_2033	400
2034	MISO_2x1_CCCT_NoDF	1,230
2034	MISO_Solar_2034	4,800
2035	MISO_2x1_CCCT_NoDF	3,691
2035	MISO_Solar_2035	3,600
2036	MISO_2x1_CCCT_NoDF	6,152
2036	MISO_Solar_2036	3,200
2037	MISO_2x1_CCCT_NoDF	8,612
2037	MISO_CT	6,417
2037	MISO_Solar_2037	10,000
2038	MISO_2x1_CCCT_NoDF	3,691
2039	MISO_2x1_CCCT_NoDF	3,691
2040	MISO_2x1_CCCT_NoDF	6,152
2041	MISO_2x1_CCCT_NoDF	8,612
2041	MISO_CT	428
2041	MISO_Onshore_Wind_2041	800
2042	MISO_2x1_CCCT_NoDF	4,921
2042	MISO_Onshore_Wind_2042	2,800

Total		152,429
2045	MISO_Solar_2045	800
2045	MISO_CT	428
2045	MISO_2x1_CCCT_NoDF	4,921
2044	MISO_Solar_2044	6,400
2044	MISO_Onshore_Wind_2044	3,600
2043	MISO_Solar_2043	10,000
2043	MISO_Onshore_Wind_2043	4,400
2043	MISO_2x1_CCCT_NoDF	2,461

EAL IRP F2A	CC MISO Market Build (Sumr	ner Installed MW
BuildYear	Name	MW
2025	MISO_2x1_CCCT_NoDF	2,461
2026	MISO_2x1_CCCT_NoDF	8,612
2027	MISO_2x1_CCCT_NoDF	8,612
2027	MISO_CT	856
2027	MISO_Solar_2027	800
2029	MISO_2x1_CCCT_NoDF	1,230
2030	MISO_2x1_CCCT_NoDF	1,230
2031	MISO_2x1_CCCT_NoDF	3,691
2032	MISO_2x1_CCCT_NoDF	8,612
2032	MISO_Solar_2032	3,200
2033	MISO_2x1_CCCT_NoDF	2,461
2033	MISO_Solar_2033	400
2034	MISO_2x1_CCCT_NoDF	2,461
2034	MISO_Solar_2034	3,600
2035	MISO_2x1_CCCT_NoDF	3,691
2035	MISO_Solar_2035	3,200
2036	MISO_2x1_CCCT_NoDF	7,382
2036	MISO_Solar_2036	1,600
2037	MISO_2x1_CCCT_NoDF	8,612

Total		157,540
2045	MISO_Solar_2045	800
2045	MISO_Onshore_Wind_2045	400
2045	MISO_2x1_CCCT_NoDF	4,921
2044	MISO_Solar_2044	7,200
2044	MISO_Onshore_Wind_2044	2,000
2044	MISO_CT	428
2043	MISO_Solar_2043	10,000
2043	MISO_Onshore_Wind_2043	10,000
2043	MISO_CT	428
2042	MISO_Solar_2042	2,000
2042	MISO_Onshore_Wind_2042	4,000
2042	MISO_2x1_CCCT_NoDF	3,691
2041	MISO_CT	856
2041	MISO_2x1_CCCT_NoDF	8,612
2040	MISO_Solar_2040	400
2040	MISO_2x1_CCCT_NoDF	6,152
2039	MISO_2x1_CCCT_NoDF	3,691
2038	MISO_2x1_CCCT_NoDF	3,691
2037	MISO_Solar_2037	10,000
2037	MISO_CT	5,561

MISO capacity expansion results

EAL IRP 2E	3 MISO Market Build (Summer Inst	alled MW)
BuildYear	Name	MW
2025	MISO_2x1_CCCT_DF_2025	1,149
2026	MISO_2x1_CCCT_DF_2026	8,043
2027	MISO_2x1_CCCT_DF_2027	8,043
2027	MISO_CT	3,422
2027	MISO_Solar_2027	400
2028	MISO_2x1_CCCT_DF_2028	2,298
2029	MISO_2x1_CCCT_DF_2029	8,043
2030	MISO_2x1_CCCT_DF_2030	8,043
2030	MISO_Battery_Tranche0	2,000
2030	MISO_CT	4,706
2030	MISO_Solar_2030	3,200
2031	MISO_2x1_CCCT_DF_2031	2,298
2032	MISO_2x1_CCCT_DF_2032	3,447
2032	MISO_Solar_2032	800
2033	MISO_2x1_CCCT_DF_2033	2,298
2033	MISO_Solar_2033	400
2034	MISO_2x1_CCCT_DF_2034	3,447
2035	MISO_2x1_CCCT_DF_2035	5,745
2036	MISO_2x1_CCCT_DF_2036	8,043
2037	MISO_2x1_CCCT_DF_2037	8,043
2037	MISO_Solar_2037	5,600
2038	MISO_2x1_CCCT_DF_2038	4,596
2039	MISO_2x1_CCCT_DF_2039	3,447
2040	MISO_2x1_CCCT_DF_2040	5,745
2041	MISO_2x1_CCCT_DF_2041	8,043
2042	MISO_2x1_CCCT_DF_2042	6,894
2043	MISO_2x1_CCCT_DF_2043	8,043
2044	MISO_2x1_CCCT_DF_2044	5,745
2044	MISO_Solar_2044	4,800
2045	MISO_2x1_CCCT_DF_2045	4,596
2045	MISO_Solar_2045	9,600
Total		150,977

EAL	IRP 3 MISO Market Build (Summer Installed	MW)
BuildYear	Name	MW
2025	MISO_Onshore_Wind_2025	1,200
2026	MISO_Onshore_Wind_2026	10,000
2026	MISO_Solar_2026	6,800
2027	MISO_2x1_CCCT_NoDF	3,691
2027	MISO_Battery_Tranche0	4,800
2027	MISO_Onshore_Wind_2027	10,000
2027	MISO_Solar_2027	10,000
2028	MISO_Onshore_Wind_2028	10,000
2029	MISO_Onshore_Wind_2029	10,000
2030	MISO_Onshore_Wind_2030	10,000
2030	MISO_Solar_2030	8,800
2031	MISO_Onshore_Wind_2031	10,000
2031	MISO_Solar_2031	10,000
2032	MISO_Battery_Tranche0	800
2032	MISO_Battery_Tranche1	2,000
2032	MISO_Onshore_Wind_2032	10,000
2032	MISO_Solar_2032	10,000
2033	MISO_Onshore_Wind_2033	10,000
2034	MISO_Battery_Tranche1	400
2034	MISO_Onshore_Wind_2034	10,000
2034	MISO_Solar_2034	6,400
2035	MISO_Battery_Tranche1	4,400
2035	MISO_Battery_Tranche2	1,200
2035	MISO_Onshore_Wind_2035	10,000
2035	MISO_Solar_2035	10,000
2036	MISO_Onshore_Wind_2036	6,000

2036	MISO_Solar_2036	10,000
2037	MISO_2x1_CCCT_NoDF	2,461
2037 2037	MISO_Battery_Tranche2 MISO Battery Tranche3	5,600 1,600
2037	MISO_Battery_francies	6,417
	-	,
2037	MISO_Onshore_Wind_2037	10,000
2037	MISO_Solar_2037	10,000
2038	MISO_2x1_CCCT_NoDF	2,461
2039	MISO_CT	428
2039	MISO_Onshore_Wind_2039	9,200
2039	MISO_Solar_2039	400
2040	MISO_2x1_CCCT_NoDF	4,921
2040	MISO_CT	2,139
2040	MISO_Solar_2040	2,800
2041	MISO_CT	428
2041	MISO_Onshore_Wind_2041	5,200
2041	MISO_Solar_2041	1,600
2042	MISO_2x1_CCCT_NoDF	1,230
2042	MISO_CT	2,139
2042	MISO_Onshore_Wind_2042	8,800
2042	MISO_Solar_2042	4,000
2043	MISO_2x1_CCCT_NoDF	8,612
2043	MISO_CT	6,417
2043	MISO_Onshore_Wind_2043	10,000
2043	MISO_Solar_2043	8,000
2044	MISO_2x1_CCCT_NoDF	1,230
2044	MISO_Battery_Tranche3	2,800
2044	MISO_CT	428
2044	MISO_Onshore_Wind_2044	400
2045	MISO_2x1_CCCT_NoDF	2,461
2045	MISO_Battery_Tranche3	2,400
2045	MISO_CT	4,706
2045	MISO_Onshore_Wind_2045	9,200
2045	MISO_Solar_2045	6,400
Total		341,368

9.With reference to slides 59–60, please provide a load and resource table for EAL in excel, including annual data for each year from 2024–2045. The data should include:

a. Nameplate capacity, summer accredited capacity, and winter accredited capacity for each existing and planned resource in the Company's portfolio.

Response: Refer to the following slide for the summer and winter nameplate capacity for existing and planned resources.

Summer Nameplate Capacity- Existing & Planned Resources

Owned Resources	EAL Owned Installed Capacity (MW)	Planned Resources	EAL Owned Installed Capacity (MW				
ANO 1	788	Driver Solar	250				
ANO 2	938	Walnut Bend Solar	100				
Carpenter 1	17	West Memphis Solar	180				
Carpenter 2	12	Flat Fork Solar PPA Forgeview Solar PPA	200 200				
Grand Gulf EAMP	301	2022 RFP Solar 1	300				
Hot Springs	563	2022 RFP Solar 2	440				
Independence 1	224	2030 Solar	600				
Lake Catherine 4	521	2030 Battery	350				
Ouachita 1	236	2028 CT 2029 CCCT	408 729				
Ouachita 2	245	2029 0001	725				
Remmel 123	10						
Searcy Solar	100						
Union 2	504						
White Bluff 1	209						
White Bluff 2	402						
Chicot Solar PPA	100						
Stuttgart	81						
LMRs	760						

Winter Nameplate Capacity- Existing & Planned Resources

Owned Resources	EAL Owned Installed Capacity (MW)	Planned Resources	EAL Owned Installed Capacity (MW					
ANO 1	809	Driver Solar	250					
ANO 2	956	Walnut Bend Solar	100					
Carpenter 1	6	West Memphis Solar	180					
Carpenter 2	10	Flat Fork Solar PPA	200					
Grand Gulf EAMP	305	Forgeview Solar PPA 2022 RFP Solar 1	200 300					
Hot Springs	619	2022 RFP Solar 2	440					
Independence 1	227	2030 Solar	600					
Lake Catherine 4	521	2030 Battery	350					
Ouachita 1	267	2028 CT	408					
Ouachita 2	267	2029 CCCT	729					
Remmel 123	4							
Searcy Solar	100							
Union 2	570							
White Bluff 1	209							
White Bluff 2	408							
Chicot Solar PPA	100							
Stuttgart	81							
LMRs	760							

b. The Company's summer and winter capacity need in each year.

Response: See table below

Surplus/ Deficit	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045
Summer	388	(92)	9	(30)	(934)	(601)	402	85	(20)	17	312	176	468	533	751	880	152	654	13	1030	613	1104
Winter	130	74	(134)	(817)	(1555)	(474)	315	278	59	(58)	188	(29)	143	218	313	426	(328)	95	(491)	465	(59)	170

10. With reference to the Company's response to stakeholder question 72 (Set 3), which discusses the ELCC of battery resources:

a. How did EAL develop the ELCC values shown in the table?

Response: The ELCC values were developed using Entergy's internal ELCC study.

b. What is the size (in MW) of each tranche?

Response: Tranche 1, up to 6 GW of battery. Tranche 2, up to 13 GW of battery. Tranche 3, up to 20 GW of battery.

c. If the values shown were developed as part of an ELCC study, please provide a copy of the study.

Response: See the attached file named "Entergy ELCC Report 26Sep2023"

11. With reference to the Company's response to stakeholder question 75 (Set 3) about the "planned retirement or to cease to use coal date" of Lake Catherine 4, White Bluff 1 and 2, and Independence 1:

a. For each of the four entries in the table, please specify whether the Company is planning to retire the unit or convert it to utilize another fuel source (e.g., gas) on the date indicated.

Response: At this time, there is currently no plan to convert the units to utilize another fuel source.

b. If any of the answers to question 9(a) indicate that the Company plans to convert a generator unit to utilize another fuel source, please clarify if the Company will utilize a request for proposals (RFP) or other competitive procurement method to evaluate the costs and benefits of various conversion options.

Response: See response to Question 11.b.

c. If the answers to question 9(a) and (b) indicate that the Company plans to convert a generator unit to utilize another fuel source but does not plan to utilize a competitive procurement method to evaluate various conversion options, please identify the fuel source the Company is planning to utilize for conversion of the unit(s) and explain the decision for selecting that fuel source.

Response: See response to Question 11.b.

12. With reference to the Company's response to stakeholder question 27 (Set 3) about transmission planning, which asserts the following: "Projected transmission projects are outside the scope of this proceeding. The Aurora model used for the IRP capacity expansion analysis relies on a zonal hub and spoke construct and does not include assumptions with respect to transmission constraints or future projects.":

a. If it is EAL's position that "Projected transmission projects are outside the scope of this proceeding," please explain why the Company included projected transmission costs in its presentation slides for the 2024 IRP Stakeholder Meeting #2. For example, footnote 3 on slide 10 indicates that it "Includes transmission HVDC costs for a 600 mile line." Additionally, footnote 2 on slide 10 indicates that the Levelized Cost of Electricity ("LCOE") for renewable energy and storage resources includes transmission interconnection costs.

Response: Transmission analysis as it relates to power flow modeling that may identify projects or upgrades needed for NERC TPL compliance or due to MISO's Attachment X or Attachment Y processes is outside the scope of the IRP. EAL has included interconnection costs in its IRP modeling because such interconnection cost assumptions are available in a generic manner through its technology assessment process. Regarding HVDC wind, it is infeasible to model external wind resources without assuming transmission cost required to transport the energy to EAL to serve their load. Therefore, EAL has estimated the cost for an HVDC line; however, consistent with the description above, EAL has not estimated the MISO Attachment X network upgrade cost that such an HVDC interconnection might produce in the MISO DPP process as such power flow analysis is beyond the scope of the IRP capacity expansion analysis.

b. How is EAL integrating regional transmission planning that is done by MISO into its IRP process such that the analysis of generation options can be synthesized and optimized, as required by the Commission's Resource Planning Guidelines (RPGs)? Please explain.

Response: Long term transmission planning is evaluated as a part of EAL's MISO MTEP process and there is no additional Transmission analysis performed as part of the IRP.

c. Please explain why slide 17 from Stakeholder Meeting #2 includes various scenarios for other factors that are determined by independent entities, including MISO (e.g., Peak Load, natural gas prices, MISO coal deactivations, MISO natural gas CT and CC deactivations, and carbon tax), but does not also include various scenarios for MISO regional transmission planning, given that the RPGs expressly indicate that regional transmission planning that is done by an independent entity "should be integrated into the overall resource planning process, such that the analysis of generation options and demand response options can be synthesized and optimized"?

Response: Long term transmission planning is evaluated as a part of EAL's MISO MTEP process and therefore not evaluated as a part of this IRP. Similar to MISO's EGEAS capacity expansion modeling, EAL does not include various scenarios around regional transmission planning as inputs into its capacity expansion modeling. The capacity expansion modeling largely rebuilds the MISO market generation mix over the study period. The new generation mix calculated by the model would impact the transmission-related input constraints (e.g. transfer limits between capacity expansion regions) that would be formulated based on the transmission planning scenario for that future. In order to eliminate this dependency, MISO instead first uses member plans as inputs into its capacity expansion modeling and conducts supplemental EGEAS capacity expansion modeling in its MTEP process without consideration for transmission constraints (i.e., copper sheet). Then, it analyzes various LRTP transmission planning scenarios assuming the generation mixes identified in the prior capacity expansion modeling. EAL performs a similar analysis to the MTEP capacity expansion but defines an EAL-specific region within the larger MISO pool to produce a separate capacity expansion portfolio for EAL.

d. Would EAL consider modeling various MISO regional transmission scenarios (e.g., Low, Reference, and High Long Range Regional Transmission), similar to how it models various scenarios for other factors that are outside of EAL's sole control (e.g., gas prices, load growth, environmental regulations, carbon tax, etc.)? If not, please explain why it is reasonable to model various scenarios for other factors that are outside of EAL's direct control, but not model various future scenarios of regional transmission projects could be planned by MISO.

Response: See the response to 12c. EAL believes the current process by which MISO uses member plans and supplemental unconstrained capacity expansion optimization followed by scenario-based transmission planning reduces the value of EAL attempting to consider such transmission planning scenarios as inputs into its IRP capacity expansion analysis, which produces information that EAL uses to inform its generation plan that MISO then inputs into its LRTP analyses.

e. Why does EAL not use other modeling software that is capable of modeling assumptions with respect to transmission constraints or future projects (e.g., PLEXOS)

Response: See the responses to 12c and 12d. While PLEXOS has the capability of including transmission additions as options in the capacity expansion build decisions, EAL does not believe that inclusion of candidate transmission projects or LRTP scenarios in its futures would produce a meaningful result given the parallel MISO processes described above that determine the projects that are included in MISO's LRTP.

entergy