

Entergy Arkansas, LLC White Bluff Steam Electric Station Landfill Cells 1-4

2022 Annual Groundwater Monitoring and Corrective Action Report

Prepared in Compliance with the EPA Final Rule for the Disposal of Coal Combustion Residuals Title 40 CFR Part 257

Prepared for:

PO Box 551 Little Rock, Arkansas 72203

Prepared by:

8550 United Plaza Blvd. Suite 502 Baton Rouge, LA 70809

January 31, 2023

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	1
1.	INTRODUCTION	2
2.	GROUNDWATER MONITORING SYSTEM	3
3.	INSTALLED OR DECOMISSIONED WELLS DURING 2022	4
4.	GROUNDWATER MONITORING DATA	5
5.	STATUS SUMMARY OF THE 2022 GROUNDWATER MONITORING PROGRAM	6
6.	PROJECTED ACTIVITIES FOR 2023	8

LIST OF APPENDICES

APPENDIX A: Site Map

APPENDIX B: Groundwater Monitoring Data

APPENDIX C: Alternate Source Demonstrations

EXECUTIVE SUMMARY

Entergy Arkansas, LLC (Entergy), operates a coal ash disposal landfill (Landfill) for the disposal of coal combustion residuals (CCR) at the White Bluff Steam Electric Station (Plant) located near Redfield, Arkansas. The Landfill receives CCR generated from the combustion of coal at the Plant. Management of the CCR at the Landfill is performed pursuant to national criteria established in Title 40 of the Code of Federal Regulations (40 CFR), Part 257 (CCR Rule), effective April 19, 2015 and subsequent revisions to the CCR Rule.

The Plant conducted two semi-annual detection monitoring events in 2022 for the Landfill CCR unit monitoring well network per 40 CFR § 257.94. The statistical analyses completed for the second semi-annual 2021 and first semi-annual 2022 sampling event analytical data identified potential statistically significant increases (SSIs); therefore, alternate source demonstrations (ASDs) were performed for both semi-annual detection monitoring events and are attached to this report. Each of the ASDs performed were successful which resulted in the Landfill continuing to operate under the detection monitoring program. The Landfill CCR unit operated under the detection monitoring program (40 CFR § 257.94) during the duration of 2022.

1. INTRODUCTION

Entergy Arkansas, LLC (Entergy), operates the Landfill for the disposal of CCRs at the Plant located near Redfield, Arkansas (Lat: 34.421658 / Long: -92.139455). The Landfill receives CCR generated from the combustion of coal at the Plant. The CCR Landfill is managed in accordance with the national criteria established by the CCR Rule. Entergy installed a groundwater monitoring system at the Landfill that is subject to the groundwater monitoring and corrective action requirements provided under §§257.90 through 257.98 of the CCR rule. In accordance with §257.90(e) of the CCR rule, Entergy must prepare an annual report that provides information regarding the groundwater monitoring and corrective action program at the Landfill.

2. GROUNDWATER MONITORING SYSTEM

The Landfill's groundwater monitoring system consists of 23 monitoring wells as shown on Figure 1 included in Appendix A. Pursuant to §257.91(f) of the CCR rule, a qualified Arkansas-registered professional engineer has certified the groundwater monitoring system, which was designed and constructed to meet the requirements of §257.91.

3. INSTALLED OR DECOMISSIONED WELLS DURING 2022

Entergy did not install any new wells or decommission any existing wells in the certified groundwater monitoring system during 2022.

4. GROUNDWATER MONITORING DATA

In accordance with §257.90(e)(3), all monitoring data obtained under §§257.90 through 257.98 during 2022 are provided in Appendix B. Data include:

- Summary of the number of groundwater samples that were collected for analysis for each background and downgradient well;
- Dates the samples were collected; and
- Whether the sample was collected as part of detection or assessment monitoring.

5. STATUS SUMMARY OF THE 2022 GROUNDWATER MONITORING PROGRAM

Groundwater monitoring was performed in accordance with the detection monitoring requirements of §257.94. A summary of activities related to groundwater detection monitoring performed during 2022 is provided in the list below:

- In accordance with §257.94(b), semiannual detection monitoring was performed during the first half (June) and second half (November and December) of 2022 for analysis of Appendix III parameters (boron, calcium, chloride, fluoride, pH, sulfate and total dissolved solids (TDS)).
- Statistical evaluation of the semiannual detection monitoring data was performed in accordance with the statistical method certified by a qualified Arkansas-registered professional engineer. The certified statistical method has been posted to Entergy's CCR Rule Compliance Data and Information website.
- In 2021, Entergy completed a successful alternate source demonstration (ASD) per §257.94(e)(2) in response to potential statistically significant increases (SSIs) identified during the statistical evaluation of the data generated from the second half 2021 semi-annual detection monitoring event. As required by §257.94(e)(2), a copy of the ASD is included in Appendix C. Based on the successful evaluation conducted and results presented in the ASD, Entergy continued with detection monitoring in accordance with §257.94.
- The first half 2022 semi-annual detection monitoring sampling was performed during June 2022. Based on statistical evaluation of the data potential SSIs were identified for boron, calcium, chloride, fluoride, and total dissolved solids (TDS).
- Entergy completed a successful ASD per §257.94(e)(2) for the potential SSIs identified during the first half 2022 semi-annual detection monitoring event. As required by §257.94(e)(2), a copy of the ASD is included in Appendix C. Entergy continued with detection monitoring in accordance with §257.94.
- The second half 2022 semi-annual detection monitoring sampling was performed during December 2022. Statistical evaluation of the data will be performed during 2022 to determine if any SSIs are identified in accordance with §257.93(h).

- No problems were encountered during 2022 regarding the detection monitoring and corrective action system. Therefore, no actions were required to modify the system.
- The Landfill CCR unit remained in detection monitoring for the duration of 2022.

6. **PROJECTED ACTIVITIES FOR 2023**

Planned activities for the program during 2023 are listed below:

- Statistical evaluation of the second-half 2022 and first-half 2023 detection monitoring sampling data will be performed during 2023 to determine if any SSIs are identified.
- Semi-annual detection monitoring is planned for June and December 2023.

APPENDIX A SITE MAP

DRAWN BY:	S. MAJOR	PROJ. NO.: 341458
CHECKED BY:	S. SELLWOOD	
APPROVED BY:	J. HOUSE	FIGURE 1
DATE:	OCTOBER 2020	

Two United Plaza 8550 United Plaza Blvd., Suite 502 Baton Rouge, LA Phone: 225.216.7483

341458-002.mxd

APPENDIX B GROUNDWATER MONITORING DATA

	Sampling Schedule, Enter	gy White Bluff CADL Networl	<		
	Detection Monitoring Sampling Dates and Wells				
	Sam				
	52	0			
	/202	,202			
	6/13-6/15/2022	12/5-12/8/2020			
	3-6/	5-12			
	5/1.	12/:			
			Number of		
Well ID			Samples Collected		
MW-101S	Х	Х	2		
MW-102S	Х	Х	2		
MW-103S	Х	Х	2		
MW-104S	Х	Х	2		
MW-105S	Х	Х	2		
MW-106S	Х	Х	2		
MW-110S	Х	Х	2		
MW-111S	Х	Х	2		
MW-101D	Х	Х	2		
MW-102D	Х	Х	2		
MW-103D	Х	Х	2		
MW-104D	Х	Х	2		
MW-105D	Х	Х	2		
MW-106D	Х	Х	2		
MW-107D	Х	Х	2		
MW-108D	Х	Х	2		
MW-109D	Х	Х	2		
MW-110D	Х	Х	2		
MW-112D	Х	Х	2		
MW-113D	Х	Х	2		
MW-114D	Х	Х	2		
MW-115D	Х	Х	2		
MW-118D	Х	Х	2		

Notes: All samples collected through 2022 were part of the detection monitoring program. No samples collected through 2022 were part of an assessment monitoring program.

Field pH Data Collected during 2022, Entergy White Bluff CADL network					
Well ID	Date Collected	pH (su)			
MW-1015	6/15/2022	5.98			
10100-1013	12/5/2022				
MW-1025	6/14/2022	6.06			
10100-1025	12/5/2022				
MW-1035	6/13/2022	4.31			
10100-1035	12/5/2022				
MW-1045	6/13/2022	4.82			
10100-1045	12/5/2022				
MW-1055	6/14/2022	5.97			
10100-1055	12/5/2022				
MW-1065	6/14/2022	4.01			
10100-1005	12/5/2022				
MW-1105	6/13/2022	5.49			
10100-1105	12/5/2022				
MW-1115 —	6/14/2022	4.05			
10100-1115	12/5/2022				
MW-101D	6/15/2022	7.75			
	12/5/2022				
MW-102D —	6/14/2022	8.17			
10100-1020	12/5/2022				
MW-103D	6/13/2022	8.30			
10100-1020	12/5/2022				
MW-104D —	6/13/2022	7.82			
10100-1040	12/5/2022				
MW-105D	6/14/2022	8.61			
	12/5/2022				

Field pH Data Collected during 2020, Entergy White Bluff CADL network					
Well ID	Date Collected	pH (su)			
MW-106D	6/14/2022	8.49			
10100-1000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
MW-107D	6/14/2022	7.36			
	12/5/2022				
MW-108D	6/14/2022	8.38			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
MW-109D	6/14/2022	7.97			
	Date Collected pH (su 6/14/2022 8.49 12/5/2022 7.36 6/14/2022 7.36 12/5/2022 8.38 12/5/2022 8.38 12/5/2022 7.97 6/14/2022 7.97 12/5/2022 8.28 12/5/2022 8.28 12/5/2022 8.15 6/13/2022 8.15 12/5/2022 6.97 12/5/2022 6.97 12/5/2022 8.70 12/5/2022 8.70 12/5/2022 8.67 12/5/2022 8.67 12/5/2022 7.77				
MW-110D	6/13/2022	8.28			
	Date Collected 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/13/2022 12/5/2022 6/15/2022 6/15/2022 12/5/2022 6/14/2022 12/5/2022 6/15/2022 12/5/2022 6/14/2022 12/5/2022 6/15/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/15/2022 6/15/2022 6/15/2022				
MW-112D	6/15/2022	8.15			
	12/5/2022				
MW-113D	6/14/2022	6.97			
	12/5/2022				
MW-114D	6/15/2022	8.70			
	12/5/2022	ate Collected pH (su) 6/14/2022 8.49 12/5/2022 7.36 6/14/2022 7.36 12/5/2022 6/14/2022 6/14/2022 8.38 12/5/2022 6/14/2022 6/14/2022 7.97 12/5/2022 7.97 6/14/2022 7.97 12/5/2022 6/13/2022 6/13/2022 8.28 12/5/2022 6/15/2022 6/14/2022 8.15 12/5/2022 6.97 12/5/2022 8.70 12/5/2022 8.67 12/5/2022 8.67 12/5/2022 7.77			
MW-115D	6/14/2022	8.67			
	12/5/2022				
MW-118D	6/15/2022	7.77			
10100	12/5/2022				

Field pH Data Collected during 2022, Entergy White Bluff CADL network					
Well ID	Date Collected	pH (su)			
M/M/ 1015	6/15/2022	5.98			
MW-101S	12/7/2022	5.51			
MW-102S	6/14/2022	6.06			
10100-1025	12/6/2022	5.94			
MW-103S	6/13/2022	4.31			
10100-1035	12/6/2022	4.74			
MW-104S	6/13/2022	4.82			
10100-1045	12/8/2022	4.90			
MW-105S	6/14/2022	5.97			
10100-1055	12/6/2022	5.57			
MW-106S	6/14/2022	4.01			
10100-1005	12/6/2022	3.83			
MW-1105	6/13/2022	5.49			
10100-1103	12/6/2022	4.11			
MW-111S	6/14/2022	4.05			
10100-1113	12/6/2022	3.71			
MW-101D	6/15/2022	7.75			
	12/6/2022	7.15			
MW-102D	6/14/2022	8.17			
	12/7/2022	6.80			
MW-103D	6/13/2022	8.30			
	12/8/2022	7.43			
MW-104D	6/13/2022	7.82			
10100-1040	12/6/2022	7.62			
MW-105D	6/14/2022	8.61			
	12/8/2022	7.32			

Field pH Data Collected during 2022, Entergy White Bluff CADL network				
Well ID	Date Collected	pH (su)		
MW-106D	6/14/2022	8.49		
10100-1000	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.21		
MW-107D	6/14/2022	7.36		
NIW-107D	12/6/2022	7.13		
MW-108D	6/14/2022	8.38		
NIW-108D	Date Collected pH (s 6/14/2022 8.49 12/8/2022 7.21 6/14/2022 7.36 12/6/2022 7.36 12/6/2022 7.36 6/14/2022 8.38 12/5/2022 7.63 6/14/2022 8.38 12/5/2022 7.63 6/14/2022 7.97 12/5/2022 7.51 6/13/2022 8.28 12/5/2022 7.71 6/13/2022 8.28 12/5/2022 7.71 6/15/2022 8.19 12/7/2022 7.19 6/14/2022 8.19 12/5/2022 7.19 6/14/2022 8.70 12/5/2022 7.81 6/15/2022 8.70 12/5/2022 7.81 6/14/2022 8.67 12/5/2022 7.80 6/14/2022 8.67 12/5/2022 7.80 6/15/2022 7.80 6/15/2022 7.80 <td>7.63</td>	7.63		
MW-109D	6/14/2022	7.97		
10100-1030	Date Collected pH (su) 6/14/2022 8.49 12/8/2022 7.21 6/14/2022 7.36 12/6/2022 7.13 6/14/2022 8.38 12/5/2022 7.63 6/14/2022 7.97 12/5/2022 7.51 6/14/2022 8.28 12/5/2022 7.51 6/13/2022 8.28 12/5/2022 7.71 6/15/2022 7.15 6/14/2022 6.97 12/6/2022 6.97 12/6/2022 7.81 6/14/2022 8.67 12/5/2022 7.80 6/14/2022 7.80	7.51		
MW-110D	6/13/2022	8.28		
	Date Collected 6/14/2022 12/8/2022 6/14/2022 12/6/2022 6/14/2022 12/6/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/13/2022 12/5/2022 6/13/2022 12/5/2022 6/15/2022 12/5/2022 6/15/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/15/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/14/2022 12/5/2022 6/15/2022 6/15/2022	7.71		
MW-112D	6/15/2022	8.15		
	12/7/2022	7.15		
MW-113D	6/14/2022	6.97		
10100-1130	12/6/2022	6.76		
MW-114D	6/15/2022	8.70		
10100-1140	12/5/2022	Date Collected pH (su) 6/14/2022 8.49 12/8/2022 7.21 6/14/2022 7.36 12/6/2022 7.13 6/14/2022 8.38 12/5/2022 7.63 6/14/2022 7.63 6/14/2022 7.63 6/14/2022 7.97 12/5/2022 7.51 6/13/2022 8.28 12/5/2022 7.71 6/15/2022 7.15 6/14/2022 8.15 12/7/2022 7.15 6/14/2022 8.70 12/6/2022 8.70 12/5/2022 7.81 6/14/2022 8.67 12/5/2022 7.80		
MW-115D	6/14/2022	8.67		
	12/5/2022	7.80		
MW-118D	6/15/2022	7.77		
ΙΝΙΝΥΤΤΟΟ	12/5/2022	7.23		

Pace Analytical® ANALYTICAL REPORT July 17, 2022

GBMc & Associates - Bryant, AR

Sample Delivery Group:	L1506358
Samples Received:	06/17/2022
Project Number:	1145-21-080
Description:	Entergy - White Bluff
Site:	CADL - CCR
Report To:	Jonathan Brown
	219 Brown Lane
	Bryant, AR 72022

Тс Ss Cn Śr ʹQc Gl A Sc

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: GBMc & Associates - Bryant, AR PROJECT: 1145-21-080

SDG: L1506358

DATE/TIME: 07/17/22 12:29

PAGE: 1 of 88

TABLE OF CONTENTS

Cp: Cover Page			1
Tc: Table of Contents			2
Ss: Sample Summary			4
Cn: Case Narrative			11
Sr: Sample Results			12
MW-101S L1506358-01			12
MW-102S L1506358-02			13
MW-103S L1506358-03			14
MW-104S L1506358-04			15
MW-105S L1506358-05			16
MW-106S L1506358-06			17
MW-110S L1506358-07			18
MW-111S L1506358-08			19
MW-101D L1506358-09			20
MW-102D L1506358-10			21
MW-103D L1506358-11			22
MW-104D L1506358-12			23
MW-105D L1506358-13			24
MW-106D L1506358-14			25
MW-107D L1506358-15			26
MW-108D L1506358-16			27
MW-109D L1506358-17			28
MW-110D L1506358-18			29
MW-112D L1506358-19			30
MW-113D L1506358-20			31
MW-114D L1506358-21			32
MW-115D L1506358-22			33
MW-118D L1506358-23			34
FIELD BLANK 1 L1506358-24			35
DUPLICATE 1 L1506358-25			36
FIELD BLANK 2 L1506358-26			37
DUPLICATE 2 L1506358-27			38
DUPLICATE 3 L1506358-28			39
RP-1 L1506358-29			40
RP-2 L1506358-30			41
RP-3 L1506358-31			42
RP-4 L1506358-32			43
RP-5 L1506358-33			44
RP-6 L1506358-34			45
RP-7 L1506358-35			46
ACCOUNT:	PROJECT:	SDG:	DATE/TIME:

PROJECT: 1145-21-080

L1506358

PAGE: 2 of 88

RP-8 L1506358-36	47
RP-9 L1506358-37	48
RP-10 L1506358-38	49
DUPLICATE RP-10 L1506358-39	50
Qc: Quality Control Summary	51
Gravimetric Analysis by Method 2540 C-2011	51
Wet Chemistry by Method 9056A	62
Metals (ICP) by Method 6010B	74
Metals (ICPMS) by Method 6020	78
GI: Glossary of Terms	81
Al: Accreditations & Locations	82
Sc: Sample Chain of Custody	83

PROJECT: 1145-21-080

SDG: L1506358

PAGE: 3 of 88

MW-1015 L1506358-01 GW			Collected by Danielle Braund	Collected date/time 06/15/22 10:50	06/17/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1883419	1	date/time 06/22/22 09:42	date/time 06/22/22 17:30	SJF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891559	1	07/08/22 17:03	07/08/22 17:03	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887146	1	07/05/22 20:45	07/07/22 21:10	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887164	1	07/05/22 21:24	07/07/22 22:01	LD	Mt. Juliet, TN
MW-102S L1506358-02 GW			Collected by Danielle Braund	Collected date/time 06/14/22 16:30	Received da 06/17/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1882814	1	06/21/22 15:30	06/21/22 16:10	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1890898	1	07/08/22 03:14	07/08/22 03:14	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887146	1	07/05/22 20:45	07/07/22 21:13	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887164	1	07/05/22 21:24	07/07/22 22:05	LD	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-103S L1506358-03 GW			Danielle Braund	06/13/22 13:02	06/17/22 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1882398	1	06/20/22 17:50	06/20/22 18:20	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1890741	1	07/08/22 05:14	07/08/22 05:14	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887146	1	07/05/22 20:45	07/07/22 21:16	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887164	1	07/05/22 21:24	07/07/22 22:08	LD	Mt. Juliet, TN
MW-104S L1506358-04 GW			Collected by Danielle Braund	Collected date/time 06/13/22 17:00	Received da 06/17/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	Baten	Dilation	date/time	date/time	7 mary 5t	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882398	1	06/20/22 17:50	06/20/22 18:20	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1892741	1	07/08/22 05:41	07/08/22 05:41	LBR	Mt. Juliet, TN
		1				
Metals (ICP) by Method 6010B	WG1887146	1	07/05/22 20:45	07/07/22 21:19	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887164	1	07/05/22 21:24	07/07/22 22:11	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-105S L1506358-05 GW			Danielle Braund	06/14/22 08:45	06/17/22 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1882814	1	06/21/22 15:30	06/21/22 16:10	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1890898	1	07/08/22 03:29	07/08/22 03:29	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 08:45	CCE	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 12:36	JPD	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-106S L1506358-06 GW			Danielle Braund	06/14/22 09:35	06/17/22 09:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	-	
Gravimetric Analysis by Method 2540 C-2011	WG1882814	1	06/21/22 15:30	06/21/22 16:10	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1890898	1	07/08/22 04:29	07/08/22 04:29	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1890898	10	07/08/22 03:59	07/08/22 03:59	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 08:48	CCE	Mt. Juliet, TN
Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020	WG1887147 WG1887166	1	07/05/22 22:00	07/06/22 12:49	JPD	Mt. Juliet, Th Mt. Juliet, Th
						, e 2.00, Th
ACCOUNT:	PROJECT:		SDG:	DAT	E/TIME:	
	11.15 01.000		14500050	07/77	122 12:20	

1145-21-080

GBMc & Associates - Bryant, AR

L1506358

07/17/22 12:29

PAGE: 4 of 88

Ср

²Tc

Ss

⁴Cn

Sr

Qc

GI

Â

⁹Sc

			Collected by	Collected date/time		
MW-110S L1506358-07 GW	2	Dil ii	Danielle Braund	06/13/22 15:07	06/17/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882398	1	06/20/22 17:50	06/20/22 18:20	MMF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1890741	1	07/08/22 06:07	07/08/22 06:07	LBR	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1890741	10	07/08/22 05:54	07/08/22 05:54	LBR	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 08:51	CCE	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 12:53	JPD	Mt. Juliet, T
			Collected by	Collected data/time	Deceived do	to/time
MW-111S L1506358-08 GW			Collected by Danielle Braund	Collected date/time 06/14/22 10:15	Received da 06/17/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1883051	1	06/21/22 16:49	06/21/22 18:33	MMF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1890898	1	07/08/22 05:43	07/08/22 05:43	ELN	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1890898	10	07/08/22 05:29	07/08/22 05:49	ELN	Mt. Juliet, T
	WG1890898 WG1887147	10	07/07/22 00:52	07/07/22 08:53	CCE	Mt. Juliet, TI
Metals (ICP) by Method 6010B						
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 12:56	JPD	Mt. Juliet, T
			Collected by	Collected date/time		
MW-101D L1506358-09 GW			Danielle Braund	06/15/22 09:05	06/17/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1895108	1	07/14/22 15:01	07/14/22 18:07	VRP	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1891559	1	07/08/22 17:30	07/08/22 17:30	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 08:34	CCE	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 12:59	JPD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-102D L1506358-10 GW			Danielle Braund	06/14/22 17:48	06/17/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882814	1	06/21/22 15:30	06/21/22 16:10	MMF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1890898	1	07/08/22 05:58	07/08/22 05:58	ELN	Mt. Juliet, T
	WG1890898 WG1887147				CCE	
Metals (ICP) by Method 6010B		1	07/07/22 00:52	07/07/22 09:01		Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:11	JPD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-103D L1506358-11 GW			Danielle Braund	06/13/22 14:27	06/17/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882167	1	06/20/22 13:47	06/20/22 14:22	MMF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1890741	1	07/08/22 06:47	07/08/22 06:47	LBR	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:04	CCE	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:14	JPD	Mt. Juliet, TI
	10100/100	·	5., 55/22 22.00	0 00/22 10.11	510	Sunct, II
			Collected by	Collected date/time		
MW-104D L1506358-12 GW			Danielle Braund	06/13/22 17:26	06/17/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882398	1	06/20/22 17:50	06/20/22 18:20	MMF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1890741	1	07/08/22 07:14	07/08/22 07:14	LBR	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:07	CCE	Mt. Juliet, T
Matel (CDMC) by Mathed 20100	W01007117		07/05/00 00:02	07/07/22 05:07	IDD	March III I Th

WG1887166 1 07/05/22 22:00 07/06/22 13:17

PROJECT:

1145-21-080

SDG:

L1506358

Metals (ICPMS) by Method 6020

ACCOUNT:

GBMc & Associates - Bryant, AR

PAGE: 5 of 88

JPD Mt. Juliet, TN

DATE/TIME:

07/17/22 12:29

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

MW-105D L1506358-13 GW			Collected by Danielle Braund	Collected date/time 06/14/22 09:05	Received da 06/17/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882814	1	06/21/22 15:30	06/21/22 16:10	MMF	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1890898	1	07/08/22 06:13	07/08/22 06:13	ELN	Mt. Juliet, Tl
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:10	CCE	Mt. Juliet, TI
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:21	JPD	Mt. Juliet, Ti
MW-106D L1506358-14 GW			Collected by Danielle Braund	Collected date/time 06/14/22 11:10	Received da 06/17/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882719	1	06/21/22 09:56	06/21/22 14:23	MMF	Mt. Juliet, Tl
Wet Chemistry by Method 9056A	WG1890898	1	07/08/22 06:28	07/08/22 06:28	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:13	CCE	Mt. Juliet, TI
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:24	JPD	Mt. Juliet, TN
MW-107D L1506358-15 GW			Collected by Danielle Braund	Collected date/time 06/14/22 11:05	Received da 06/17/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882719	1	06/21/22 09:56	06/21/22 14:23	MMF	Mt. Juliet, T
	WG1882719 WG1890898	1	06/21/22 09:56	06/21/22 14:23	ELN	Mt. Juliet, Tr Mt. Juliet, Tr
Wet Chemistry by Method 9056A						Mt. Juliet, Tr Mt. Juliet, Th
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:15	CCE	
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:28	JPD	Mt. Juliet, TI
MW-108D L1506358-16 GW			Collected by Danielle Braund	Collected date/time 06/14/22 12:45	Received da 06/17/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882814	1	06/21/22 15:30	06/21/22 16:10	MMF	Mt. Juliet, Tl
Wet Chemistry by Method 9056A	WG1890898	1	07/08/22 06:58	07/08/22 06:58	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:18	CCE	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:31	JPD	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
MW-109D L1506358-17 GW			Danielle Braund	06/14/22 15:45	06/17/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882719	1	06/21/22 09:56	06/21/22 14:23	MMF	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1890898	1	07/08/22 07:13	07/08/22 07:13	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG18887147	1	07/07/22 00:52	07/07/22 09:21	CCE	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:34	JPD	Mt. Juliet, T
MW-110D L1506358-18 GW			Collected by Danielle Braund	Collected date/time 06/13/22 15:41	Received da 06/17/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1882398	1	06/20/22 17:50	06/20/22 18:20	MMF	Mt. Juliet, TI
Wet Chemistry by Method 9056A	WG1890741	1	07/08/22 07:54	07/08/22 07:54	LBR	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:24	CCE	Mt. Juliet, TN
metals (ICF) by method of IOB						

ACCOUNT: GBMc & Associates - Bryant, AR PROJECT: 1145-21-080 SDG: L1506358 DATE/TIME: 07/17/22 12:29 PAGE:

6 of 88

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

Sc

Ср

			0.11	0.11		
			Collected by Danielle Braund	Collected date/time 06/15/22 16:20	Received da 06/17/22 09:	
/W-112D L1506358-19 GW		D 'I .:				
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1883419	1	06/22/22 09:42	06/22/22 17:30	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1891559	1	07/08/22 17:43	07/08/22 17:43	ELN	Mt. Juliet, TI
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:27	CCE	Mt. Juliet, TI
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:41	JPD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	to/timo
MW-113D L1506358-20 GW			Collected by Danielle Braund	06/14/22 12:35	06/17/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1882719	1	06/21/22 09:56	06/21/22 14:23	MMF	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1890898	1	07/08/22 07:28	07/08/22 07:28	ELN	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1890898	10	07/12/22 11:45	07/12/22 11:45	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:35	CCE	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:53	JPD	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
MW-114D L1506358-21 GW			Danielle Braund	06/15/22 18:15	06/17/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1883409	1	06/22/22 09:04	06/22/22 16:01	MMF	Mt. Juliet, T
Wet Chemistry by Method 9056A	WG1891559	1	07/08/22 18:10	07/08/22 18:10	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:38	CCE	Mt. Juliet, T
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:56	JPD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-115D L1506358-22 GW			Danielle Braund	06/14/22 14:15	06/17/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimatric Analysis by Mathad 2540 C 2011	WG1883051	1	06/21/22 16:49	06/21/22 18:33	MMF	Mt. Juliet, T
Gravimetric Analysis by Method 2540 C-2011						
Net Chemistry by Method 9056A	WG1890898	1	07/08/22 07:43	07/08/22 07:43	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1887147	1	07/07/22 00:52	07/07/22 09:41	CCE	Mt. Juliet, T
Aetals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 13:59	JPD	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
MW-118D L1506358-23 GW			Danielle Braund	06/15/22 13:30	06/17/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1883415	1	06/22/22 09:12	06/22/22 14:52	MMF	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1803 115 WG1891559	1	07/08/22 18:37	07/08/22 18:37	ELN	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1891559 WG1891121	1	07/07/22 15:28	07/07/22 22:20	CCE	Mt. Juliet, T
Metals (ICPMS) by Method 6000	WG1887166	1	07/05/22 22:00	07/06/22 14:03	JPD	Mt. Juliet, T
			Collected by	Collected date/time		
FIELD BLANK 1 L1506358-24 GW			Danielle Braund	06/14/22 08:50	06/17/22 09:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882814	1	06/21/22 15:30	06/21/22 16:10	MMF	Mt. Juliet, T
Net Chemistry by Method 9056A	WG1890900	1	07/08/22 15:20	07/08/22 15:20	LBR	Mt. Juliet, T
Metals (ICP) by Method 6010B	WG1890300	1	07/07/22 15:28	07/07/22 22:23	CCE	Mt. Juliet, TI
Metals (ICPMS) by Method 6020	WG1887166	1	07/05/22 22:00	07/06/22 14:06	JPD	Mt. Juliet, TI
ACCOUNT:	PROJECT:		SDG:	DAT	E/TIME:	
	4145 01 000		14500050	07/17	00.10.00	

1145-21-080

GBMc & Associates - Bryant, AR

L1506358

07/17/22 12:29

GE:

Ср

²Tc

Ss

⁴Cn

Sr

Qc

GI

A

⁹Sc

7 of 88

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

DUPLICATE 1 L1506358-25 GW			Collected by Danielle Braund	Collected date/time 06/14/22 12:45	Received da 06/17/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1883051	1	06/21/22 16:49	06/21/22 18:33	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1890900	1	07/08/22 17:34	07/08/22 17:34	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 18:57	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887148 WG1887167	1	07/06/22 20:49	07/07/22 20:07	JDG	Mt. Juliet, TN
	WG1887107	I	07/00/22 20.49	01/01/22 20:07	JDG	Mit. Juliet, Th
FIELD BLANK 2 L1506358-26 GW			Collected by Danielle Braund	Collected date/time 06/15/22 08:00	Received da 06/17/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
viculou	Datch	Dilution	date/time	date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1883409	1	06/22/22 09:04	06/22/22 16:01	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891559	1	07/08/22 19:17	07/08/22 19:17	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:07	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 20:11	JDG	Mt. Juliet, TN
			Collected by	Collected date/time		
DUPLICATE 2 L1506358-27 GW			Danielle Braund	06/15/22 10:50	06/17/22 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1883419	1	06/22/22 09:42	06/22/22 17:30	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891559	1	07/08/22 19:30	07/08/22 19:30	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:10	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 20:15	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE 3 L1506358-28 GW			Danielle Braund	06/13/22 17:00	06/17/22 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1882398	1	06/20/22 17:50	06/20/22 18:20	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1890741	1	07/08/22 08:08	07/08/22 08:08	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:12	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 20:18	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
RP-1 L1506358-29 GW			Danielle Braund	06/15/22 13:46	06/17/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
wichtou -	Dailli	DilutiOII	date/time	date/time	AnaiySt	LUCGUUI
Gravimetric Analysis by Method 2540 C-2011	WG1883419	1	06/22/22 09:42	06/22/22 17:30	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891559	1	07/08/22 20:11	07/08/22 20:11	ELN	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891559	10	07/08/22 19:57	07/08/22 19:57	ELN	Mt. Juliet, TN
	WG1891559					
Wet Chemistry by Method 9056A		100	07/08/22 19:44	07/08/22 19:44	ELN	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:15	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 20:39	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
RP-2 L1506358-30 GW			Danielle Braund	06/15/22 12:20	06/17/22 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1883419	1	date/time 06/22/22 09:42	date/time 06/22/22 17:30	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891844	1	07/09/22 00:17	07/09/22 00:17	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1891844 WG1887148	1	07/05/22 15:16	07/07/22 19:23	ZSA	Mt. Juliet, Th Mt. Juliet, Th
Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020	WG1887148 WG1887167	1	07/06/22 15:16	07/07/22 20:42	JDG	Mt. Juliet, TN Mt. Juliet, TN
	W01007107	I	07100122 20.43	01101122 20.42	300	mi. Juilet, IN
ACCOUNT:	PROJECT:		SDG:	DAT	E/TIME:	
	1145 21 000		11500050	07/7	00.40.00	

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 GBMc & Associates - Bryant, AR
 1145-21-080
 L1506358
 07/17/22 12:29
 8 of 88

Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

Sc

PAGE:

9 of 88

RP-3 L1506358-31 GW			Collected by Danielle Braund	Collected date/time 06/16/22 09:05	Received dat 06/17/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1884161	1	06/23/22 09:41	06/23/22 14:18	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891844	1	07/09/22 01:02	07/09/22 01:02	LBR	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1891844	10	07/09/22 00:47	07/09/22 00:47	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:26	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 20:46	JDG	Mt. Juliet, TN
RP-4 L1506358-32 GW			Collected by Danielle Braund	Collected date/time 06/16/22 10:15	Received dat 06/17/22 09:	
Vethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1884165	1	06/23/22 09:43	06/23/22 15:25	MMF	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1891844	1	07/09/22 01:17	07/09/22 01:17	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:29	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 20:50	JDG	Mt. Juliet, TN
RP-5 L1506358-33 GW			Collected by Danielle Braund	Collected date/time 06/15/22 17:45	Received dat 06/17/22 09:	
Vethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Gravimetric Analysis by Method 2540 C-2011	WG1883415	1	06/22/22 09:12	06/22/22 14:52	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1891844	1	07/09/22 01:32	07/09/22 01:32	LBR	Mt. Juliet, TN
Netals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:32	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 20:54	JDG	Mt. Juliet, TN
RP-6 L1506358-34 GW			Collected by Danielle Braund	Collected date/time 06/13/22 10:45	Received dat 06/17/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1882398	1	06/20/22 17:50	06/20/22 18:20	MMF	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1890741	1	07/08/22 08:35	07/08/22 08:35	LBR	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1890741	100	07/08/22 08:21	07/08/22 08:21	LBR	
Metals (ICP) by Method 6010B			01100/22 00.21	07/00/22 00.21	2011	Mt. Juliet, TN
	WG1887148	1	07/05/22 15:16	07/07/22 19:34	ZSA	Mt. Juliet, TN Mt. Juliet, TN
Metals (ICPMS) by Method 6020 RP-7 L1506358-35 GW	WG1887148	1	07/05/22 15:16	07/07/22 19:34	ZSA	Mt. Juliet, TN Mt. Juliet, TN te/time
Metals (ICPMS) by Method 6020	WG1887148	1	07/05/22 15:16 07/06/22 20:49 Collected by	07/07/22 19:34 07/07/22 20:57 Collected date/time	ZSA JDG Received dat	Mt. Juliet, TN Mt. Juliet, TN te/time
Metals (ICPMS) by Method 6020 RP-7 L1506358-35 GW Method	WG1887148 WG1887167	1	07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation	07/07/22 19:34 07/07/22 20:57 Collected date/time 06/15/22 16:30 Analysis	ZSA JDG Received dat 06/17/22 09:	Mt. Juliet, TN Mt. Juliet, TN te/time 00
Metals (ICPMS) by Method 6020 RP-7 L1506358-35 GW Method Gravimetric Analysis by Method 2540 C-2011	WG1887148 WG1887167 Batch	1 1 Dilution	07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time	07/07/22 19:34 07/07/22 20:57 Collected date/time 06/15/22 16:30 Analysis date/time	ZSA JDG Received dat 06/17/22 09: Analyst	Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location
Metals (ICPMS) by Method 6020 RP-7 L1506358-35 GW Method Gravimetric Analysis by Method 2540 C-2011 Vet Chemistry by Method 9056A	WG1887148 WG1887167 Batch WG1883419	1 1 Dilution	07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time 06/22/22 09:42	07/07/22 19:34 07/07/22 20:57 Collected date/time 06/15/22 16:30 Analysis date/time 06/22/22 17:30	ZSA JDG Received dat 06/17/22 09: Analyst MMF	Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN
Metals (ICPMS) by Method 6020 RP-7 L1506358-35 GW Method Gravimetric Analysis by Method 2540 C-2011 Met Chemistry by Method 9056A Metals (ICP) by Method 6010B	WG1887148 WG1887167 Batch WG1883419 WG1891844	1 1 Dilution 1 1	07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time 06/22/22 09:42 07/09/22 01:47	07/07/22 19:34 07/07/22 20:57 Collected date/time 06/15/22 16:30 Analysis date/time 06/22/22 17:30 07/09/22 01:47	ZSA JDG Received dat 06/17/22 09: Analyst MMF LBR	Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN Mt. Juliet, TN
Metals (ICPMS) by Method 6020 RP-7 L1506358-35 GW	WG1887148 WG1887167 Batch WG1883419 WG1891844 WG1887148	1 1 Dilution 1 1 1	07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time 06/22/22 09:42 07/09/22 01:47 07/05/22 15:16	07/07/22 19:34 07/07/22 20:57 Collected date/time 06/15/22 16:30 Analysis date/time 06/22/22 17:30 07/09/22 01:47 07/07/22 19:37	ZSA JDG Received dal 06/17/22 09: Analyst MMF LBR ZSA	Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Metals (ICPMS) by Method 6020 RP-7 L1506358-35 GW Method Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020 RP-8 L1506358-36 GW	WG1887148 WG1887167 Batch WG1883419 WG1891844 WG1887148	1 1 Dilution 1 1 1	07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time 06/22/22 09:42 07/09/22 01:47 07/05/22 15:16 07/06/22 20:49 Collected by	07/07/22 19:34 07/07/22 20:57 Collected date/time 06/15/22 16:30 Analysis date/time 06/22/22 17:30 07/09/22 01:47 07/07/22 19:37 07/07/22 19:37 07/07/22 21:01 Collected date/time	ZSA JDG Received dat 06/17/22 09: Analyst LBR LBR ZSA JDG Received dat	Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Aetals (ICPMS) by Method 6020 RP-7 L1506358-35 GW Aethod Gravimetric Analysis by Method 2540 C-2011 Vet Chemistry by Method 9056A Aetals (ICP) by Method 6010B Aetals (ICPMS) by Method 6020 RP-8 L1506358-36 GW Aethod	WG1887148 WG1887167 Batch WG1883419 WG1883419 WG1887148 WG1887167	1 1 Dilution 1 1 1 1	07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time 06/22/22 09:42 07/09/22 01:47 07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation	07/07/22 19:34 07/07/22 20:57 Collected date/time 06/15/22 16:30 Analysis date/time 06/22/22 17:30 07/09/22 01:47 07/07/22 19:37 07/07/22 19:37 07/07/22 21:01 Collected date/time 06/15/22 15:20 Analysis	ZSA JDG Received dat 06/17/22 09: Analyst LBR ZSA JDG Received dat 06/17/22 09:	Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN
Metals (ICPMS) by Method 6020 RP-7 L1506358-35 GW Method Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020 RP-8 L1506358-36 GW Method Gravimetric Analysis by Method 2540 C-2011	WG1887148 WG1887167 Batch WG1883419 WG1891844 WG1887148 WG1887147 Batch	1 1 Dilution 1 1 1 1 Dilution	07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time 06/22/22 09:42 07/09/22 01:47 07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time	07/07/22 19:34 07/07/22 20:57 Collected date/time 06/15/22 16:30 Analysis date/time 06/22/22 17:30 07/09/22 01:47 07/07/22 19:37 07/07/22 19:37 07/07/22 21:01 Collected date/time 06/15/22 15:20 Analysis date/time	ZSA JDG Received dal 06/17/22 09: Analyst MMF LBR ZSA JDG Received dal 06/17/22 09: Analyst	Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN
Metals (ICPMS) by Method 6020 RP-7 L1506358-35 GW Method Gravimetric Analysis by Method 2540 C-2011 Net Chemistry by Method 9056A Metals (ICP) by Method 6010B Metals (ICPMS) by Method 6020 RP-8 L1506358-36 GW Method	WG1887148 WG1887167 Batch WG1883419 WG1883419 WG1887148 WG1887148 WG1887167 Batch WG1883419	1 1 Dilution 1 1 1 1 Dilution	07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time 06/22/22 09:42 07/09/22 01:47 07/05/22 15:16 07/06/22 20:49 Collected by Danielle Braund Preparation date/time 06/22/22 09:42	07/07/22 19:34 07/07/22 20:57 Collected date/time 06/15/22 16:30 Analysis date/time 06/22/22 17:30 07/09/22 01:47 07/07/22 19:37 07/07/22 19:37 07/07/22 21:01 Collected date/time 06/15/22 15:20 Analysis date/time 06/22/22 17:30	ZSA JDG Received dat 06/17/22 09: Analyst LBR ZSA JDG Received dat 06/17/22 09: Analyst	Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN Mt. Juliet, TN te/time 00 Location

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:

 GBMc & Associates - Bryant, AR
 1145-21-080
 L1506358
 07/17/22 12:29

RP-9 L1506358-37 GW			Collected by Danielle Braund	Collected date/time 06/16/22 10:30	Received da 06/17/22 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1884165	1	06/23/22 09:43	06/23/22 15:25	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891844	1	07/09/22 02:17	07/09/22 02:17	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:42	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 21:09	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
RP-10 L1506358-38 GW			Danielle Braund	06/16/22 08:42	06/17/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1884161	1	06/23/22 09:41	06/23/22 14:18	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891894	1	07/08/22 19:19	07/08/22 19:19	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891894	10	07/08/22 19:35	07/08/22 19:35	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:45	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 21:13	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE RP-10 L1506358-39 GW			Danielle Braund	06/16/22 08:42	06/17/22 09:	00
Marka al	Detel	Dilleri	D	A 1 -		

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1884161	1	06/23/22 09:41	06/23/22 14:18	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891894	1	07/08/22 19:50	07/08/22 19:50	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1891894	10	07/08/22 20:05	07/08/22 20:05	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1887148	1	07/05/22 15:16	07/07/22 19:48	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1887167	1	07/06/22 20:49	07/07/22 21:34	JDG	Mt. Juliet, TN

SDG: L1506358 Ср

²Tc

Ss

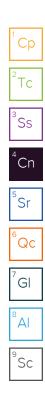
Cn

Sr

Qc

GI

ΆI


Sc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1506358 DATE/TIME:

PAGE: 11 of 88

SAMPLE RESULTS - 01

Collected date/time: 0	6/15/22 10:50			LL IXL L1506	358	1	
Additional Informa	ation - Results fo	or field and	alyses are	e not accr	edited to ISO 1	7025	1
	Result	Units					Cp
Analyte							2
pH (On Site)	5.98	SU					Tc
Gravimetric Analy	sis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		4 Cn
Dissolved Solids	234		10.0	1	06/22/2022 17:30	WG1883419	СП
Wet Chemistry by	Method 9056	4					⁵ Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		ို့လူင
Chloride	8.52		1.00	1	07/08/2022 17:03	WG1891559	
Fluoride	ND		0.150	1	07/08/2022 17:03	WG1891559	⁷ Gl
Sulfate	52.5		5.00	1	07/08/2022 17:03	WG1891559	G
Metals (ICP) by M	ethod 6010B						⁸ Al
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		ٌSc
Boron	ND		0.200	1	07/07/2022 21:10	WG1887146	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	21.8		1.00	1	07/07/2022 22:01	WG1887164

Collected date/time: 06/14/22 16:30

SAMPLE RESULTS - 02 L1506358

Additional Inform	ation - Results fo	or field and	alyses are	e not accr	redited to ISO 1	7025	1
	Result	Units					(
Analyte							2
pH (On Site)	6.06	SU					
Gravimetric Analy	sis by Method 2	2540 C-20)11				3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	183		10.0	1	06/21/2022 16:10	WG1882814	
Wet Chemistry by	/ Method 90564	4					5
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		Ŭ(
Chloride	7.00		1.00	1	07/08/2022 03:14	<u>WG1890898</u>	
Fluoride	ND		0.150	1	07/08/2022 03:14	<u>WG1890898</u>	7
Sulfate	19.1		5.00	1	07/08/2022 03:14	WG1890898	
Metals (ICP) by M	ethod 6010B						8
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		9
Boron	ND		0.200	1	07/07/2022 21:13	WG1887146	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	10.3		1.00	1	07/07/2022 22:05	WG1887164

MW-103S

Collected date/time: 06/13/22 13:02

SAMPLE RESULTS - 03 L1506358

	Result	Units					(
Analyte							2
pH (On Site)	4.31	SU					
Gravimetric Analy	vsis by Method 2	2540 C-20	11				3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		4
Dissolved Solids	122		10.0	1	06/20/2022 18:20	WG1882398	
							5
Wet Chemistry by	y Method 90564	4					5
Wet Chemistry by	y Method 90564 Result	م <u>Qualifier</u>	RDL	Dilution	Analysis	Batch	
			RDL mg/l	Dilution	Analysis date / time	Batch	6
Analyte	Result			Dilution 1	-	Batch WG1890741	
Analyte Chloride	Result mg/l		mg/l	Dilution 1 1	date / time		6(
Analyte Chloride Fluoride	Result mg/l 4.62		mg/l 1.00	Dilution 1 1 1	date / time 07/08/2022 05:14	WG1890741	
Analyte Chloride Fluoride Sulfate	Result mg/l 4.62 ND 39.5		mg/l 1.00 0.150	Dilution 1 1 1	date / time 07/08/2022 05:14 07/08/2022 05:14	WG1890741 WG1890741	6(
Analyte Chloride Fluoride Sulfate Metals (ICP) by M	Result mg/l 4.62 ND 39.5		mg/l 1.00 0.150	Dilution 1 1 1 Dilution	date / time 07/08/2022 05:14 07/08/2022 05:14	WG1890741 WG1890741	7,
Analyte Chloride Fluoride Sulfate	Result mg/l 4.62 ND 39.5 ethod 6010B	Qualifier	mg/l 1.00 0.150 5.00	1 1 1	date / time 07/08/2022 05:14 07/08/2022 05:14 07/08/2022 05:14	WG1890741 WG1890741 WG1890741	7 (

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	3.96		1.00	1	07/07/2022 22:08	WG1887164

MW-104S

Collected date/time: 06/13/22 17:00

SAMPLE RESULTS - 04 L1506358

	Additional Information - Results for field analyses are not accredited to ISO 17025	
--	---	--

	Result	Units					
Analyte							
pH (On Site)	7.82	su					
Gravimetric Analy	vsis by Method	2540 C-20)11				
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	248		10.0	1	06/20/2022 18:20	WG1882398	
Wet Chemistry by							
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Chloride	4.92		1.00	1	07/08/2022 05:41	WG1890741	
CHIONUE	4.92						
	ND		0.150	1	07/08/2022 05:41	WG1890741	
Fluoride			0.150 5.00	1 1	07/08/2022 05:41 07/08/2022 05:41	WG1890741 WG1890741	
Fluoride Sulfate	ND 71.7			1			
Fluoride Sulfate Metals (ICP) by M	ND 71.7	Qualifier		1 1 Dilution			
Fluoride Sulfate	ND 71.7 ethod 6010B	Qualifier	5.00	1 1 Dilution	07/08/2022 05:41	WG1890741	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	15.5		1.00	1	07/07/2022 22:11	WG1887164

MW-105S Collected date/time: 06/14/22 0	8:45		SAMPLE	E RES	SULTS - 05	
Additional Information - F	Results for	field anal	yses are no	ot accre	edited to ISO 170	25
	Result	Units				
Analyte						
pH (On Site)	5.97	su				
Gravimetric Analysis by I	Method 25	40 C-201	1			
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	179		10.0	1	06/21/2022 16:10	WG1882814
Wet Chemistry by Metho	od 9056A					
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	3.95		1.00	1	07/08/2022 03:29	WG1890898
Fluoride	ND		0.150	1	07/08/2022 03:29	WG1890898
Sulfate	23.2		5.00	1	07/08/2022 03:29	WG1890898
Metals (ICP) by Method 6	6010B					

Metals (ICP) by Me	ethod 6010B						⁸ Al
	Result	Qualifier	RDL	Dilution	Analysis	Batch	 9
Analyte	mg/l		mg/l		date / time		Sc
Boron	ND		0.200	1	07/07/2022 08:45	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	14.6		1.00	1	07/06/2022 12:36	WG1887166

SDG: L1506358

DATE/TIME: 07/17/22 12:29 Ср

Tc

Ss

Cn

Sr

Qc

GI

Collected date/time: 06/14/22 09:35

SAMPLE RESULTS - 06 L1506358

Additional Information	Results for field analyses	s are not accredited to ISO 17025	5

	Result	Units					
Analyte							
pH (On Site)	4.01	su					
Gravimetric Analy	/sis by Method 2	2540 C-20)11				
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	920		20.0	1	06/21/2022 16:10	WG1882814	
Wet Chemistry by	/ Method 9056/	4					
Wet Chemistry by	/ Method 9056/ Result	۵ Qualifier	RDL	Dilution	Analysis	Batch	
			RDL mg/l	Dilution	Analysis date / time	Batch	
Analyte	Result			Dilution 1		Batch WG1890898	
Analyte Chloride	Result mg/l		mg/l	Dilution 1 1	date / time		
Analyte Chloride Fluoride	Result mg/l 11.0		mg/l 1.00	Dilution 1 1 10	date / time 07/08/2022 04:29	WG1890898	
Analyte Chloride Fluoride Sulfate	Result mg/l 11.0 0.661 633		mg/l 1.00 0.150	1	date / time 07/08/2022 04:29 07/08/2022 04:29	WG1890898 WG1890898	
Analyte Chloride	Result mg/l 11.0 0.661 633		mg/l 1.00 0.150	1	date / time 07/08/2022 04:29 07/08/2022 04:29	WG1890898 WG1890898	
	Result mg/l 11.0 0.661 633 ethod 6010B	Qualifier	mg/l 1.00 0.150 50.0	1 1 10	date / time 07/08/2022 04:29 07/08/2022 04:29 07/08/2022 03:59	WG1890898 WG1890898 WG1890898	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	30.0		1.00	1	07/06/2022 12:49	WG1887166

Collected date/time: 06/13/22 15:07

SAMPLE RESULTS - 07 L1506358

Additional Information - Results for field analyses are not accredited to ISO 17025										
	Result	Units								
Analyte								2		
pH (On Site)	5.49	su						T		
Gravimetric Analy	vsis by Method 2	2540 C-20)11					³ S		
	Result	Qualifier	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l		date / time			⁴ C		
Dissolved Solids	466		10.0	1	06/20/2022 18:20	WG1882398				
Wet Chemistry by	/ Method 9056/	4						⁵ S		
	Result	Qualifier	RDL	Dilution	Analysis	Batch		6		
Analyte	mg/l		mg/l		date / time			ĴĞ		
Chloride	8.57		1.00	1	07/08/2022 06:07	WG1890741				
Fluoride	0.255		0.150	1	07/08/2022 06:07	WG1890741		⁷ G		
Sulfate	244		50.0	10	07/08/2022 05:54	WG1890741				
Metals (ICP) by M	ethod 6010B							⁸ A		
	Result	Qualifier	RDL	Dilution	Analysis	Batch		9		
Analyte	mg/l		mg/l		date / time			Ŝ		
Boron	2.03		0.200	1	07/07/2022 08:51	WG1887147				

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	16.7		1.00	1	07/06/2022 12:53	WG1887166

MW-111S

Collected date/time: 06/14/22 10:15

SAMPLE RESULTS - 08 L1506358

Additional Information - Results for field analyses are not accredited to ISO 17025								
Result	Units							
Analyte								

pH (On Site)

4.05 su

Gravimetric Analysis by Method 2540 C-2011

Gravimetric Analysis by Method 2540 C-2011												
	Result	Qualifier	RDL	Dilution	Analysis	Batch						
Analyte	mg/l		mg/l		date / time			⁴ Cn				
Dissolved Solids	1230		20.0	1	06/21/2022 18:33	WG1883051		CII				

Wet Chemistry by Method 9056A

Result	Qualifier	RDL	Dilution	Analysis	Batch	6
mg/l		mg/l		date / time		ଁ Q c
10.3		1.00	1	07/08/2022 05:43	<u>WG1890898</u>	
0.748		0.150	1	07/08/2022 05:43	<u>WG1890898</u>	⁷ GI
804		50.0	10	07/08/2022 05:29	WG1890898	
	mg/l 10.3 0.748	mg/l 10.3 0.748	mg/l mg/l 10.3 1.00 0.748 0.150	mg/l mg/l 10.3 1.00 1 0.748 0.150 1	mg/l mg/l date / time 10.3 1.00 1 07/08/2022 05:43 0.748 0.150 1 07/08/2022 05:43	mg/l date / time 10.3 1.00 1 07/08/2022 05:43 WG1890898 0.748 0.150 1 07/08/2022 05:43 WG1890898

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time	<u></u>	⁹ Sc
Boron	5.39		0.200	1	07/07/2022 08:53	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	115		1.00	1	07/06/2022 12:56	WG1887166

SDG: L1506358

DATE/TIME: 07/17/22 12:29 Ср

Тс

ΆI

Dissolved Solids

Collected date/time: 06/15/22 09:05

SAMPLE RESULTS - 09 L1506358

Additional Information - Results for field analyses are not accredited to ISO 17025										
	Result	Units								
Analyte										
pH (On Site)	7.75	su								
Gravimetric Analysis by Method 2540 C-2011										
	Result	Qualifier	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l		date / time					

1

Wet Chemistry by Method 9056A

354

Q

10.0

	Result	Qualifier	RDL	Dilution	Analysis	Batch
nalyte	mg/l		mg/l		date / time	
Chloride	7.38		1.00	1	07/08/2022 17:30	<u>WG1891559</u>
Fluoride	ND		0.150	1	07/08/2022 17:30	<u>WG1891559</u>
Sulfate	77.4		5.00	1	07/08/2022 17:30	WG1891559

07/14/2022 18:07

WG1895108

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		Sc
Boron	ND		0.200	1	07/07/2022 08:34	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	50.8		1.00	1	07/06/2022 12:59	WG1887166

SDG: L1506358

DATE/TIME: 07/17/22 12:29 Ср

Тс

Ss

Cn

Collected date/time: 06/14/22 17:48

SAMPLE RESULTS - 10

Additional Inform	ation - Results fo	or field analyses a	e not accredited to IS	SO 17025	
	Result	Units			
Analyte					
pH (On Site)	8.17	su			
Gravimetric Anal	ysis by Method 2	2540 C-2011			
	Desult	Our life and DDI	Dilution Anchoria	Datak	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	L	
Analyte	mg/l		mg/l		date / time			4 Cn
Dissolved Solids	406		10.0	1	06/21/2022 16:10	WG1882814		CIT
Wet Chemistry by	/ Method 9056A							⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch		6
Analyte	ma/l		ma/l		date / time			ົດດັ

Analyte	mg/l	mg/l		date / time		Qc
Chloride	8.54	1.00	1	07/08/2022 05:58	WG1890898	
Fluoride	ND	0.150	1	07/08/2022 05:58	WG1890898	7 Gl
Sulfate	33.8	5.00	1	07/08/2022 05:58	WG1890898	0

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		Sc
Boron	0.274		0.200	1	07/07/2022 09:01	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	69.2		1.00	1	07/06/2022 13:11	WG1887166

SDG: L1506358 DATE/TIME: 07/17/22 12:29 Ср

Тс

Ss

ٌAI

Collected date/time: 06/13/22 14:27

SAMPLE RESULTS - 11

Additional Informa	ation - Results f	or field and	alyses are	e not acci	redited to ISO 1	7025	1
	Result	Units					Ср
Analyte							2
pH (On Site)	8.3	su					Tc
Gravimetric Analy	vsis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
Dissolved Solids	407		10.0	1	06/20/2022 14:22	WG1882167	
Wet Chemistry by	Method 9056	4					⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		ိပ္ရင
Chloride	9.17		1.00	1	07/08/2022 06:47	WG1890741	
Fluoride	0.165		0.150	1	07/08/2022 06:47	<u>WG1890741</u>	⁷ Gl
Sulfate	76.7		5.00	1	07/08/2022 06:47	WG1890741	
Metals (ICP) by Me	ethod 6010B						⁸ AI
	Result	Qualifier	RDL	Dilution	Analysis	Batch	0
Analyte	mg/l		mg/l		date / time		⁹ Sc
Boron	0.268		0.200	1	07/07/2022 09:04	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	50.4		1.00	1	07/06/2022 13:14	WG1887166

SDG: L1506358 Collected date/time: 06/13/22 17:26

SAMPLE RESULTS - 12

concerca date/fillie. o	0/13/22 17.20			21500	550		
Additional Inform	ation - Results fo	or field and	alyses are	e <mark>not acc</mark> r	edited to ISO 1	7025	1,
	Result	Units					(
Analyte							2
pH (On Site)	7.82	su					
Gravimetric Analy	vsis by Method 2	2540 C-20)11				3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	mg/l		mg/l		date / time		4
Dissolved Solids	314		10.0	1	06/20/2022 18:20	WG1882398	
Wet Chemistry by	Method 9056	4					5
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		°(
Chloride	10.8		1.00	1	07/08/2022 07:14	WG1890741	
Fluoride	ND		0.150	1	07/08/2022 07:14	WG1890741	7
Sulfate	16.3		5.00	1	07/08/2022 07:14	WG1890741	
Metals (ICP) by M	ethod 6010B						8
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Boron	0.242		0.200	1	07/07/2022 09:07	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	56.8		1.00	1	07/06/2022 13:17	WG1887166

SDG: L1506358

SAMPLE RESULTS - 13

Collected date/time: 0	6/14/22 09:05		JAIM	LL ILL L1506	30LT3 - TS		
Additional Informa	ation - Results f	or field and	alyses are	e not accr	edited to ISO 1	7025	1
	Result	Units					Cp
Analyte							2
pH (On Site)	8.61	su					Tc
Gravimetric Analy	vsis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
Dissolved Solids	343		10.0	1	06/21/2022 16:10	WG1882814	CII
Wet Chemistry by	/ Method 9056/	4					⁵ Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		ି QC
Chloride	8.36		1.00	1	07/08/2022 06:13	WG1890898	
Fluoride	ND		0.150	1	07/08/2022 06:13	WG1890898	⁷ Gl
Sulfate	28.7		5.00	1	07/08/2022 06:13	WG1890898	- Oi
Metals (ICP) by M	ethod 6010B						⁸ AI
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		[°] Sc
Boron	0.284		0.200	1	07/07/2022 09:10	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	56.8		1.00	1	07/06/2022 13:21	WG1887166

SDG: L1506358

MW-106D

SAMPLE RESULTS - 14

Collected date/time: 0	6/14/22 11:10			L1506	358		
Additional Inform	ation - Results fo	or field and	alyses are	e not accr	edited to ISO 1	7025	1
	Result	Units					Ср
Analyte							2
pH (On Site)	8.49	su					۲c
Gravimetric Analy	/sis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
Dissolved Solids	531		10.0	1	06/21/2022 14:23	WG1882719	CI
Wet Chemistry by	/ Method 9056	4					⁵ Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		ို့ လူလ
Chloride	6.06		1.00	1	07/08/2022 06:28	WG1890898	
Fluoride	ND		0.150	1	07/08/2022 06:28	WG1890898	⁷ Gl
Sulfate	13.2		5.00	1	07/08/2022 06:28	<u>WG1890898</u>	
Metals (ICP) by M	ethod 6010B						⁸ Al
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		ິSc
Boron	0.305		0.200	1	07/07/2022 09:13	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	57.9		1.00	1	07/06/2022 13:24	WG1887166

SDG: L1506358

DATE/TIME: 07/17/22 12:29 PAGE:

Collected date/time: 06/14/22 11:05

SAMPLE RESULTS - 15

	Result	Units					(
Analyte							2
pH (On Site)	7.36	SU					
Gravimetric Analy	/sis by Method	2540 C-20)11				3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	383		10.0	1	06/21/2022 14:23	WG1882719	
Sample Narrative: L1506358-15 WG1882719	: Anlysis was re-run to cor	nfirm.					5
Wet Chemistry by							6
	Result	Qualifier	RDL	Dilution	Analysis	Batch	7
Analyte	mg/l		mg/l		date / time		
Chloride	20.3		1.00	1	07/08/2022 06:43	WG1890898	8
Fluoride	ND		0.150	1	07/08/2022 06:43	WG1890898	Ŭ,
Sulfate	128		5.00	1	07/08/2022 06:43	WG1890898	9
Metals (ICP) by M	ethod 6010B						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
					date / time		

Metals (ICPMS) by Method 6020

0.324

Boron

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	85.0		1.00	1	07/06/2022 13:28	WG1887166

1

07/07/2022 09:15

WG1887147

0.200

SDG: L1506358

Collected date/time: 06/14/22 12:45

SAMPLE RESULTS - 16

confected date/time. 0	0/14/22 12.45			L1506	220		
Additional Informa	ation - Results fo	or field and	alyses are	e not accr	edited to ISO 1	7025	1
	Result	Units					 Ср
Analyte							2
pH (On Site)	8.38	su					² Tc
Gravimetric Analy	sis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
Dissolved Solids	501		10.0	1	06/21/2022 16:10	WG1882814	
Wet Chemistry by	Method 9056A	A					⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		ČQc
Chloride	13.5		1.00	1	07/08/2022 06:58	WG1890898	
Fluoride	ND		0.150	1	07/08/2022 06:58	WG1890898	⁷ Gl
Sulfate	58.1		5.00	1	07/08/2022 06:58	WG1890898	
Metals (ICP) by M	ethod 6010B						⁸ Al
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		 ⁹ Sc
Boron	0.339		0.200	1	07/07/2022 09:18	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	72.1		1.00	1	07/06/2022 13:31	WG1887166

SDG: L1506358 DATE/TIME: 07/17/22 12:29 PAGE:

27 of 88

Collected date/time: 06/14/22 15:45

SAMPLE RESULTS - 17

Additional Informa	Result	Units	, ,				Cr
Analuta	Result	Units					
Analyte	7.07						2 ₇
pH (On Site)	7.97	SU					Тс
Gravimetric Analy	sis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		4 Cr
Dissolved Solids	559		10.0	1	06/21/2022 14:23	WG1882719	
Wet Chemistry by	Method 9056	4					⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		ĭQ(
Chloride	6.91		1.00	1	07/08/2022 07:13	WG1890898	
Fluoride	ND		0.150	1	07/08/2022 07:13	WG1890898	⁷ Gl
Sulfate	49.3		5.00	1	07/08/2022 07:13	WG1890898	G
Metals (ICP) by M	ethod 6010B						⁸ Al
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		ŠC
Boron	0.312		0.200	1	07/07/2022 09:21	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	49.9		1.00	1	07/06/2022 13:34	WG1887166

SDG: L1506358

MW-110D

SAMPLE RESULTS - 18

Collected date/time: 0	06/13/22 15:41			L1506	358		
Additional Inform	ation - Results fo	or field and	alyses are	e not accr	edited to ISO 1	7025	1
	Result	Units					Ср
Analyte							2
pH (On Site)	8.28	SU					² Tc
Gravimetric Analy	ysis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
Dissolved Solids	332		10.0	1	06/20/2022 18:20	WG1882398	CIT
Wet Chemistry by	y Method 90564	Ą					⁵ Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		°Qc ∣
Chloride	7.50		1.00	1	07/08/2022 07:54	WG1890741	
Fluoride	ND		0.150	1	07/08/2022 07:54	WG1890741	⁷ Gl
Sulfate	40.5		5.00	1	07/08/2022 07:54	WG1890741	OI
Metals (ICP) by M	lethod 6010B						⁸ AI
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		ິSc
Boron	0.306		0.200	1	07/07/2022 09:24	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	47.0		1.00	1	07/06/2022 13:38	WG1887166

SDG: L1506358

SAMPLE RESULTS - 19

Collected date/time: 0	06/15/22 16:20			L1506	358			
Additional Inform	ation - Results fo	or field and	alyses are	e not accr	edited to ISO 1	7025	1	
	Result	Units						р
Analyte							2	=
pH (On Site)	8.15	su					T	0
Gravimetric Analy	ysis by Method 2	2540 C-20)11				³ S	s
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l		date / time		4 4	n
Dissolved Solids	270		10.0	1	06/22/2022 17:30	WG1883419		
Wet Chemistry by	y Method 90564	4					⁵S	r
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6	
Analyte	mg/l		mg/l		date / time		۲Ğ	C
Chloride	6.49		1.00	1	07/08/2022 17:43	WG1891559		
Fluoride	ND		0.150	1	07/08/2022 17:43	WG1891559	⁷ G	
Sulfate	ND		5.00	1	07/08/2022 17:43	WG1891559		۱
Metals (ICP) by N	lethod 6010B						⁸ A	
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9	
Analyte	mg/l		mg/l		date / time		⁹ S	С
Boron	0.278		0.200	1	07/07/2022 09:27	WG1887147		

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	37.0		1.00	1	07/06/2022 13:41	WG1887166

SDG: L1506358

Collected date/time: 06/14/22 12:35

SAMPLE RESULTS - 20

	Result	Units					
Analyte							
pH (On Site)	6.97	su					2
Gravimetric Analy	vsis by Method 2	2540 C-20)11				3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		4
Dissolved Solids	1170		20.0	1	06/21/2022 14:23	WG1882719	
Wet Chemistry by	/ Method 9056/	4					5
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		
Chloride	14.4		1.00	1	07/08/2022 07:28	<u>WG1890898</u>	
Fluoride	ND		0.150	1	07/08/2022 07:28	<u>WG1890898</u>	7
Sulfate	609		50.0	10	07/12/2022 11:45	WG1890898	L
Metals (ICP) by M	ethod 6010B						8
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		
Boron	0.484		0.200	1	07/07/2022 09:35	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	198		1.00	1	07/06/2022 13:53	WG1887166

SDG: L1506358

Collected date/time: 06/15/22 18:15

SAMPLE RESULTS - 21

	Result	Units					Cț
Analyte							2
pH (On Site)	6.97	SU					Ť٢c
Gravimetric Analy	vsis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cr
Dissolved Solids	319		10.0	1	06/22/2022 16:01	WG1883409	
Wet Chemistry by	/ Method 9056/	4					⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		ိQ၀
Chloride	8.95		1.00	1	07/08/2022 18:10	WG1891559	
Fluoride	ND		0.150	1	07/08/2022 18:10	<u>WG1891559</u>	⁷ Gl
Sulfate	29.7		5.00	1	07/08/2022 18:10	WG1891559	
Metals (ICP) by M	ethod 6010B						⁸ AI
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		ီSc
Boron	0.280		0.200	1	07/07/2022 09:38	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	53.1		1.00	1	07/06/2022 13:56	WG1887166

SDG: L1506358

Collected date/time: 06/14/22 14:15

SAMPLE RESULTS - 22 L1506358

Additional Inform	ation - Results fo	or field analyses are not accredited to ISO 17025
	Result	Units
Analyte		
pH (On Site)	8.7	SU
Constitution Associ		

Gravimetric Analysis by Method 2540 C-2011

Gravimetric Analysis by Method 2540 C-2011									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l		date / time			4 Cn	
Dissolved Solids	342		10.0	1	06/21/2022 18:33	WG1883051			

Wet Chemistry by Method 9056A

Analyte mg/l date / time Chloride 4.95 1.00 1 07/08/2022 07:43 WG1890898 Fluoride ND 0.150 1 07/08/2022 07:43 WG1890898	6	Batch	Analy	Dilution	RDL	Qualifier	Result	
	ိုင္ရင		date /		mg/l		mg/l	Analyte
Fluoride ND 0.150 1 07/08/2022 07:43 WG1890898		<u>WG1890898</u>	07/08	1	1.00		4.95	Chloride
	⁷ GI	<u>WG1890898</u>	07/08	1	0.150		ND	Fluoride
Sulfate ND 5.00 1 07/08/2022 07:43 WG1890898	O	WG1890898	07/08	1	5.00		ND	Sulfate

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		Sc
Boron	0.336		0.200	1	07/07/2022 09:41	WG1887147	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	43.6		1.00	1	07/06/2022 13:59	WG1887166

SDG: L1506358

DATE/TIME: 07/17/22 12:29 Ср

Тс

[°]Al

Collected date/time: 06/15/22 13:30

SAMPLE RESULTS - 23

Additional Inform	ation - Results fo	or field and	alyses ar	e not accr	edited to ISO 1	7025	1	
	Result	Units					(p
Analyte							2	
pH (On Site)	8.62	su					² T	С
Gravimetric Analy	/sis by Method 2	2540 C-20)11				³ S	S
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l		date / time		4	'n
Dissolved Solids	585	<u>J4</u>	10.0	1	06/22/2022 14:52	WG1883415		
Sample Narrative: L1506358-23 WG1883415	: Anlysis was re-run to cor	firm.					⁵S	r
Wet Chemistry by							⁶ C)C
	Result	Qualifier	RDL	Dilution	Analysis	Batch	7	·
Analyte	mg/l		mg/l		date / time		Í G	1
Chloride	9.45		1.00	1	07/08/2022 18:37	WG1891559	8	
Fluoride	ND		0.150	1	07/08/2022 18:37	<u>WG1891559</u>	μ̈́Α	.l
Sulfate	168		5.00	1	07/08/2022 18:37	WG1891559		
Metals (ICP) by M	ethod 6010B						ຶS	С
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l		date / time			

Metals (ICPMS) by Method 6020

Boron

0.285

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	91.2		1.00	1	07/06/2022 14:03	WG1887166

07/07/2022 22:20

1

0.200

SDG: L1506358

1 0

WG1891121

	Result	Units					
Analyte							
pH (On Site)	7.77	su					
Gravimetric Analy	sis by Method 2	2540 C-20	11				
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	ND		10.0	1	06/21/2022 16:10	WG1882814	
Wet Chemistry by			RDL	Dilution	Analysis	Batch	
Wet Chemistry by	v Method 90564 Result mg/l	A Qualifier	RDL mg/l	Dilution	Analysis date / time	Batch	
	Result			Dilution	-	Batch WG1890900	
Analyte	Result mg/l		mg/l	Dilution 1 1	date / time		
Analyte Chloride	Result mg/l ND		mg/l 1.00	Dilution 1 1 1	date / time 07/08/2022 15:20	WG1890900	
Analyte Chloride Fluoride	Result mg/l ND ND ND		mg/l 1.00 0.150	Dilution 1 1 1	date / time 07/08/2022 15:20 07/08/2022 15:20	WG1890900 WG1890900	
Analyte Chloride Fluoride Sulfate	Result mg/l ND ND ND		mg/l 1.00 0.150	Dilution 1 1 1 Dilution	date / time 07/08/2022 15:20 07/08/2022 15:20	WG1890900 WG1890900	
Analyte Chloride Fluoride Sulfate	Result mg/l ND ND ND ethod 6010B	<u>Qualifier</u>	mg/l 1.00 0.150 5.00	1 1 1	date / time 07/08/2022 15:20 07/08/2022 15:20 07/08/2022 15:20	WG1890900 WG1890900 WG1890900	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	ND		1.00	1	07/06/2022 14:06	WG1887166

SDG: L1506358

SAMPLE RESULTS - 25 L1506358

Gravimetric Analysis by Method 2540 C-2011

Gravimetric Analysis by Method 2540 C-2011									
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср	
Analyte	mg/l		mg/l		date / time			2	
Dissolved Solids	496		10.0	1	06/21/2022 18:33	WG1883051		Tc	

Wet Chemistry by Method 9056A

Wet Chemistry b	y Method 90564	4					³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Chloride	13.9		1.00	1	07/08/2022 17:34	<u>WG1890900</u>	
Fluoride	ND		0.150	1	07/08/2022 17:34	<u>WG1890900</u>	5
Sulfate	61.1		5.00	1	07/08/2022 17:34	WG1890900	⁵Sr

Metals (ICP) by Method 6010B

Metals (ICP) by M	ethod 6010B						⁶ Qc
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		7 Gl
Boron	0.340		0.200	1	07/07/2022 18:57	WG1887148	G

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	0
Analyte	mg/l		mg/l		date / time		Sc
Calcium	69.0		1.00	1	07/07/2022 20:07	WG1887167	

SDG: L1506358

DATE/TIME: 07/17/22 12:29 [°]Al

FIELD BLANK 2 Collected date/time: 06/15/22 08:00 SAMPLE RESULTS - 26

	Result	Units				
Analyte						
pH (On Site)	8.38	SU				
Gravimetric Analy	sis by Method 2	2540 C-20)11			
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	ND		10.0	1	06/22/2022 16:01	WG1883409
Wet Chemistry by	Method 9056	4				
Wet Chemistry by	Method 9056A Result	Qualifier	RDL	Dilution	Analysis	Batch
Wet Chemistry by Analyte			RDL mg/l	Dilution	Analysis date / time	Batch
	Result			Dilution 1		Batch WG1891559
Analyte	Result mg/l		mg/l	Dilution 1 1	date / time	
Analyte Chloride	Result mg/l ND		mg/l 1.00	Dilution 1 1 1	date / time 07/08/2022 19:17	WG1891559
Analyte Chloride Fluoride	Result mg/l ND ND ND		mg/l 1.00 0.150	1	date / time 07/08/2022 19:17 07/08/2022 19:17	WG1891559 WG1891559
Analyte Chloride Fluoride Sulfate	Result mg/l ND ND ND		mg/l 1.00 0.150	1	date / time 07/08/2022 19:17 07/08/2022 19:17	WG1891559 WG1891559
Analyte Chloride Fluoride Sulfate	Result mg/l ND ND ND	Qualifier	mg/l 1.00 0.150 5.00	1 1 1	date / time 07/08/2022 19:17 07/08/2022 19:17 07/08/2022 19:17	WG1891559 WG1891559 WG1891559

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	ND		1.00	1	07/07/2022 20:11	WG1887167

SDG: L1506358

SAMPLE RESULTS - 27 L1506358

Gravimetric Analysis by Method 2540 C-2011

Gravimetric Analys	avimetric Analysis by Method 2540 C-2011							
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	mg/l		mg/l		date / time			2
Dissolved Solids	212		10.0	1	06/22/2022 17:30	WG1883419		Tc

Wet Chemistry by Method 9056A

Wet Chemistry by N	Aethod 9056A	4					³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
Chloride	8.02		1.00	1	07/08/2022 19:30	WG1891559	CII
Fluoride	ND		0.150	1	07/08/2022 19:30	WG1891559	5
Sulfate	49.6		5.00	1	07/08/2022 19:30	WG1891559	Sr

Metals (ICP) by Method 6010B

Metals (ICP) by M	lethod 6010B						⁶ Qc
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		7 Gl
Boron	ND		0.200	1	07/07/2022 19:10	WG1887148	G

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		Sc
Calcium	21.8		1.00	1	07/07/2022 20:15	WG1887167	

SDG: L1506358

DATE/TIME: 07/17/22 12:29 [°]Al

DUPLICATE 3 Collected date/time: 06/13/22 17:00 SAMPLE RESULTS - 28 L1506358

Additional Information - Results for field analyses are not accredited to ISO 17025

	Result	Units				
Analyte						
pH (On Site)	5.98	SU				
Gravimetric Analy	sis by Method 2	2540 C-20)11			
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	237		10.0	1	06/20/2022 18:20	WG1882398
		•				
Wet Chemistry by	Method 9056	4				
wet Chemistry by	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte			RDL mg/l	Dilution	Analysis date / time	Batch
	Result			Dilution 1		Batch WG1890741
Analyte	Result mg/l		mg/l	Dilution 1 1	date / time	
Analyte Chloride	Result mg/l 6.66		mg/l 1.00	Dilution 1 1 1	date / time 07/08/2022 08:08	WG1890741
Analyte Chloride Fluoride	Result mg/l 6.66 ND 74.6		mg/l 1.00 0.150	Dilution 1 1 1	date / time 07/08/2022 08:08 07/08/2022 08:08	WG1890741 WG1890741
Analyte Chloride Fluoride Sulfate	Result mg/l 6.66 ND 74.6		mg/l 1.00 0.150	Dilution 1 1 1 Dilution	date / time 07/08/2022 08:08 07/08/2022 08:08	WG1890741 WG1890741
Analyte Chloride Fluoride Sulfate	Result mg/l 6.66 ND 74.6 ethod 6010B	Qualifier	mg/l 1.00 0.150 5.00	1 1 1	date / time 07/08/2022 08:08 07/08/2022 08:08 07/08/2022 08:08	WG1890741 WG1890741 WG1890741

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	16.3		1.00	1	07/07/2022 20:18	WG1887167

SDG: L1506358

SAMPLE RESULTS - 29

Collected date/time: 0	6/15/22 13:46		5 Am	L1506				
Additional Informa	ation - Results f	or field and	alyses are	e not accr	edited to ISO 1	7025		1
	Result	Units						Ср
Analyte								2
pH (On Site)	4.82	su						Тс
Gravimetric Analy	sis by Method 2	2540 C-20)11					³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L	
Analyte	mg/l		mg/l		date / time		4	⁴ Cn
Dissolved Solids	2700		100	1	06/22/2022 17:30	WG1883419		CII
Wet Chemistry by	Method 9056	4					ę	⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch		6
Analyte	mg/l		mg/l		date / time			[°] Qc
Chloride	452		10.0	10	07/08/2022 19:57	WG1891559		
Fluoride	1.85		0.150	1	07/08/2022 20:11	WG1891559	7	⁷ Gl
Sulfate	2400		500	100	07/08/2022 19:44	WG1891559	L	01
Metals (ICP) by M	ethod 6010B						٤	⁸ Al
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L	9
Analyte	mg/l		mg/l		date / time			Sc
Boron	ND		0.200	1	07/07/2022 19:15	WG1887148		

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	335		1.00	1	07/07/2022 20:39	WG1887167

SDG: L1506358

DATE/TIME: 07/17/22 12:29 PAGE:

40 of 88

RP-2

Collected date/time: 06/15/22 12:20

SAMPLE RESULTS - 30 L1506358

Additional Information - Results for field analyses are not accredited to ISO 17025	

	Result	Units					
Analyte							
pH (On Site)	3.67	su					
Gravimetric Analy	/sis by Method 2	2540 C-20	11				
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	305		10.0	1	06/22/2022 17:30	WG1883419	
Wet Chemistry by	/ Method 9056/	4					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Chloride	19.3		1.00	1	07/09/2022 00:17	WG1891844	
	ND		0.150	1	07/09/2022 00:17	WG1891844	
Fluoride	ND						
	ND 113		5.00	1	07/09/2022 00:17	WG1891844	
Fluoride Sulfate Metals (ICP) by M	113		5.00	1	07/09/2022 00:17		
Sulfate	113	Qualifier	5.00 RDL	1 Dilution	07/09/2022 00:17 Analysis		
Sulfate	113 lethod 6010B	Qualifier		1 Dilution		WG1891844	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	16.4		1.00	1	07/07/2022 20:42	WG1887167

SDG: L1506358 Collected date/time: 06/16/22 09:05

SAMPLE RESULTS - 31

Additional Informa	ation Bocults fo	or field and	alveos ar	a not accr	odited to ISO 1	7025	
	Result	Units	alyses ale			7025	 ¹ Cp
Analyte	Result	Units					
pH (On Site)	4.3	SU					 ² Tc
Gravimetric Analy	vsis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		4 Cp
Dissolved Solids	1990		50.0	1	06/23/2022 14:18	WG1884161	Cn
Wet Chemistry by	Method 90564	Ą					⁵ Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		°Qc
Chloride	173		1.00	1	07/09/2022 01:02	WG1891844	
Fluoride	0.780		0.150	1	07/09/2022 01:02	WG1891844	⁷ Gl
Sulfate	1210		50.0	10	07/09/2022 00:47	WG1891844	
Metals (ICP) by M	ethod 6010B						⁸ Al
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		Sc
Boron	ND		0.200	1	07/07/2022 19:26	WG1887148	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	187		1.00	1	07/07/2022 20:46	WG1887167

SDG: L1506358

Collected date/time: 06/16/22 10:15

SAMPLE RESULTS - 32 L1506358

Additional Information -	Additional Information - Results for field analyses are not accredited to ISO 17025							
	Result	Units						
Analyte								

pH (On Site)

3.14

su

Gravimetric Analysis by Method 2540 C-2011

Gravimetric Analysis by Method 2540 C-2011									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l		date / time		⁴	4 Cn	
Dissolved Solids	526		10.0	1	06/23/2022 15:25	WG1884165		11	

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		ČQC
Chloride	68.9		1.00	1	07/09/2022 01:17	WG1891844	
Fluoride	0.281		0.150	1	07/09/2022 01:17	WG1891844	⁷ Gl
Sulfate	207	E	5.00	1	07/09/2022 01:17	WG1891844	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		Sc
Boron	0.269		0.200	1	07/07/2022 19:29	WG1887148	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	57.5		1.00	1	07/07/2022 20:50	WG1887167

SDG: L1506358

DATE/TIME: 07/17/22 12:29 Ср

Тс

Â

Boron

Collected date/time: 06/15/22 17:45

SAMPLE RESULTS - 33

	Result	Units					
Analyte							
pH (On Site)	5.58	SU					2
Gravimetric Analy	/sis by Method	2540 C-20)11				3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		2
Dissolved Solids	474	<u>J4</u>	10.0	1	06/22/2022 14:52	WG1883415	
Sample Narrative: L1506358-33 WG1883415	: Anlysis was re-run to co	nfirm.					5
Wet Chemistry by							e
	Result	Qualifier	RDL	Dilution	Analysis	Batch	7
Analyte	mg/l		mg/l		date / time		
Chloride	41.5		1.00	1	07/09/2022 01:32	WG1891844	
Fluoride	0.290		0.150	1	07/09/2022 01:32	WG1891844	
Sulfate	226	Ē	5.00	1	07/09/2022 01:32	WG1891844	
Metals (ICP) by M	ethod 6010B						S
	Result	Qualifier	RDL	Dilution	Analysis	Batch	

Metals (ICPMS) by Method 6020

ND

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	35.9		1.00	1	07/07/2022 20:54	WG1887167

1

07/07/2022 19:32

WG1887148

0.200

SDG: L1506358

RP-6

Collected date/time: 06/13/22 10:45

SAMPLE RESULTS - 34

	0/10/22 10110			2.000			
Additional Information	ation - Results fo	or field and	alyses are	e not accr	edited to ISO 1	7025	1
	Result	Units					
Analyte							2
pH (On Site)	3.88	SU					² Tc
Gravimetric Analy	vsis by Method 2	2540 C-20)11				³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		4 Cr
Dissolved Solids	1850		25.0	1	06/20/2022 18:20	WG1882398	
Wet Chemistry by	Method 90564	Ą					⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		ୁ ିପ୍ର
Chloride	37.1		1.00	1	07/08/2022 08:35	WG1890741	
Fluoride	1.07		0.150	1	07/08/2022 08:35	WG1890741	⁷ Gl
Sulfate	1210		500	100	07/08/2022 08:21	WG1890741	
Metals (ICP) by M	ethod 6010B						⁸ AI
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		⁹ Sc
Boron	0.574		0.200	1	07/07/2022 19:34	WG1887148	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	273		1.00	1	07/07/2022 20:57	WG1887167

SDG: L1506358

(

Collected date/time: 06/15/22 16:30

SAMPLE RESULTS - 35 L1506358

Additional Information - Results for field analyses are not accredited to ISO 17025								
	Result	Units						
Analyte								

pH (On Site)

3.79

su

Gravimetric Analysis by Method 2540 C-2011

Gravimetric Analysis by Method 2540 C-2011										
	Result	Qualifier	RDL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l		date / time		⁴ Cn			
Dissolved Solids	437		10.0	1	06/22/2022 17:30	WG1883419	CIT			

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		ČQc
Chloride	7.04		1.00	1	07/09/2022 01:47	WG1891844	
Fluoride	0.345		0.150	1	07/09/2022 01:47	WG1891844	
Sulfate	235	E	5.00	1	07/09/2022 01:47	WG1891844	01

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		Sc
Boron	ND		0.200	1	07/07/2022 19:37	WG1887148	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	35.8		1.00	1	07/07/2022 21:01	WG1887167

SDG: L1506358

DATE/TIME: 07/17/22 12:29 Ср

Тс

⁸Al

RP-8 Collected date/time: 0	6/15/22 15:20		SAMF	PLE RES	SULTS - 36 358	5	
Additional Informa	ation - Results fo	or field and	alyses ar	e n <mark>ot</mark> accr	edited to ISO 1	7025	
	Result	Units					Ср
Analyte							2
pH (On Site)	4.31	su					Ťc
Gravimetric Analy	vsis by Method 2	2540 C-20)11				^³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
Dissolved Solids	765		13.3	1	06/22/2022 17:30	WG1883419	
Wet Chemistry by	/ Method 90564	4					⁵Sr
	Result	Qualifier	RDL	Dilution	Analysis	Batch	6
Analyte	mg/l		mg/l		date / time		ို့လူင
Chloride	52.7		1.00	1	07/09/2022 02:02	WG1891844	
Fluoride	0.339		0.150	1	07/09/2022 02:02	WG1891844	⁷ Gl
Sulfate	452	Ē	5.00	1	07/09/2022 02:02	WG1891844	
Metals (ICP) by M	ethod 6010B						⁸ Al
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		[°] Sc

Metals (ICPMS) by Method 6020

0.608

Boron

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	82.6		1.00	1	07/07/2022 21:05	WG1887167

1

0.200

07/07/2022 19:40

WG1887148

SDG: L1506358 RP-9

Collected date/time: 06/16/22 10:30

SAMPLE RESULTS - 37

	Result	Units					
Analyte							
pH (On Site)	6.53	SU					21
Gravimetric Analy	vsis by Method	2540 C-20)11				3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		4
Dissolved Solids	181		10.0	1	06/23/2022 15:25	WG1884165	
Wet Chemistry by	Method 9056	Д					⁵ c
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		Č
Chloride	3.73		1.00	1	07/09/2022 02:17	WG1891844	
Fluoride	0.158		0.150	1	07/09/2022 02:17	WG1891844	7
Sulfate	21.1		5.00	1	07/09/2022 02:17	WG1891844	
Metals (ICP) by M	ethod 6010B						⁸ /
	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/l		mg/l		date / time		Ĭ
Analyte	ing/i		ing/i		date / time		

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	24.6		1.00	1	07/07/2022 21:09	WG1887167

SDG: L1506358

Collected date/time: 06/16/22 08:42

SAMPLE RESULTS - 38 L1506358

Additional Information - Results for f	field analyses are not accredited to ISO 17025	
--	--	--

Additional Inform	ation - Results f	or field and	alyses are	e not accr	redited to ISO 1	7025	
	Result	Units					
Analyte							
pH (On Site)	3.8	SU					
Gravimetric Analy	vsis by Method 2	2540 C-20)11				[
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	1180		20.0	1	06/23/2022 14:18	WG1884161	
Wet Chemistry by	/ Method 9056/	Д					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Chloride	64.7		1.00	1	07/08/2022 19:19	WG1891894	
Fluoride	0.437		0.150	1	07/08/2022 19:19	<u>WG1891894</u>	
Sulfate	737		50.0	10	07/08/2022 19:35	WG1891894	
Metals (ICP) by M	ethod 6010B						
	Result	Qualifier	RDL	Dilution	Analysis	Batch	[
Analyte	mg/l		mg/l		date / time		
Boron	0.635		0.200	1	07/07/2022 19:45	WG1887148	

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	97.9		1.00	1	07/07/2022 21:13	WG1887167

SDG: L1506358

	Result	Units				
Analyte						
pH (On Site)	3.8	SU				
Gravimetric Analy	sis by Method 2	2540 C-20)11			
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1220		20.0	1	06/23/2022 14:18	WG1884161
wet Chemistry by	Method 9056	4				
Wet Chemistry by	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte			RDL mg/l	Dilution	Analysis date / time	Batch
	Result			Dilution 1	-	Batch WG1891894
Analyte	Result mg/l		mg/l		date / time	
Analyte Chloride	Result mg/l 64.4		mg/l 1.00		date / time 07/08/2022 19:50	WG1891894
Analyte Chloride Fluoride	Result mg/l 64.4 0.435 751		mg/l 1.00 0.150	1	date / time 07/08/2022 19:50 07/08/2022 19:50	WG1891894 WG1891894
Analyte Chloride Fluoride Sulfate	Result mg/l 64.4 0.435 751		mg/l 1.00 0.150	1	date / time 07/08/2022 19:50 07/08/2022 19:50	WG1891894 WG1891894
Analyte Chloride Fluoride Sulfate	Result mg/l 64.4 0.435 751 ethod 6010B	Qualifier	mg/l 1.00 0.150 50.0	1 1 10	date / time 07/08/2022 19:50 07/08/2022 19:50 07/08/2022 20:05	WG1891894 WG1891894 WG1891894

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Calcium	99.4		1.00	1	07/07/2022 21:34	WG1887167

SDG: L1506358

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1506358-11

Method Blank (MB)

(MB) R3806898-1 06/2	0/22 14:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1504374-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1504374-04 06	/20/22 14:22 • (DU	P) R3806898-	3 06/20/2	2 14:22		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	2970	3170	1	6.25	<u>J3</u>	5

L1504425-02 Original Sample (OS) • Duplicate (DUP)

L1504425-02 Orig	ginal Sample	e (OS) • Du	iplicate	(DUP)			⁷ Gl
(OS) L1504425-02 06/2	20/22 14:22 • (DU	P) R3806898-	4 06/20/2	22 14:22			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	260	131	1	66.0	<u>J3</u>	5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3806898-2 06	6/20/22 14:22				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	2440	2310	94.7	81.5-118	

DATE/TIME: 07/17/22 12:29 Тс

Ss

Cn

Sr

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

L1506358-03,04,07,12,18,28,34

Method Blank (MB)

2 18:20			1
MB Result MB Qualifier	MB MDL	MB RDL	
mg/l	mg/l	mg/l	
U	10.0	10.0	
Ν	AB Result MB Qualifier	MB Result MB Qualifier MB MDL ng/l mg/l	MB Qualifier MB MDL MB RDL ng/l mg/l mg/l

L1504970-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1504970-04 06/20)/22 18:20 • (DU	P) R3806879-	3 06/20/2	22 18:20		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	756	788	1	4.15		5

L1504987-01 Original Sample (OS) • Duplicate (DUP)

L1504987-01 Or	riginal Sample	(OS) • Dup	plicate (DUP)			⁷ Gl
(OS) L1504987-01 06/	6/20/22 18:20 • (DUF) R3806879-4	4 06/20/2	2 18:20			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	1790	2090	1	15.7	<u>J3</u>	5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3806879-2 06	6/20/22 18:20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	2440	2270	93.0	81.5-118	

DATE/TIME: 07/17/22 12:29

PAGE: 52 of 88 Cn

Sr

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1506358-14,15,17,20

Method Blank (MB)

(MB) R3807924-1 06/21/	22 14:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1504970-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1504970-03 06/21/	'22 14:23 • (DUP) R3807924-3	06/21/22	14:23		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	653	645	1	1.23		5

L1504998-02 Original Sample (OS) • Duplicate (DUP)

L1504998-02 Or	iginal Sample	e (OS) • Du	uplicate	(DUP)		
(OS) L1504998-02 06/	21/22 14:23 • (DUF	P) R3807924-4	4 06/21/22	2 14:23		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	804	785	1	2.35		5

Laboratory Control Sample (LCS)

(LCS) R3807924-2 00	6/21/22 14:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	2440	2620	107	81.5-118	

DATE/TIME: 07/17/22 12:29 Тс

Ss

Cn

Sr

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

L1506358-02,05,06,10,13,16,24

Method Blank (MB)

VIB)					
/21/22 16:10					
MB Result	MB Qualifier	MB MDL	MB RDL		
mg/l		mg/l	mg/l		
U		10.0	10.0		
	21/22 16:10 MB Result	21/22 16:10 MB Result <u>MB Qualifier</u>	/21/22 16:10 MB Result <u>MB Qualifier</u> MB MDL mg/l mg/l	/21/22 16:10 MB Result <u>MB Qualifier</u> MB MDL MB RDL mg/l mg/l mg/l	/21/22 16:10 MB Result MB Qualifier MB MDL MB RDL mg/l mg/l mg/l

L1504970-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1504970-01 06/	21/22 16:10 • (DU	P) R3806785-3	06/21/22	16:10		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	532	564	1	5.84	<u>J3</u>	5

L1504998-01 Original Sample (OS) • Duplicate (DUP)

L1504998-01 Or	iginal Sample	(OS) • Du	plicate (DUP)			⁷ Gl
(OS) L1504998-01 06/	/21/22 16:10 • (DUP)	R3806785-4	06/21/22	16:10			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ A
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	641	669	1	4.27		5	°S¢

Laboratory Control Sample (LCS)

(LCS) R3806785-2 06	5/21/22 16:10				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	2440	2330	95.5	81.5-118	

SDG: L1506358

DATE/TIME: 07/17/22 12:29 Cn

Sr

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1506358-08,22,25

Method Blank (MB)

(MB) R3806886-1 06/2	21/22 18:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1505122-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1505122-06 06/2	21/22 18:33 • (DUF	P) R3806886-3	3 06/21/22	18:33		
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	1180	1310	1	10.7	<u>J3</u>	5

L1506358-08 Original Sample (OS) • Duplicate (DUP)

L1506358-08 O	riginal Sample	e (OS) • Du	uplicate	(DUP)			⁷ Gl
(OS) L1506358-08 06	3/21/22 18:33 • (DUF	P) R3806886-4	4 06/21/22	2 18:33			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	1230	1210	1	1.97		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3806886-2 06	6/21/22 18:33				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	2440	2390	98.0	81.5-118	

DATE/TIME: 07/17/22 12:29 Тс

Ss

Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1506358-21,26

Method Blank (MB)

(MB) R3807897-1 06/2	22/22 16:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1505598-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1505598-03 06/2	22/22 16:01 • (DU	JP) R3807897-	3 06/22/2	2 16:01		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	771	813	1	5.39	<u>J3</u>	5

L1505619-02 Original Sample (OS) • Duplicate (DUP)

L1505619-02 Orig	ginal Sample	(OS) • Du	plicate	(DUP)			⁷ Gl
(OS) L1505619-02 06/2	2/22 16:01 • (DUP) R3807897-4	06/22/22	2 16:01			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	462	465	1	0.647		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3807897-2 06	6/22/22 16:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	2440	2350	96.3	81.5-118	

DATE/TIME: 07/17/22 12:29

PAGE: 56 of 88 Тс

Ss

Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

22/22 14:52				
MB Result	MB Qualifier	MB MDL	B RDL	
mg/l		mg/l	g/l	
U		10.0	0.0	
2	MB Result	MB Result MB Qualifier	MB Result <u>MB Qualifier</u> MB MDL M mg/l mg/l m	MB Result MB Qualifier MB MDL MB RDL mg/l mg/l mg/l

L1505598-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1505598-02 06/22	2/22 14:52 • (DL	JP) R3807845-	3 06/22/2	2 14:52		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	784	744	1	5.24	<u>J3</u>	5

⁺Cn

Sr

Qc

GI

Al

Sample Narrative:

OS: In hold analysis confirmed with OOH analysis with passing QC.

L1506281-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1506281-05 06/22/	'22 14:52 • (DUF	P) R3807845-	4 06/22/2	2 14:52		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	707	688	1	2.68		5

Sample Narrative:

OS: Analysis was re-run to confirm.

Laboratory Control Sample (LCS)

(LCS) R3807845-2 06/22	2/22 14:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	2440	2990	123	81.5-118	<u>J4</u>

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
GBMc & Associates - Bryant, AR	1145-21-080	L1506358	07/17/22 12:29	57 of 88

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1506358-01,19,27,29,30,35,36

Method Blank	(MB)				1
(MB) R3809608-1 0	6/22/22 17:30				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Dissolved Solids	U		10.0	10.0	
					³ Ss

L1504150-13 Original Sample (OS) • Duplicate (DUP)

()	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	411	417	1	1.45		5

Sample Narrative:

OS: OOH analysis did not match in hold analysis.

L1506358-36 Original Sample (OS) • Duplicate (DUP)

(OS) L1506358-36 06/2	22/22 17:30 • (DUF	P) R3809608-	4 06/22/2	2 17:30		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	765	779	1	1.73		5

Laboratory Control Sample (LCS)

(LCS) R3809608-2 06/22	2/22 17:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	2440	2640	108	81.5-118	

DATE/TIME: 07/17/22 12:29 ⁺Cn

Sr

Qc

GI

Â

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1506358-31,38,39

Method Blank (MB)

Method Blank	(MB)				1
(MB) R3808521-1 06	6/23/22 14:18				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	⁻Tc
Dissolved Solids	U		10.0	10.0	
					³ Ss

L1506144-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1506144-08 06/	′23/22 14:18 • (DU	P) R3808521-3	06/23/22	14:18		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	1240	1300	1	4.73		5

L1506144-10 Original Sample (OS) • Duplicate (DUP)

L1506144-10 Ori	iginal Sample	(OS) • Dup	olicate (l	DUP)			⁷ Gl
(OS) L1506144-10 06/	/23/22 14:18 • (DUP)	R3808521-4	06/23/22	14:18			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	1110	1090	1	2.19		5	°Sc

Laboratory Control Sample (LCS)

(LCS) R3808521-2 06/2	23/22 14:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	2440	2480	102	81.5-118	

DATE/TIME: 07/17/22 12:29

PAGE: 59 of 88 Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1506358-32,37

Method Blank (MB)

(MB) R3807822-1 06/23	3/22 15:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1506144-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1506144-01 06/23/2	22 15:25 • (DUP)	R3807822-3	06/23/22	15:25		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	2920	2850	1	2.25		5

L1506144-06 Original Sample (OS) • Duplicate (DUP)

L1506144-06 O	_1506144-06 Original Sample (OS) • Duplicate (DUP)										
(OS) L1506144-06 06/23/22 15:25 • (DUP) R3807822-4 06/23/22 15:25											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al				
Analyte	mg/l	mg/l		%		%					
Dissolved Solids	1120	1030	1	8.92	<u>J3</u>	5	⁹ Sc				

Laboratory Control Sample (LCS)

(LCS) R3807822-2 06	S) R3807822-2 06/23/22 15:25											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/l	mg/l	%	%								
Dissolved Solids	2440	2650	109	81.5-118								

DATE/TIME: 07/17/22 12:29 Тс

Ss

Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1506358-09

Method Blank (MB)

(MB) R3815647-1 07/14/22 18:07											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/l		mg/l	mg/l							
Dissolved Solids	U		10.0	10.0							

L1510093-01 Original Sample (OS) • Duplicate (DUP)

L1510093-01 Ori	<u> </u>					
Analyte	· · · ·	It DUP Result		DUP RPD %	DUP Qualifier	DUP RPD Limits %
Dissolved Solids	1180	1230	1	3.99		5

L1510093-12 Original Sample (OS) • Duplicate (DUP)

L1510093-12 Or	.1510093-12 Original Sample (OS) • Duplicate (DUP)									
(OS) L1510093-12 07/	/14/22 18:07 • (DUP)	R3815647-4	07/14/22 18	8:07						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ Al		
Analyte	mg/l	mg/l		%		%				
Dissolved Solids	1490	1520	1	2.13		5		⁹ Sc		

Laboratory Control Sample (LCS)

(LCS) R3815647-2 07/	5) R3815647-2 07/14/22 18:07											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/l	mg/l	%	%								
Dissolved Solids	8800	7520	85.5	77.3-123								

DATE/TIME: 07/17/22 12:29 Тс

Ss

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY 1506358-03,04,07,11,12,18,28,34

Method Blank (MB)

(MB) R3812732-1 0	7/07/22 22:46					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
Chloride	U		0.379	1.00		
Fluoride	U		0.0640	0.150		
Sulfate	U		0.594	5.00		

L1503454-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1503454-05 07/07/	L1503454-05 07/07/22 23:26 • (DUP) R3812732-3 07/07/22 23:39												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							
Analyte	mg/l	mg/l		%		%							
Chloride	48.1	46.3	5	3.74		15							
Fluoride	ND	ND	5	0.387		15							
Sulfate	51.9	50.1	5	3.54		15							

L1506358-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1506358-11 07/08/22 06:47 • (DUP) R3812732-11 07/08/22 07:01												
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Chloride	9.17	8.27	1	10.3		15						
Fluoride	0.165	0.173	1	5.03		15						
Sulfate	76.7	74.5	1	2.96		15						

Laboratory Control Sample (LCS)

(LCS) R3812732-2 07/07/	S) R3812732-2 07/07/22 22:59											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/l	mg/l	%	%								
Chloride	40.0	40.3	101	80.0-120								
Fluoride	8.00	8.39	105	80.0-120								
Sulfate	40.0	41.1	103	80.0-120								

ACCOUNT:
GBMc & Associates - Bryant, AR

PROJECT: 1145-21-080

DATE/TIME: 07/17/22 12:29 PAGE: 62 of 88 ⁺Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY 1506358-03,04,07,11,12,18,28,34

L1506358-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506358-12 07/08	(OS) L1506358-12 07/08/22 07:14 • (MS) R3812732-12 07/08/22 07:28 • (MSD) R3812732-13 07/08/22 07:41													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Chloride	50.0	10.8	61.4	62.7	101	104	1	80.0-120			2.14	15		
Fluoride	5.00	ND	5.41	5.59	107	110	1	80.0-120			3.24	15		
Sulfate	50.0	16.3	68.4	69.1	104	106	1	80.0-120			1.11	15		

L1506329-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506329-03 07/09	/22 04:05 • (MS	6) R3812852-1 (07/09/22 04:2	0 • (MSD) R381	2852-2 07/09	/22 04:34						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	3.60	55.1	55.5	103	104	1	80.0-120			0.825	15
Fluoride	5.00	ND	5.18	5.23	101	103	1	80.0-120			1.06	15
Sulfate	50.0	35.3	84.3	84.8	98.0	99.0	1	80.0-120			0.604	15

DATE/TIME: 07/17/22 12:29

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1506358-02,05,06,08,10,13,14,15,16,17,20,22

Method Blank (MB)

Method Diai					- P
(MB) R3813385-1	07/07/22 23:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	
Chloride	U		0.379	1.00	
Fluoride	U		0.0640	0.150	3
Sulfate	U		0.594	5.00	Ľ

¹Cn

Sr

Qc

GI

A

L1506358-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1506358-06 07/	/08/22 03:59 • (DL	JP) R3813385-	7 07/08/2	2 04:14		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Sulfate	633	634	10	0.206		15

L1506329-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1506329-15 07/08/	22 00:44 • (DUI	P) R3813385-5	5 07/08/22	2 00:59		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	20.5	20.4	1	0.398		15
Fluoride	ND	ND	1	0.000		15
Sulfate	131	131	1	0.333		15

L1506358-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1506358-06 07/08/	22 04:29 • (DU	P) R3813385-8	3 07/08/2	2 04:44			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	RPD	
Analyte	mg/l	mg/l		%			
Chloride	11.0	10.7	1	3.53			
Fluoride	0.661	0.721	1	8.55			

Laboratory Control Sample (LCS)

7/22 23:30				
Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
mg/l	mg/l	%	%	
40.0	39.4	98.4	80.0-120	
8.00	8.15	102	80.0-120	
40.0	39.6	98.9	80.0-120	
	Spike Amount mg/l 40.0 8.00	Spike Amount LCS Result mg/l mg/l 40.0 39.4 8.00 8.15	Spike Amount LCS Result LCS Rec. mg/l mg/l % 40.0 39.4 98.4 8.00 8.15 102	Spike Amount mg/l LCS Result mg/l LCS Rec. Rec. Limits % 40.0 39.4 98.4 80.0-120 8.00 8.15 102 80.0-120

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: GBMc & Associates - Bryant, AR 1145-21-080 L1506358 07/17/22 12:29 64 of 88 Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1506358-02,05,06,08,10,13,14,15,16,17,20,22

L1506329-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506329-14 07/08/2	22 00:00 • (MS) R3813385-3 (07/08/22 00:15	5 • (MSD) R3813	3385-4 07/08/2	22 00:29						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	5.81	56.4	57.2	101	103	1	80.0-120			1.36	15
Fluoride	5.00	ND	5.00	5.08	98.0	99.6	1	80.0-120			1.60	15
Sulfate	50.0	12.8	63.7	63.6	102	102	1	80.0-120			0.0299	15

L1506358-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1506358-05 07/08	/22 03:29 • (MS	S) R3813385-6	07/08/22 03:	44			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	3.95	55.3	103	1	80.0-120	
Fluoride	5.00	ND	5.06	99.4	1	80.0-120	
Sulfate	50.0	23.2	74.0	102	1	80.0-120	

DATE/TIME: 07/17/22 12:29 PAGE: 65 of 88 Тс

Ss

Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1506358-24,25

Method Blank (MB)

(IMB) R3813932-1 07	/08/22 09:31				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Chloride	U		0.379	1.00	
Fluoride	U		0.0640	0.150	³ Ss
Sulfate	U		0.594	5.00	

L1506281-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1506281-06 07/08/2	22 13:05 • (DUF) R3813932-5	07/08/22	2 13:20		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	72.9	73.3	1	0.431		15
Fluoride	0.226	0.229	1	1.05		15
Sulfate	69.1	69.3	1	0.247		15

L1506389-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1506389-04 07/08/	/22 16:34 • (DUF	P) R3813932-7	07/08/22	2 16:49		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	83.1	83.0	1	0.165		15
Fluoride	0.152	0.153	1	0.985		15
Sulfate	320	320	1	0.0745	E	15

Laboratory Control Sample (LCS)

(LCS) R3813932-2 07	/08/22 09:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	38.7	96.8	80.0-120	
Fluoride	8.00	8.05	101	80.0-120	
Sulfate	40.0	41.1	103	80.0-120	

ACCOUNT:
GBMc & Associates - Bryant, AR

PROJECT: 1145-21-080

DATE/TIME: 07/17/22 12:29 Ср

⁺Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

L1506276-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506276-07 07/0	8/22 11:06 • (MS)	R3813932-3 0	7/08/22 11:20	• (MSD) R3813	932-4 07/08/2	22 11:35						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	500	900	1420	1430	103	107	10	80.0-120			1.36	15
Fluoride	50.0	ND	52.4	52.0	103	102	10	80.0-120			0.828	15
Sulfate	500	350	896	900	109	110	10	80.0-120			0.486	15

L1506329-19 Original Sample (OS) • Matrix Spike (MS)

(OS) L1506329-19 07/08/22 14:34 • (MS) R3813932-6 07/08/22 14:49							
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	5.58	55.4	99.7	1	80.0-120	
Fluoride	5.00	ND	5.17	102	1	80.0-120	
Sulfate	50.0	ND	53.2	104	1	80.0-120	

PROJECT: 1145-21-080

SDG: L1506358 DATE/TIME: 07/17/22 12:29 PAGE: 67 of 88 Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1506358-01,09,19,21,23,26,27,29

Method Blank (MB)

(MB) R3813188-1	07/08/22 11:01

(MB) R3813188-1 07	/08/22 11:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Chloride	U		0.379	1.00	
Fluoride	U		0.0640	0.150	
Sulfate	0.781	J	0.594	5.00	

L1506329-27 Original Sample (OS) • Duplicate (DUP)

(OS) L1506329-27 07/08/22 12:22 • (DUP) R3813188-5 07/08/22 12:35						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	8.14	7.99	1	1.79		15
Fluoride	ND	ND	1	1.11		15
Sulfate	49.4	51.0	1	3.25		15

L1506358-19 Original Sample (OS) • Duplicate (DUP)

(OS) L1506358-19 07/08/22 17:43 • (DUP) R3813188-7 07/08/22 17:57						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	6.49	5.94	1	8.79		15
Fluoride	ND	ND	1	6.05		15
Sulfate	ND	ND	1	11.0		15

Laboratory Control Sample (LCS)

(LCS) R3813188-2 07/08/	22 11:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	41.2	103	80.0-120	
Fluoride	8.00	8.66	108	80.0-120	
Sulfate	40.0	42.3	106	80.0-120	

ACCOUNT:
GBMc & Associates - Bryant, AR

⁺Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY 1506358-01,09,19,21,23,26,27,29

L1506329-26 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506329-26 07/08	3/22 11:41 • (MS)	R3813188-3 07	/08/22 11:55 •	(MSD) R381318	8-4 07/08/22	12:08						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	ND	49.8	51.4	97.7	101	1	80.0-120			3.08	15
Fluoride	5.00	ND	5.10	5.26	102	105	1	80.0-120			3.04	15
Sulfate	50.0	ND	50.2	51.9	100	104	1	80.0-120			3.37	15

L1506358-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1506358-01 07/08/	22 17:03 • (MS)	R3813188-6 07	7/08/22 17:16				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	8.52	58.2	99.4	1	80.0-120	
Fluoride	5.00	ND	5.30	105	1	80.0-120	
Sulfate	50.0	52.5	101	97.4	1	80.0-120	

DATE/TIME: 07/17/22 12:29

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1506358-30,31,32,33,35,36,37

Method Blank (MB)

(MB)	R3813933-1	07/08/22 18:19	

(IVIB) R3813933-1 U	//08/22 18:19				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	⁻Tc
Chloride	U		0.379	1.00	
Fluoride	U		0.0640	0.150	³ Ss
Sulfate	U		0.594	5.00	

L1506353-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1506353-01 07/08/2	22 19:34 • (DUP) R3813933-5	07/08/22	19:49		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	449	450	1	0.255	E	15
Fluoride	1.76	1.74	1	1.10		15
Sulfate	2570	2570	1	0.130	E	15

L1506353-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1506353-11 07/08/2	2 23:03 • (DUP) R3813933-7	07/08/22	23:18		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	64.2	64.3	1	0.243		15
Fluoride	0.454	0.466	1	2.52		15
Sulfate	793	795	1	0.221	E	15

Laboratory Control Sample (LCS)

(LCS) R3813933-2 07/08	8/22 18:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.0	97.6	80.0-120	
Fluoride	8.00	8.06	101	80.0-120	
Sulfate	40.0	41.3	103	80.0-120	

ACCOUNT:
GBMc & Associates - Bryant, AR

PROJECT: 1145-21-080

DATE/TIME: 07/17/22 12:29 Ср

⁺Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY 1506358-30,31,32,33,35,36,37

L1506306-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506306-04 07/08	/22 18:49 • (MS)) R3813933-3 (07/08/22 19:04	• (MSD) R3813	3933-4 07/08/2	22 19:19						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	1.86	52.0	52.0	100	100	1	80.0-120			0.0610	15
Fluoride	5.00	ND	4.64	4.90	90.9	96.2	1	80.0-120			5.61	15
Sulfate	50.0	492	522	520	58.4	55.5	1	80.0-120	EV	EV	0.283	15

L1506353-10 Original Sample (OS) • Matrix Spike (MS)

(OS) L1506353-10 07/08	8/22 22:33 • (MS)	R3813933-6 C	7/08/22 22:	:48			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	64.6	112	95.7	1	80.0-120	
Fluoride	5.00	0.439	5.51	101	1	80.0-120	
Sulfate	50.0	795	824	58.7	1	80.0-120	EV

DATE/TIME: 07/17/22 12:29

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1506358-38,39

Method Blank (MB)

(MB) R3812838-1	0//08/22 18:48

(1010) 1(3012030-1	07/00/22 10.40				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Chloride	U		0.379	1.00	
Fluoride	U		0.0640	0.150	
Sulfate	U		0.594	5.00	

L1506429-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1506429-02 07/08/	/22 20:52 • (DU	IP) R3812838-	3 07/08/2	22 21:07		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	83.4	84.5	1	1.30		15
Fluoride	0.515	0.511	1	0.760		15
Sulfate	33.4	33.4	1	0.146		15

L1506614-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1506614-01 07/09/2	2 01:51 • (DUP)	R3812838-6	07/09/22	02:06		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	1.78	1.74	1	2.05		15
Sulfate	154	154	1	0.273		15

Laboratory Control Sample (LCS)

(LCS) R3812838-2 07/08	/22 19:04				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	38.6	96.4	80.0-120	
Fluoride	8.00	7.96	99.5	80.0-120	
Sulfate	40.0	37.9	94.8	80.0-120	

L1506569-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506569-03	8 07/08/22 22:55 • (MS	6) R3812838-4	07/08/22 23	:11 • (MSD) R381	2838-5 07/0	9/22 00:03							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	1.76	51.5	52.2	99.4	101	1	80.0-120			1.45	15	
Fluoride	5.00	ND	5.01	5.13	98.4	101	1	80.0-120			2.22	15	
				PDC				6D.6		DATE			DAGE
	ACCOUNT:			PRC	DJECT:			SDG:		DATE/	TIME:		PAGE:
GB	Mc & Associates - Bryant,	AR		1145-	-21-080		L1	506358		07/17/2	2 12:29		72 of 88

Fc Ss °Cn Sr [°]Qc GI Â Sc

Ср

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

L1506569-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(C	S) L1506569-03 07/08/	22 22:55 • (MS	5) R3812838-4	07/08/22 23:11	• (MSD) R3812	838-5 07/09/2	22 00:03						
		Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Ar	alyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Su	lfate	50.0	ND	52.1	52.3	97.8	98.2	1	80.0-120			0.428	15

L1506632-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1506632-05 07/09	9/22 03:24 • (MS	6) R3812838-7	07/09/22 03	39			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	1.65	52.8	102	1	80.0-120	
Fluoride	5.00	ND	5.09	102	1	80.0-120	
Sulfate	50.0	ND	53.1	100	1	80.0-120	

DATE/TIME: 07/17/22 12:29 PAGE: 73 of 88

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3812241-1 07/0	07/22 20:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron	U		0.0200	0.200

Laboratory Control Sample (LCS)

(LCS) R3812241-2 07/07	7/22 20:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Boron	1.00	0.948	94.8	80.0-120	

L1506353-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506353-07 07/07/2	22 20:06 • (MS) R3812241-4 (07/07/22 20:11	• (MSD) R38122	241-5 07/07/22	2 20:14						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Boron	1.00	ND	1.13	1.13	96.3	96.3	1	75.0-125			0.0130	20

DATE/TIME: 07/17/22 12:29

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1506358-05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21,22

Method Blank (MB)

(MB) R3811949-1 0	7/07/22 08:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron	U		0.0200	0.200

Laboratory Control Sample (LCS)

(LCS) R3811949-2 07/07	//22 08:31				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Boron	1.00	0.952	95.2	80.0-120	

L1506358-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506358-09 07/07/	22 08:34 • (MS	5) R3811949-4 (07/07/22 08:40	D • (MSD) R381	1949-5 07/07/2	22 08:42						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Boron	1.00	ND	1.11	1.11	94.3	94.5	1	75.0-125			0.173	20

DATE/TIME: 07/17/22 12:29

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1506358-25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

Method Blank (MB)

Method Blar	ik (MB)				1
(MB) R3812235-6	07/07/22 18:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	T
Boron	U		0.0200	0.200	
					³ S

Laboratory Control Sample (LCS)

(LCS) R3812235-7 07/0)7/22 18:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Boron	1.00	0.955	95.5	80.0-120	

L1506358-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506358-25 07/07	7/22 18:57 • (MS)	R3812235-9 0)7/07/22 19:02	• (MSD) R3812	235-10 07/07/	/22 19:04						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Boron	1.00	0.340	1.17	1.21	83.3	86.8	1	75.0-125			2.88	20

DATE/TIME: 07/17/22 12:29 Cn

Sr

[°]Qc

GI

Â

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3812264-1 07/0	07/22 22:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron	U		0.0200	0.200

Laboratory Control Sample (LCS)

(LCS) R3812264-2 07/0	07/22 22:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Boron	1.00	0.945	94.5	80.0-120	

L1506439-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506439-01 07/07/2	22 22:09 • (MS)	R3812264-4 ()7/07/22 22:14	• (MSD) R3812	264-5 07/07/2	2 22:17						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Boron	1.0.0	ND	1.01	0.999	96.5	05.7	1	75.0-125			0.769	20

DATE/TIME: 07/17/22 12:29

Тс

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY L1506358-01,02,03,04

Method Blank (MB)

Method Blan	k (MB)				1 Cp
(MB) R3812229-1	07/07/22 20:31				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Calcium	U		0.0936	1.00	
					³ Ss

Laboratory Control Sample (LCS)

(LCS) R3812229-2 07/0	07/22 20:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Calcium	5.00	4.49	89.8	80.0-120	

L1506329-36 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506329-36 07/07	7/22 20:38 • (MS	6) R3812229-4	07/07/22 20:4	5 • (MSD) R381	2229-5 07/07	7/22 20:48						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Calcium	5.00	80.7	86.1	84.0	109	67.1	1	75.0-125		V	2.46	20

DATE/TIME: 07/17/22 12:29 Cn

Sr

Qc

GI

Â

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY L1506358-05.06.07.08.09.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24

Method Blank (MB)

Method Didni					1 C
(MB) R3811425-1 0	7/06/22 12:29				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	T
Calcium	0.112	J	0.0936	1.00	Ļ
					3

Laboratory Control Sample (LCS)

(LCS) R3811425-2 07/	/06/22 12:32				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Calcium	5.00	5.28	106	80.0-120	

L1506358-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506358-05 07/06	6/22 12:36 • (MS) R3811425-4 0	7/06/22 12:42	• (MSD) R38114	125-5 07/06/2	2 12:46						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Calcium	5.00	14.6	20.4	20.5	115	118	1	75.0-125			0.750	20

DATE/TIME: 07/17/22 12:29 Cn

Sr

[°]Qc

GI

Â

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY L1506358-25,26,27,28,29,30,31,32,33,34,35,36,37,38,39

Method Blank (MB)

Method Blar	nk (MB)				1
(MB) R3812303-1	07/07/22 19:44				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Тс
Calcium	U		0.0936	1.00	
					³ Ss

Laboratory Control Sample (LCS)

(LCS) R3812303-2 07/0)7/22 19:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Calcium	5.00	4.98	99.6	80.0-120	

L1506569-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1506569-03 07/07	(OS) L1506569-03 07/07/22 19:52 • (MS) R3812303-4 07/07/22 19:59 • (MSD) R3812303-5 07/07/22 20:03											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Calcium	5.00	3.24	7.74	8.25	89.8	100	1	75.0-125			6.38	20

DATE/TIME: 07/17/22 12:29 Cn

Sr

[°]Qc

GI

Â

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 1145-21-080

SDG: L1506358 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1506358 DATE/TIME: 07/17/22 12:29 PAGE: 82 of 88

Τс

Ss

Cn

Sr

Qc

Gl

AI

Company Name/Address:		914.2	Billing Info	ormatio	on:	and the second	1	-		Analysis / C	ontainer / Preservative	COCI Chain of Custod	y Page of
GBMc & Associates - Br	yant, AR		Account	And the second second			Pres Chk						,
219 Brown Lane Bryant, AR 72022			219 Bro Bryant,									PEOPL	ACC [®] E Advancing science
Report to: Jonathan Brown			Email To: jbrown@	ill To: wn@gbmcassoc.com;dbraund@gbmcassoc.								12065 Lebanon Rd M	ULIET, TN ount Juliet, TN 37122 ia this chain of custody
Project Description: Entergy - White Bluff	City/State Collected: Redfield			eld	, AR	Please Ci PT MT	rcle:		Pres			Pace Terms and Cond	Igment and acceptance of the tions found at: com/hubfs/pas-standard-
Phone: 501-847-7077	Client Project	Client Project # 1145-21-080		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Project # MCBAR-I	ENTERGYWI	3		SOMIHDPE-NoPres			SDG # UP	06358
Collected by (print): Danielle Braund	Site/Facility	Site/Facility ID # P.C			#		1	EONH-	OmIHD			Acctnum: GB	
Collected by (signature):	Rush? (Lab MUST Be Notified)			Quo	ote #			HDPE	DS 25(Template: T1	
Immediately Packed on Ice N_YX	Next D Two D Three	ay 10 D	y (Rad Only) Iay (Rad Only)		Date Resu	lts Needed	No. of	250mlHDPE-HNO3	S04, T			PM: 134 - Ma PB	k W. Beasley
Sample ID	Comp/Grab	Matrix *	Depth		Date	Time	Cntrs	B, Ca	CI, F,			Shipped Via: F Remarks	edEX Ground
MW-101S	Grab	GW	36.1	le	15/22	1050	2	x	X			5.98	-01
MW-1025		GW	33.C	16	114/22	1630	2	X	X	1000		(e.0(e	-02
MW-1035		GW	14.3	6	1322		2	X	X	-1-1		4.31	-03
MW-1045		GW	28.2	le	113/22	1700	2	X	X			4.82	-d4
MW-1055		GW	263		114/22		2	X	X	1000		5.97	-05
MW-1065		GW	9.6		114/22	0935		X	X			4.01	-de
MW-1105	2 3 2 C	GW	9.0	10	13/22		2	X	X			5.49	-07
MW-1115		GW	12.7	16	14/22	ten alline and an Ast	2	X	X	196.4	1 1 × 1	4.05	-08
MW-101D		GW	96.8	lé	lician		2	X	X			7.75	-09
MW-102D		GW	91.3		114/22		2	X	X			8.17	-10
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks: Final ptt in remark								5-8 ²	pH	Temp Other	Sample Receipt C COC Seal Present/Intact COC Signed/Accurate: Bottles arrive intact:	
DW Drinking Water	and the second of the second sec	mples returned via: UPS FedExCourier										Correct bottles used: Sufficient volume sent: <u>If Applicab</u> VOA Zero Headspace:	Y I
Relinquished by: (Signature) Date: Lelle 22 1500) Recei	ved by: (Signat	ure)			Trip Blank R	eceived: Yes / No HCL / MeoH TBR	Preservation Correct/Ch RAD Screen <0.5 mR/hr:	ecked:
Relinquished by : (Signature)	/: (Signature) Date: Time:			Recei	ved by: (Signati	ure)			Temp:	°C Bottles Received:	If preservation required by Login: Date/Time		
Relinquished by : (Signature)	y : (Signature) Date: Time:		Recei	ved for lab by:	(Signat	vre)		Date:	22 Time: Goo	Hold:	Condition: NCF / OK		

Company Name/Address:			Billing Information:				nanaris († 15 de sec		65042		Analysis / C	ontainer / P	reservative	1	Chain of Custod	y Page 20
GBMc & Associates - B 219 Brown Lane Bryant, AR 72022	ryant, <i>i</i>	AR	219 B	rown	Payab 1 Ln. 2 7202			Pres Chk							- PEOPL	7 ACC" e advancing scienc
Report to: Jonathan Brown			Email T		o: @gbmcassoc.com;dbraund@gbmcassoc.										MT J 12065 Lebanon Rd M	ULIET, TN
Project Description:		City/Sta	1998 Sec	101	Please Circle:					sə.					constitutes acknowled Pace Terms and Condi	ia this chain of custod Igment and acceptanc tions found at: com/hubfs/pas-standa
Entergy - White Bluff Phone: 501-847-7077	1 1 1 1 1 1 1 1 1 1 1 1	Client Project #		1	Lab Project # GBMCBAR-ENTERGYWB				250mIHDPE-NoPres					SDG # UF	3063	
Collected by (print): Danielk-Braund	Site/Fac	(1) 「有な「新聞」(そこ)「第二、「ここ」を知道する		P.O. #				HNO3	IdHlm					Table #	MCBAR	
Collected by (signature):	Si			Quote				250mlHDPE-HNO3	TDS 250					Template:T19	98831	
Denielubrane Immediately Packed on Ice N_YX	T		0 Day (Rad On 0 Day (Rad O		Dai	te Result:	s Needed	No. of		S04,					PM: 134 - Mar PB53	000
Sample ID	Comp/0	Grab Matrix	* Dep	th	D	ate	Time	Cntrs	B, Ca	CI, F,					Shipped Via: F Remarks	Sample # (la
MW-103D	Gra	b GW	41.	2	6/13	3/22	1427	2	X	X					8.30	-11
MW-104D		GW	86	7	le/1	3/22	1726	2	X	X	1.4.7				7.82	-12
MW-105D		GW	80.	0	6/1	4/22	0905	2	X	X				and the second	8.61	-12
MW-106D		GW	41.	9	Le r	1/22	1110	2	X	X				A STATE	8.49	-14
MW-107D		GW	20.0	5	6/1	1/22	1105	2	X	X					7.36	-15
MW-108D		GW	45.	3	6/14	1/22	1245	2	X	X					8.38	-1()
MW-109D		GW	79.	1	6/1	4/27	1545	52	×	X	24-7	and a			7.97	1-17
MW-110D		GW	32.	2	Le/13	22	1541	2	X	X	and the second				8.28	-18
MW-111D.		GW			_	-	-	-	-	_					1 100	
MW-112D	4	GW	87.	6	6/15	5/22	1620	2	X	X			Gran	4	8.15	-19
GW - Groundwater B - Bioassay WW - WasteWater	-Air F-Filter vater B-Bioassay					's				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	pH	Tem	100	COC Sea COC Sig Bottles	Sample Receipt Cl 1 Present/Intact med/Accurate: arrive intact: bottles used:	
DW - Drinking Water OT - Other	Samples retu UPSF	irned via: edEx Cour	urier 1				g #							Suffici VOA Zer	ent volume sent: <u>If Applicab</u> o Headspace:	<u>le</u> Y
Relinquished by : (Signature)				D	Receive	d by: (Signat	ure)			Trip Blank R		HCL / MeoH TBR		ation Correct/Ch een <0.5 mR/hr:	ecked:	
Relinquished by : (Signature)	shed by : (Signature) Date: Time:			Receive	d by: (Signat	ure)			Temp:		les Received:	If preserv	vation required by Lo	gin: Date/Tim		
Relinquished by : (Signature)		Date:	Т	lme:		Receive	d for lab by:	(Signati	Ire)	5	Date:	, Tim		Hold:		Condition NCF /

ompany Name/Address:			Billing Infor	matio	n:			1		Analysis / (Container / Preservative		Chain of Custody Page 3	of _
GBMc & Associates - Bi 19 Brown Lane Bryant, AR 72022	ryant, AR		Accounts 219 Brov Bryant, A	vn Ln			Pres Chk						PEOPLE ADVANCING SCIEN	CE
teport to: onathan Brown				ail To: own@gbmcassoc.com;dbraund@gbmca									MT JULIET, TN 12065 Lebanon Rd Mount Juliet, TN 37122 Submitting a sample via this chain of custor	
Project Description: Entergy - White Bluff		City/State Collected: Redfield, A			and annual states	Please C PT MT			Pres				Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-stand terms.pdf	ce of the
hone: 501-847-7077	Client Projec	45-21-080 GBM			Project # MCBAR-I	ENTERGYW	в		250mlHDPE-NoPres				SDG # 450635	В
ollected by (print): Danielle Braund	Site/Facility		P.O. #					HNO3					Table # Acctnum: GBMCBAR	
Collected by (signature): Danielub zand mmediately Packed on Ice N Y X	Same I		Day	Quo		ts Needed	No. of	250mlHDPE-HNO3	SO4, TDS 25(Template: T198831 Prelogin: P929293 PM: 134 - Mark W. Beasley PB: Description	00
Sample ID	Comp/Grab	Matrix *	Depth	Z	Date	Time	Cntrs	B, Ca 2	CI, F, S				Shipped Via: FedEX Grou Remarks Sample # (lat	
IW-113D	Grab	GW	9.5	16	14/22	1235	2	X	X				18.97 -20	
W-114D		GW	60.4	6	15/27	1815	2	X	X				8.70 -21	
W-115D		GW	74.2	6	14/22	1415	2	X	X				8.62 -22	
W-118D	1	GW	41.0	6	15/22		2	X	X				7.77 -23	,
LD BLANK 1		GW	-	le	1		2	X	X				DI+50 -24	
IPLICATE 1 108D	Grab	GW	45.3	le	14/22	1245	2	X	X				8.38 -25	
LD BLANK 2	12-	GW	_	1.		0800	2	X	X	-			DI ++20 -24	
IPLICATE 2 1015	Grab	GW	36.1			2 1050		X	X	a dipeter			5.98 -0	
LD BLANK3		GW		-	1.1	1000							RATING	
JPLICATE 3 1045	Grab	GW	28.2	6	13/22	1700	2	X	X				4.82 -28	
Matrix: - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater	^{emarks:} Fir	ial pt	t in re	mo	inks					pH Flow	Temp Other	COC Seal I COC Signed Bottles at	ple Receipt Checklist Present/Intact: NP d/Accurate: crive intact: ottles used:	N N N
W - Drinking Water S T - Other	amples returned UPSFedEx			Tracking #								Sufficient VOA Zero H	t volume sent: Z <u>If Applicable</u> Headspace: _Y	N N
elinquished by: (Signature)	Breek	ate: / le//le	6/16/22 1500 Received by: (Signatu				ture)			Trip Blank R	Received: Yes No HCL / MeoH TBR	Preservation Correct/Checked: N RAD Screen <0.5 mR/hr: N		
elinquished by : (Signature)	re) Date: Time; Received by: (ved by: (Signat	ure)			Temp:	°C Bottles Received:	If preservati	on required by Login: Date/Tim	e	
Relinquished by : (Signature) Date: Time:		ate:	Time:		Recei	red for labiby:	Signati	ure)	5	Date: 6/11/	22 990	Hold:	Conditio NCF	

Company Name/Address:		<u></u>	Billing Info	rmatior	lling Information:					Analysis /	Container / Preservative	Chain of Custody	Chain of Custody Page 4 of 5		
GBMc & Associates - B	ryant, AR		Account 219 Brow	14 - 1			Pres Chk					P			
219 Brown Lane Bryant, AR 72022			Bryant,									PEOPLE	ADVANCING SCIENCE		
Report to: Jonathan Brown			Email To: jbrown@g	bmcass	oc.com;dl	praund@gbm	cassoc.					12065 Lebanon Rd Mo			
Project Description: Entergy - White Bluff		City/State Collected:	Redfit	~ '		Please C	ircle:		Pres			Submitting a sample via constitutes acknowledg Pace Terms and Conditi https://info.pacelabs.co terms.pdf	ment and acceptance of th ons found at:		
Phone: 501-847-7077	Client Projec 1145-21-0	t#	Lab Projec GBMCB								E-NoPres			SDG # UE	06355
Collected by (print): Danielle Braund	Site/Facility I			P.O. #				EON!	250mIHDP			Table #			
Collected by (signature):			Be Notified) Quote #				1. 340 1. 7. 1	E-F	250r			Acctnum: GBN Template:T19			
Danielli Brand Immediately Packed on Ice N_ YX	Same [Day Five ay 5 Da ay 10 D	Day		Date Resul	ts Needed	No. of	250mlHDPE-HNO3	SO4, TDS 2			Prelogin: P92 PM: 134 - Mark PB: BF	9295 W. Beasley		
Sample ID	Comp/Grab	Matrix *	Depth		Date	Time	Cntrs	B, Ca	cl, F,			Shipped Via: Fe Remarks	Sample # (lab onl		
P-1	Grab	GW	8.8	6	15/22	1346	2	X	X			3.67	-29		
P-2	1	GW	14.9	leli	5/22	1220	2	X	X			4.30	-30		
P-3	1.7 200 2.744	GW	7.7	(0)	le 72	0905	2	X	X			3.14	-31		
P-4		GW	9.0	le	16/22	1015	2	X	X			5.58	-32		
P-5		GW	9.0	61		1745	2	X	X			3.88	-33		
P-6		GW	11.4	121	13/22	1045	2	X	X	1.32		4.75	-34		
P-7	-	GW	13.0	Tel	15/22	1630	2	X	X			3.79	-35		
P-8		GW	10.7	16/1	5/22	1520	2	X	X			4.31	-36		
IP-9		GW	9.1	11	16/22	1030	2	X	X			6.53	-37		
RP-10		GW	8.2	6	16/22		2	X	X		10 10 m 10	3.80	-38		
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay WW - WasteWater	Remarks: Fir	ial pt	And the second s							pH Flow	Temp Other	Sample Receipt Checklist COC Seal Present/Intact:NP COC Signed/Accurate: Bottles arrive intact:			
Delalitare Minter	Samples returned UPSFedEx				Tracki	ng #						Correct bottles used: Sufficient volume sent: If Applicable VOA Zero Headspace: Y			
Relinquished by: (Signature)						ved by: (Signat	ure)		1777 1777 - 178	Trip Blank	Received: Yes / O HCL / MeoH TBR	Preservation Correct/Che RAD Screen <0.5 mR/hr:	cked:		
Relinquished by : (Signature)					ved by: (Signat	ure)	1		Temp:	°C Bottles Received:	If preservation required by Log	in: Date/Time			
Relinquished by : (Signature)	nquished by : (Signature) Date: Time: Received for lab				red for lab by:	(Signati	ure)	5	Date:	122 900	Hold:	Condition: NCF / OK			

Company Name/Address:			Billing Info	rmation:				1 1	Analysis /	Container	· / Preservative		Chain of Custody	Page S of S	
GBMc & Associates - Br	yant, AR		219 Brov			Pres Chk							- Pa	ice [,]	
219 Brown Lane Bryant, AR 72022		1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Bryant, /	AR 72022							•		PEOPLE	ADVANCING SCIENCE	
Report to: Jonathan Brown			Email To: jbrown@g	mail To: prown@gbmcassoc.com;dbraund@gbmcassoc.									12065 Lebanon Rd Mo Submitting a sample via	this chain of custody	
Project Description: Entergy - White Bluff		Carden and the second second second	Reafie	Id, AR	Please Ci PT MT C	rcle: T) ET		Pres					Pace Terms and Conditi	ment and acceptance of th ons found at: m/hubfs/pas-standard-	
Phone: 501-847-7077	Client Project 1145-21-08			Lab Project # GBMCBAR-E	NTERGYWE	5		250mIHDPE-NoPres					SDG # UE	SDG # USd6358	
Collected by (print): Danielle Braund	Site/Facility ID			P.O. #			EONH	DHIMD					Table #	ACBAR	
Collected by (signature):		ab MUST Be Notified)		Quote #	#		HDPE-	TDS 250					Template: T19 Prelogin: P92	8822	
DanielliBrand Immediately Packed on Ice N_ YX.	Next Da Two Da Three D	y 5 Day y 10 D	y (Rad Only) ay (Rad Only)	Date Resul	ts Needed	No. of	250mlHDPE-HNO3	SO4, TI					PM: 134 - Marl PB: DF 5	W. Beasley	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	B, Ca	Cl, F,					Shipped Via: Fe Remarks	Sample # (lab only	
HELD BLANK		GW			1. 1. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			12.5	dist.				DIHLO		
DUPLICATE RP-10	Grab	GW	8.2	6/16/22	0842	2	X	X					3.80	-39	
		-G₩-													
			1.100												
		Contraction of the second	1			12.2		11-1	1						
					35										
	l emarks: Fin	al pH	in rer	narks					рн _		Temp	The second se	ble Receipt Ch resent/Intact: /Accurate:	and the second second second second	
GW - Groundwater B - Bioassay WW - WasteWater			1.2	S		13			Flow	a dia dia dia dia dia dia dia dia dia di	Other	Correct bo	rive intact: ttles used: volume sent:		
DW - Drinking Water OT - Other	amples returned UPS FedEx			Tracki	ing #							VOA Zero H	If Applicabl eadspace:	YN	
Relinquished by : (Signature)	and lelle/22 Time		e: Receiv	ved by: (Signat	ure)		1 1	Trip Blank	Received	HCL / MeoH TBR	Preservati RAD Screen	on Correct/Che <0.5 mR/hr:	cked:N		
Relinquished by : (Signature)	Di	Date: Time:		e: Recei	ved by: (Signat	ure)			Temp:	°C	Bottles Received:	If preservatio	on required by Log	in: Date/Time	
Relinquished by : (Signature)	Di	ate:	Time	e: Recei	ved for lab by:	(Signat	ure)		Date:	10	Time: 900	Hold:		Condition: NCF / OK	

Tracking Numbers 5719 6189 7339 5719 6189 7350 5719 6193 8/04 the 5719 6189 7340 Temperature Distances Out 7 0047 0047 0047 0047 20259 3.9625.9 2,2023/2 U506358

Pace Analytical® ANALYTICAL REPORT

December 28, 2022

GBMc & Associates - Bryant, AR

Sample Delivery Group:	L1566306
Samples Received:	12/10/2022
Project Number:	1145-21-080
Description:	Entergy - White Bluff
Site:	CADL - CCR
Report To:	Johnathon Brown
	219 Brown Lane
	Bryant, AR 72022

Тс Ss Cn Śr ʹQc GI A Sc

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: GBMc & Associates - Bryant, AR PROJECT: 1145-21-080

SDG: L1566306

DATE/TIME: 12/28/22 14:15

PAGE: 1 of 90

TABLE OF CONTENTS

Cp: Cover Pag	Je			1
Tc: Table of C	ontents			2
Ss: Sample Su	mmary			4
Cn: Case Narr	ative			12
Sr: Sample Re	sults			13
MW-101S	L1566306-01			13
MW-102S	L1566306-02			14
MW-103S	L1566306-03			15
MW-104S	L1566306-04			16
MW-105S	L1566306-05			17
MW-106S	L1566306-06			18
MW-110S	L1566306-07			19
MW-111S L	.1566306-08			20
MW-101D	L1566306-09			21
MW-102D	L1566306-10			22
MW-103D	L1566306-11			23
MW-104D	L1566306-12			24
MW-105D	L1566306-13			25
MW-106D	L1566306-14			26
MW-107D	L1566306-15			27
MW-108D	L1566306-16			28
MW-109D	L1566306-17			29
MW-110D	L1566306-18			30
MW-112D	L1566306-19			31
MW-113D	L1566306-20			32
MW-114D	L1566306-21			33
MW-115D	L1566306-22			34
MW-118D	L1566306-23			35
FIELD BLAN	IK 1 L1566306-24			36
FIELD BLAN	IK 2 L1566306-25			37
DUPLICATE	1 107D L1566306-20	5		38
DUPLICATE	2 106S L1566306-2	7		39
DUPLICATE	3 101D L1566306-28	3		40
RP FIELD B	LANK L1566306-29			41
RP DUPLIC	ATE RP-8 L1566306-	30		42
RP-1 L156	5306-31			43
RP-2 L156	6306-32			44
RP-3 L156	6306-33			45
RP-4 L156	6306-34			46
RP-5 L156	6306-35			47
ACCOUNT:		PROJECT:	SDG:	DATE/TIME:
	P	1145 21 000	11500200	12/20/22 14:15

² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

PROJECT: 1145-21-080

SDG: L1566306

PAGE: 2 of 90

RP-6 L1566306-36	48
RP-7 L1566306-37	49
RP-8 L1566306-38	50
RP-9 L1566306-39	51
RP-10 L1566306-40	52
Qc: Quality Control Summary	53
Gravimetric Analysis by Method 2540 C-2011	53
Wet Chemistry by Method 2320 B-2011	58
Wet Chemistry by Method 9056A	63
Metals (ICP) by Method 6010B	73
Metals (ICPMS) by Method 6020	79
GI: Glossary of Terms	83
Al: Accreditations & Locations	84
Sc: Sample Chain of Custody	85

PROJECT: 1145-21-080

SDG: L1566306 DATE/TIME: 12/28/22 14:15 **PAGE**: 3 of 90

MW-101S L1566306-01 GW			Collected by Danielle Braund	Collected date/time 12/07/22 15:37	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973969	1	12/14/22 10:46	12/14/22 12:54	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974241	1	12/15/22 10:58	12/15/22 10:58	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 06:50	12/15/22 06:50	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974152	1	12/19/22 12:47	12/20/22 01:57	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1974154	1	12/16/22 15:31	12/17/22 14:03	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
MW-102S L1566306-02 GW			Danielle Braund	12/06/22 14:15	12/10/22 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973329	1	12/13/22 08:49	12/13/22 10:12	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974241	1	12/15/22 11:02	12/15/22 11:02	ARD	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1974156	1	12/15/22 07:28	12/15/22 07:28	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974152	1	12/19/22 12:47	12/20/22 01:59	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1974154	1	12/16/22 15:31	12/17/22 14:07	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
MW-103S L1566306-03 GW			Danielle Braund	12/06/22 13:45	12/10/22 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973329	1	12/13/22 08:49	12/13/22 10:12	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974241	1	12/15/22 11:07	12/15/22 11:07	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 07:40	12/15/22 07:40	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1977041	1	12/20/22 14:27	12/21/22 09:29	CCE	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1977041	1	12/20/22 14:27	12/21/22 17:40	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1974154	1	12/16/22 15:31	12/17/22 14:10	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
MW-104S L1566306-04 GW			Danielle Braund	12/08/22 11:35	12/10/22 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1974716	1	12/15/22 01:41	12/15/22 07:51	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974945	1	12/15/22 14:36	12/15/22 14:36	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 08:05	12/15/22 08:05	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974497	1	12/15/22 11:30	12/15/22 17:10	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977083	.9	12/20/22 11:14	12/20/22 15:56	LD	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-105S L1566306-05 GW			Danielle Braund	12/06/22 09:07	12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973329	1	12/13/22 08:49	12/13/22 10:12	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974241	1	12/15/22 11:10	12/15/22 11:10	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 08:30	12/15/22 08:30	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974497	1	12/15/22 11:30	12/15/22 17:13	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977083	.9	12/20/22 11:14	12/20/22 15:59	LD	Mt. Juliet, TN

PROJECT: 1145-21-080

SDG: L1566306 DATE/TIME: 12/28/22 14:15 Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

			Collected by	Collected date/time	Received dat	te/time
MW-106S L1566306-06 GW			Danielle Braund	12/06/22 09:43	12/10/22 10:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1973329	1	12/13/22 08:49	12/13/22 10:12	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974247	1	12/19/22 07:12	12/19/22 07:12	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 08:43	12/15/22 08:43	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	10	12/15/22 08:55	12/15/22 08:55	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974497	1	12/15/22 11:30	12/15/22 17:16	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977083	.9	12/20/22 11:14	12/20/22 16:09	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
MW-110S L1566306-07 GW			Danielle Braund	12/06/22 13:09	12/10/22 10:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974247	1	12/19/22 07:23	12/19/22 07:23	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 09:08	12/15/22 09:08	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974497	1	12/15/22 11:30	12/15/22 17:19	ZSA	Mt. Juliet, TN

			Collected by	Collected date/time	Received dat	te/time
MW-111S L1566306-08 GW			Danielle Braund	12/06/22 10:13	12/10/22 10:0	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974247	1	12/19/22 07:25	12/19/22 07:25	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 09:58	12/15/22 09:58	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	10	12/15/22 10:10	12/15/22 10:10	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974497	1	12/15/22 11:30	12/15/22 17:22	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977083	.9	12/20/22 11:14	12/20/22 16:15	LD	Mt. Juliet, TN

WG1977083

.9

12/20/22 11:14

12/20/22 16:12

LD

Mt. Juliet, TN

			Collected by	Collected date/time	Received date/time	
MW-101D L1566306-09 GW			Danielle Braund	12/06/22 16:20	12/10/22 10:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974247	1	12/19/22 07:30	12/19/22 07:30	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 10:22	12/15/22 10:22	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974497	1	12/15/22 11:30	12/15/22 17:24	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977083	.9	12/20/22 11:14	12/20/22 16:19	LD	Mt. Juliet, TN

MW-102D L1566306-10 GW			Collected by Danielle Braund	Collected date/time 12/07/22 14:35	Received da 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973969	1	12/14/22 10:46	12/14/22 12:54	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974247	1	12/19/22 07:35	12/19/22 07:35	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	100	12/15/22 10:47	12/15/22 10:47	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974497	1	12/15/22 11:30	12/15/22 17:32	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/22/22 00:54	LD	Mt. Juliet, TN

Metals (ICPMS) by Method 6020

PROJECT: 1145-21-080

SDG: L1566306 DATE/TIME: 12/28/22 14:15 ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Ср

Тс

MW-103D L1566306-11 GW			Collected by Danielle Braund	Collected date/time 12/08/22 13:37	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1974716	1	12/15/22 01:41	12/15/22 07:51	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974247	1	12/19/22 07:39	12/19/22 07:39	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 11:00	12/15/22 11:00	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974497	1	12/15/22 11:30	12/15/22 17:35	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 22:58	LD	Mt. Juliet, TN
MW-104D L1566306-12 GW			Collected by Danielle Braund	Collected date/time 12/06/22 10:20	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1973349 WG1974945	1	12/15/22 14:39	12/15/22 14:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974545 WG1974156	1	12/15/22 14:35	12/15/22 11:25	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974130 WG1974497	1	12/15/22 11:30	12/15/22 17:38	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 23:02	LD	Mt. Juliet, TN
MW-105D L1566306-13 GW			Collected by Danielle Braund	Collected date/time 12/08/22 09:22	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1974716	1	12/15/22 01:41	12/15/22 07:51	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974945	1	12/15/22 14:46	12/15/22 14:46	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 11:37	12/15/22 11:37	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974497	1	12/15/22 11:30	12/15/22 17:41	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 23:05	LD	Mt. Juliet, TN
MW-106D L1566306-14 GW			Collected by Danielle Braund	Collected date/time 12/08/22 12:35	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1974716	1	12/15/22 01:41	12/15/22 07:51	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974945	1	12/15/22 14:52	12/15/22 14:52	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 12:40	12/15/22 12:40	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 00:47	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 23:15	LD	Mt. Juliet, TN
MW-107D L1566306-15 GW			Collected by Danielle Braund	Collected date/time 12/06/22 10:49	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974945	1	12/15/22 15:11	12/15/22 15:11	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 12:52	12/15/22 12:52	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 00:49	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 23:18	LD	Mt. Juliet, TN

PROJECT: 1145-21-080

SDG: L1566306 DATE/TIME: 12/28/22 14:15 Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

MW-108D L1566306-16 GW			Collected by Danielle Braund	Collected date/time 12/05/22 13:30	Received da 12/10/22 10:0		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN	
Wet Chemistry by Method 2320 B-2011	WG1974945	1	12/15/22 15:18	12/15/22 15:18	ARD	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1974156	1	12/15/22 13:17	12/15/22 13:17	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 00:52	ABL	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 23:21	LD	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
MW-109D L1566306-17 GW			Danielle Braund	12/05/22 11:45	12/10/22 10:0	00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN	
Wet Chemistry by Method 2320 B-2011	WG1974945	1	12/15/22 15:24	12/15/22 15:24	ARD	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974289	1	12/14/22 16:11	12/14/22 16:11	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 00:55	ABL	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 23:25	LD	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
MW-110D L1566306-18 GW			Danielle Braund	12/05/22 14:30	12/10/22 10:0	00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN	
Vet Chemistry by Method 2320 B-2011	WG1974945	1	12/15/22 15:31	12/15/22 15:31	ARD	Mt. Juliet, TN	
Vet Chemistry by Method 9056A	WG1974289	1	12/14/22 16:25	12/14/22 16:25	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:03	ABL	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 23:28	LD	Mt. Juliet, TN	
MW-112D L1566306-19 GW			Collected by Danielle Braund	Collected date/time 12/07/22 16:40	Received da 12/10/22 10:0		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1973969	1	12/14/22 10:46	12/14/22 12:54	AS	Mt. Juliet, TN	
Net Chemistry by Method 2320 B-2011	WG1974945	1	12/15/22 15:38	12/15/22 15:38	ARD	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974289	1	12/14/22 17:23	12/14/22 17:23	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:06	ABL	Mt. Juliet, TN	
Vetals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 23:31	LD	Mt. Juliet, TN	
MW-113D L1566306-20 GW			Collected by Danielle Braund	Collected date/time 12/06/22 14:27		Received date/time 12/10/22 10:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN	
Net Chemistry by Method 2320 B-2011	WG1974945	1	12/15/22 15:44	12/15/22 15:44	ARD	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974289	1	12/14/22 17:37	12/14/22 17:37	LBR	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974289	10	12/14/22 18:20	12/14/22 18:20	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:08	ABL	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG1977085	1	12/21/22 10:27	12/21/22 23:35	LD	Mt. Juliet, TN	

PROJECT: 1145-21-080

SDG: L1566306 DATE/TIME: 12/28/22 14:15 Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

MW-114D L1566306-21 GW			Collected by Danielle Braund	Collected date/time 12/05/22 16:40	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN
Net Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 07:31	12/19/22 07:31	ARD	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1974289	1	12/14/22 18:35	12/14/22 18:35	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:11	ABL	Mt. Juliet, TN
Ietals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 16:11	LD	Mt. Juliet, TN
MW-115D L1566306-22 GW			Collected by Danielle Braund	Collected date/time 12/05/22 12:40	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN
Net Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 07:38	12/19/22 07:38	ARD	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1974289	1	12/14/22 18:49	12/14/22 18:49	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:14	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 16:25	LD	Mt. Juliet, TN
WW-118D L1566306-23 GW			Collected by Danielle Braund	Collected date/time 12/05/22 16:00	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN
Vet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 07:45	12/19/22 07:45	ARD	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1974289	1	12/14/22 19:04	12/14/22 19:04	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:17	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 16:28	LD	Mt. Juliet, TN
FIELD BLANK 1 L1566306-24 GW			Collected by Danielle Braund	Collected date/time 12/06/22 15:30	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Vet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 07:51	12/19/22 07:51	ARD	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1974289	1	12/14/22 19:32	12/14/22 19:32	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:19	ABL	Mt. Juliet, TN
Ietals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 16:31	LD	Mt. Juliet, TN
FIELD BLANK 2 L1566306-25 GW			Collected by Danielle Braund	Collected date/time 12/07/22 14:20	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Cravimatric Analysis by Mathad 2540 C 2011	WC1072000	1	date/time 12/14/22 10:46	date/time 12/14/22 12:54	٨٢	Mt Juliat TA
Gravimetric Analysis by Method 2540 C-2011 Vet Chemistry by Method 2320 B-2011	WG1973969 WG1975415	1 1	12/14/22 10:46	12/14/22 12:54	AS ARD	Mt. Juliet, TN Mt. Juliet, TN
VEL CHEMISTRY BY MELIDU ZOZU D-ZUTI	WG1975415 WG1974289	1	12/19/22 07:55	12/19/22 07:55	LBR	Mt. Juliet, TN Mt. Juliet, TN
		1	12/14/22 13.4/	12/14/22 13.4/	LDK	
Wet Chemistry by Method 9056A Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:22	ABL	Mt. Juliet, TN

PROJECT: 1145-21-080

SDG: L1566306 DATE/TIME: 12/28/22 14:15 Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

DUPLICATE 1 107D L1566306-26 GW			Collected by Danielle Braund	Collected date/time 12/06/22 10:49	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 07:59	12/19/22 07:59	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974289	1	12/14/22 20:01	12/14/22 20:01	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:25	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 16:45	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
DUPLICATE 2 106S L1566306-27 GW			Danielle Braund	12/06/22 13:09	12/10/22 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 08:16	12/19/22 08:16	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974289	1	12/14/22 20:30	12/14/22 20:30	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974810	1	12/15/22 11:47	12/16/22 01:28	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 16:48	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
DUPLICATE 3 101D L1566306-28 GW			Danielle Braund	12/06/22 16:20	12/10/22 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 08:19	12/19/22 08:19	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974289	1	12/14/22 21:28	12/14/22 21:28	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974941	1	12/15/22 22:11	12/16/22 08:31	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 16:52	LD	Mt. Juliet, TN
RP FIELD BLANK L1566306-29 GW			Collected by Danielle Braund	Collected date/time 12/06/22 09:00	Received dat 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 08:27	12/19/22 08:27	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974289	1	12/14/22 21:57	12/14/22 21:57	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974941	1	12/15/22 22:11	12/16/22 08:42	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 16:55	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
RP DUPLICATE RP-8 L1566306-30 GW			Danielle Braund	12/05/22 14:24	12/10/22 10:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 08:31	12/19/22 08:31	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974289	1	12/14/22 22:11	12/14/22 22:11	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974684	5	12/16/22 12:40	12/16/22 12:40	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974941	1	12/15/22 22:11	12/16/22 08:45	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 16:58	LD	Mt. Juliet, TN

PROJECT: 1145-21-080

SDG: L1566306 DATE/TIME: 12/28/22 14:15 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al

RP-1 L1566306-31 GW			Collected by Danielle Braund	Collected date/time 12/05/22 15:55	Received da 12/10/22 10:0		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN	
Wet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 08:36	12/19/22 08:36	ARD	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974289	10	12/14/22 22:25	12/14/22 22:25	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974941	1	12/15/22 22:11	12/16/22 08:48	ABL	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:01	LD	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
RP-2 L1566306-32 GW			Danielle Braund	12/05/22 15:29	12/10/22 10:0	00	
Nethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN	
Wet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 08:41	12/19/22 08:41	ARD	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974289	1	12/14/22 22:54	12/14/22 22:54	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974941	1	12/15/22 22:11	12/16/22 08:51	ABL	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:05	LD	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
RP-3 L1566306-33 GW			Danielle Braund	12/05/22 14:57	12/10/22 10:0	00	
<i>f</i> lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN	
Net Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 08:46	12/19/22 08:46	ARD	Mt. Juliet, TN	
Vet Chemistry by Method 9056A	WG1974289	1	12/14/22 23:09	12/14/22 23:09	LBR	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974289	20	12/14/22 23:33	12/14/22 23:33	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974941	1	12/15/22 22:11	12/16/22 08:59	ABL	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:08	LD	Mt. Juliet, TN	
			Collected by Danielle Braund	Collected date/time 12/06/22 08:37	Received da 12/10/22 10:0		
RP-4 L1566306-34 GW Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
	Daten	Bildton	date/time	date/time	7 mary se	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1973349	1	12/13/22 09:11	12/13/22 11:39	AS	Mt. Juliet, TN	
Net Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 08:51	12/19/22 08:51	ARD	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974289	1	12/15/22 00:15	12/15/22 00:15	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974941	1	12/15/22 22:11	12/16/22 09:02	ABL	Mt. Juliet, TN	
Aetals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:11	LD	Mt. Juliet, TN	
			Collected by Danielle Braund	Collected date/time 12/05/22 13:02	Received da 12/10/22 10:0	Received date/time	
RP-5 L1566306-35 GW Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
		2	date/time	date/time	-		
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN	
Net Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 08:55	12/19/22 08:55	ARD	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974289	1	12/15/22 00:44	12/15/22 00:44	LBR	Mt. Juliet, TN	
Net Chemistry by Method 9056A	WG1974684	5	12/16/22 12:53	12/16/22 12:53	LBR	Mt. Juliet, TN	
Metals (ICP) by Method 6010B	WG1974941	1	12/15/22 22:11	12/16/22 09:05	ABL	Mt. Juliet, TN	
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:14	LD	Mt. Juliet, TN	

PROJECT: 1145-21-080

SDG: L1566306 DATE/TIME: 12/28/22 14:15 Ср

²Tc

Ss

°Cn

Sr

Qc

GI

ΆI

			Collected by	Collected date/time	Received date/time	
RP-6 L1566306-36 GW			Danielle Braund	12/05/22 13:36	12/10/22 10:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN
Vet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 09:09	12/19/22 09:09	ARD	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1974289	1	12/15/22 01:27	12/15/22 01:27	LBR	Mt. Juliet, TN
Vet Chemistry by Method 9056A	WG1974289	20	12/15/22 01:42	12/15/22 01:42	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1974941	1	12/15/22 22:11	12/16/22 09:08	ABL	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:24	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
			Danielle Pround	12/05/22 12:50	12/10/22 10.0	20

RP-7 L1566306-37 GW			Danielle Braund	12/05/22 13:59	12/10/22 10:0)0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 09:14	12/19/22 09:14	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974445	1	12/16/22 08:47	12/16/22 08:47	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974445	5	12/16/22 09:03	12/16/22 09:03	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1975471	1	12/19/22 09:30	12/19/22 20:14	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:28	LD	Mt. Juliet, TN

			Collected by	Collected date/time	Received dat	
RP-8 L1566306-38 GW			Danielle Braund	12/05/22 14:24	12/10/22 10:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1975415	1	12/19/22 09:19	12/19/22 09:19	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974445	1	12/16/22 09:24	12/16/22 09:24	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974445	5	12/16/22 09:40	12/16/22 09:40	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1975471	1	12/19/22 09:30	12/19/22 20:17	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:31	LD	Mt. Juliet, TN

			Collected by	Collected date/time	Received dat	te/time
RP-9 L1566306-39 GW			Danielle Braund	12/05/22 16:33	12/10/22 10:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1975416	1	12/19/22 10:29	12/19/22 10:29	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974451	1	12/15/22 13:55	12/15/22 13:55	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1975471	1	12/19/22 09:30	12/19/22 19:35	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:34	LD	Mt. Juliet, TN

RP-10 L1566306-40 GW			Collected by Danielle Braund	Collected date/time 12/05/22 17:02	Received da 12/10/22 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1973182	1	12/12/22 20:46	12/13/22 01:15	AS	Mt. Juliet, TN
Wet Chemistry by Method 2320 B-2011	WG1974241	1	12/15/22 11:24	12/15/22 11:24	ARD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1974451	1	12/15/22 18:14	12/15/22 18:14	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1975825	5	12/17/22 00:34	12/17/22 00:34	LBR	Mt. Juliet, TN
Metals (ICP) by Method 6010B	WG1975471	1	12/19/22 09:30	12/19/22 20:20	ZSA	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1975620	1	12/20/22 01:23	12/20/22 17:37	LD	Mt. Juliet, TN

ACCOUNT:	PROJECT:	SDG:
GBMc & Associates - Bryant, AR	1145-21-080	L1566306

DATE/TIME: 12/28/22 14:15 Ср

²Tc

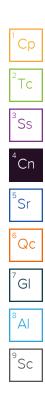
Ss

⁴Cn

Sr

Qc

GI


ΆI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

PROJECT: 1145-21-080

SDG: L1566306 DATE/TIME: 12/28/22 14:15

PAGE: 12 of 90

SAMPLE RESULTS - 01 L1566306

Collected date/time: 12/07/22 15:37 Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		-
Dissolved Solids	217	J4	10.0	1	12/14/2022 12:54	WG1973969	
Mot Chamiotry (b)	Mathed 2220						L
Wet Chemistry by	/ Method 2320 Result		RDL	Dilution	Analysis	Batch	[
Wet Chemistry by Analyte		B-2011 <u>Qualifier</u>	RDL mg/l	Dilution	Analysis date / time	Batch	

Sample Narrative:

L1566306-01 WG1974241: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	7.65		1.00	1	12/15/2022 06:50	WG1974156
Fluoride	ND		0.150	1	12/15/2022 06:50	WG1974156
Sulfate	51.3		5.00	1	12/15/2022 06:50	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/20/2022 01:57	WG1974152
Lithium	0.0393		0.0150	1	12/20/2022 01:57	<u>WG1974152</u>

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0752		0.00200	1	12/17/2022 14:03	WG1974154
Calcium	15.9		1.00	1	12/17/2022 14:03	<u>WG1974154</u>
Magnesium	4.36		1.00	1	12/17/2022 14:03	WG1974154
Sodium	27.0		2.00	1	12/17/2022 14:03	WG1974154
Strontium	0.353		0.0100	1	12/17/2022 14:03	WG1974154

SDG: L1566306 Sr

SAMPLE RESULTS - 02 L1566306

Collected date/time: 12/06/22 14:15

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	3860		200	1	12/13/2022 10:12	WG1973329
Wet Chemistry by	/ Method 2320	B-2011				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	60.4		20.0	1	12/15/2022 11:02	WG1974241
Sample Narrative:						
eample manative.						

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
hloride	8.08		1.00	1	12/15/2022 07:28	WG1974156
luoride	ND		0.150	1	12/15/2022 07:28	WG1974156
Sulfate	27.6		5.00	1	12/15/2022 07:28	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/20/2022 01:59	WG1974152
Lithium	0.0297		0.0150	1	12/20/2022 01:59	WG1974152

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0762		0.00200	1	12/17/2022 14:07	WG1974154
Calcium	16.2		1.00	1	12/17/2022 14:07	WG1974154
Magnesium	4.35		1.00	1	12/17/2022 14:07	WG1974154
Sodium	26.7		2.00	1	12/17/2022 14:07	WG1974154
Strontium	0.357		0.0100	1	12/17/2022 14:07	WG1974154

SAMPLE RESULTS - 03 L1566306

Collected date/time: 12/06/22 13:45 ۸

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	980		50.0	1	12/13/2022 10:12	WG1973329
Wet Chemistry by	Method 2320	B-2011				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
	Kesuit					
Analyte	mg/l		mg/l		date / time	
•			mg/l 20.0	1	date / time 12/15/2022 11:07	WG1974241
Analyte Alkalinity Sample Narrative:	mg/l			1		

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Chloride	5.14		1.00	1	12/15/2022 07:40	<u>WG1974156</u>	
Fluoride	ND		0.150	1	12/15/2022 07:40	<u>WG1974156</u>	
Sulfate	79.4		5.00	1	12/15/2022 07:40	WG1974156	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.282		0.200	1	12/21/2022 17:40	WG1977041
Lithium	ND		0.0150	1	12/21/2022 09:29	WG1977041

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0884		0.00200	1	12/17/2022 14:10	WG1974154
Calcium	5.41		1.00	1	12/17/2022 14:10	WG1974154
Magnesium	1.51		1.00	1	12/17/2022 14:10	WG1974154
Sodium	37.1		2.00	1	12/17/2022 14:10	WG1974154
Strontium	0.121		0.0100	1	12/17/2022 14:10	WG1974154

PROJECT: 1145-21-080

SDG: L1566306

DATE/TIME: 12/28/22 14:15

SAMPLE RESULTS - 04 L1566306

Collected date/time: 12/08/22 11:35 1.15 ^ alucic by Moth

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	248		10.0	1	12/15/2022 07:51	WG1974716
Wet Chemistry by	Method 2320	B-2011				
Wet Chemistry by			RDI	Dilution	Analysis	Batch
	Method 2320 Result mg/l	B-2011 <u>Qualifier</u>	RDL mg/l	Dilution	Analysis date / time	Batch
Wet Chemistry by Analyte Alkalinity	Result			Dilution 1		<u>Batch</u> WG1974945
Analyte	Result mg/l		mg/l	Dilution	date / time	

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	4.34		1.00	1	12/15/2022 08:05	WG1974156
Fluoride	ND		0.150	1	12/15/2022 08:05	WG1974156
Sulfate	79.6		5.00	1	12/15/2022 08:05	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.837		0.200	1	12/15/2022 17:10	WG1974497
Lithium	0.0364		0.0150	1	12/15/2022 17:10	WG1974497

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0379		0.00180	.9	12/20/2022 15:56	WG1977083
Calcium	15.6		0.900	.9	12/20/2022 15:56	WG1977083
Magnesium	3.49		0.900	.9	12/20/2022 15:56	WG1977083
Sodium	22.7		1.80	.9	12/20/2022 15:56	WG1977083
Strontium	0.300		0.00900	.9	12/20/2022 15:56	WG1977083

SAMPLE RESULTS - 05 L1566306

Collected date/time: 12/06/22 09:07

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	97.0		10.0	1	12/13/2022 10:12	WG1973329	
Wet Chemistry by				Dilution	Analycic	Datch	
	Result	B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch	
Wet Chemistry by Analyte			RDL mg/l	Dilution	Analysis date / time	Batch	
	Result			Dilution 1		Batch WG1974241	
Analyte	Result mg/l		mg/l	Dilution 1	date / time		

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
alyte	mg/l		mg/l		date / time	
lloride	5.25		1.00	1	12/15/2022 08:30	WG1974156
Joride	ND		0.150	1	12/15/2022 08:30	WG1974156
Ilfate	32.0		5.00	1	12/15/2022 08:30	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/15/2022 17:13	<u>WG1974497</u>
Lithium	0.0409		0.0150	1	12/15/2022 17:13	<u>WG1974497</u>

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0708		0.00180	.9	12/20/2022 15:59	WG1977083
Calcium	15.3		0.900	.9	12/20/2022 15:59	WG1977083
Magnesium	3.34		0.900	.9	12/20/2022 15:59	WG1977083
Sodium	18.0		1.80	.9	12/20/2022 15:59	WG1977083
Strontium	0.328		0.00900	.9	12/20/2022 15:59	WG1977083

SAMPLE RESULTS - 06 L1566306

Collected date/time: 12/06/22 09:43

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	979		10.0	1	12/13/2022 10:12	WG1973329
	Decult	Qualifier	וחס			
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	Result mg/l	Qualifier	RDL mg/l	Dilution	Analysis date / time	Batch
Analyte Alkalinity		<u>Qualifier</u>		Dilution 1		<u>WG1974247</u>

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
rte	mg/l		mg/l		date / time	
e	13.1		1.00	1	12/15/2022 08:43	<u>WG1974156</u>
le	0.803		0.150	1	12/15/2022 08:43	<u>WG1974156</u>
te	643		50.0	10	12/15/2022 08:55	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	6.39		0.200	1	12/15/2022 17:16	WG1974497
Lithium	0.0241		0.0150	1	12/15/2022 17:16	WG1974497

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0179		0.00180	.9	12/20/2022 16:09	WG1977083
Calcium	31.6		0.900	.9	12/20/2022 16:09	WG1977083
Magnesium	21.1		0.900	.9	12/20/2022 16:09	WG1977083
Sodium	202		1.80	.9	12/20/2022 16:09	WG1977083
Strontium	1.03		0.00900	.9	12/20/2022 16:09	WG1977083

Qc

SAMPLE RESULTS - 07 L1566306

Collected date/time: 12/06/22 13:09 1.

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	375	<u>J3</u>	10.0	1	12/13/2022 11:39	WG1973349
Wet Chemistry by	Method 2320	B-2011				
Wet Chemistry by	Method 2320	B-2011				
	Result	B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch
Wet Chemistry by Analyte			RDL mg/l	Dilution	Analysis date / time	Batch
	Result			Dilution		<u>Batch</u> WG1974247
Analyte	Result mg/l		mg/l	Dilution	date / time	

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	6.57		1.00	1	12/15/2022 09:08	WG1974156
Fluoride	0.167		0.150	1	12/15/2022 09:08	WG1974156
Sulfate	194		5.00	1	12/15/2022 09:08	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	2.03		0.200	1	12/15/2022 17:19	WG1974497
Lithium	0.0318		0.0150	1	12/15/2022 17:19	WG1974497

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0295		0.00180	.9	12/20/2022 16:12	WG1977083
Calcium	5.93		0.900	.9	12/20/2022 16:12	WG1977083
Magnesium	2.87		0.900	.9	12/20/2022 16:12	WG1977083
Sodium	71.3		1.80	.9	12/20/2022 16:12	WG1977083
Strontium	0.182		0.00900	.9	12/20/2022 16:12	WG1977083

SAMPLE RESULTS - 08 L1566306

Collected date/time: 12/06/22 10:13

	Result	Qualifier	RDL	Dilution	Analysis	Batch
alyte	mg/l		mg/l		date / time	
solved Solids	1270		20.0	1	12/13/2022 11:39	WG1973349
et Chemistry by	y Method 2320	B-2011				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
alyte	mg/l		mg/l		date / time	
alinity	ND		20.0	1	12/19/2022 07:25	WG1974247
nple Narrative:						

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
lyte	mg/l		mg/l		date / time	
oride	11.3		1.00	1	12/15/2022 09:58	WG1974156
ride	1.20		0.150	1	12/15/2022 09:58	WG1974156
ite	879		50.0	10	12/15/2022 10:10	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	6.26		0.200	1	12/15/2022 17:22	WG1974497
Lithium	0.0530		0.0150	1	12/15/2022 17:22	WG1974497

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0157		0.00180	.9	12/20/2022 16:15	WG1977083
Calcium	112		0.900	.9	12/20/2022 16:15	WG1977083
Magnesium	37.3		0.900	.9	12/20/2022 16:15	WG1977083
Sodium	166		1.80	.9	12/20/2022 16:15	WG1977083
Strontium	3.03		0.00900	.9	12/20/2022 16:15	WG1977083

SAMPLE RESULTS - 09 L1566306

Collected date/time: 12/06/22 16:20

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	397		10.0	1	12/13/2022 11:39	WG1973349	
Wet Chemistry by		B-2011	10.0				
		B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch	
	Method 2320			Dilution			

L1566306-09 WG1974247: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
nalyte	mg/l		mg/l		date / time	
lloride	6.30		1.00	1	12/15/2022 10:22	WG1974156
uoride	ND		0.150	1	12/15/2022 10:22	<u>WG1974156</u>
ulfate	89.9		5.00	1	12/15/2022 10:22	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.206		0.200	1	12/15/2022 17:24	WG1974497
Lithium	0.0451		0.0150	1	12/15/2022 17:24	WG1974497

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0788		0.00180	.9	12/20/2022 16:19	WG1977083
Calcium	54.3		0.900	.9	12/20/2022 16:19	WG1977083
Magnesium	12.5		0.900	.9	12/20/2022 16:19	WG1977083
Sodium	49.6		1.80	.9	12/20/2022 16:19	WG1977083
Strontium	1.23		0.00900	.9	12/20/2022 16:19	WG1977083

SAMPLE RESULTS - 10 L1566306

Collected date/time: 12/07/22 14:35 Gravimetric Analysis by Method 25/0 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	428	<u>J4</u>	10.0	1	12/14/2022 12:54	WG1973969	
Wet Chemistry by	Method 2320	B-2011					
	D 1:	0 110	DDI	Dil vi	A 1 1	D : 1	
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	Result mg/l	Qualifier	RDL mg/l	Dilution	Analysis date / time	Batch	
•		<u>Qualifier</u>		Dilution		Batch WG1974247	
Analyte Alkalinity Sample Narrative: L1566306-10 WG1974247	mg/l 342		mg/l	Dilution	date / time		

Wet Chemistry by Method 9056A

Analyte mg/l date / time Chloride ND 100 12/15/2022 10:47 WG1974156 Fluoride ND 15.0 100 12/15/2022 10:47 WG1974156		Result	Qualifier	RDL	Dilution	Analysis	Batch
luoride ND 15.0 100 12/15/2022 10:47 WG1974156	alyte	mg/l		mg/l		date / time	
	Iloride	ND		100	100	12/15/2022 10:47	<u>WG1974156</u>
	oride	ND		15.0	100	12/15/2022 10:47	<u>WG1974156</u>
Jitate ND 500 100 12/15/2022 10:47 WG19/4156	lfate	ND		500	100	12/15/2022 10:47	WG1974156
	rrative:						

Sample Narrative:

L1566306-10 WG1974156: dilution due to matrix

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.260		0.200	1	12/15/2022 17:32	WG1974497
Lithium	0.0515		0.0150	1	12/15/2022 17:32	WG1974497

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.605		0.00200	1	12/22/2022 00:54	WG1977085
Calcium	127		1.00	1	12/22/2022 00:54	WG1977085
Magnesium	33.1		1.00	1	12/22/2022 00:54	WG1977085
Sodium	51.6		2.00	1	12/22/2022 00:54	WG1977085
Strontium	3.19		0.0100	1	12/22/2022 00:54	WG1977085

Qc

SAMPLE RESULTS - 11

Collected date/time: 12/08/22 13:37

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	398		10.0	1	12/15/2022 07:51	WG1974716
Wet Chemistry by	Method 2320	B-2011				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	283		20.0	1	12/19/2022 07:39	WG1974247
Sample Narrative:						
L1566306-11 WG1974247:	Endpoint pH 4.5 Headsp	ace				
	/ Method 9056	^				

⁷ Gl	Batch	Analysis	Dilution	RDL	Qualifier	Result	
		date / time		mg/l		mg/l	Analyte
8	WG1974156	12/15/2022 11:00	1	1.00		7.89	Chloride
ĬAĬ	WG1974156	12/15/2022 11:00	1	0.150		0.194	Fluoride
	WG1974156	12/15/2022 11:00	1	5.00		71.6	Sulfate
[°] Sc							
						od 6010P	Motals (ICP) by Mot

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.276		0.200	1	12/15/2022 17:35	WG1974497
Lithium	0.0440		0.0150	1	12/15/2022 17:35	WG1974497

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0870		0.00200	1	12/21/2022 22:58	WG1977085
Calcium	52.5		1.00	1	12/21/2022 22:58	WG1977085
Magnesium	10.9		1.00	1	12/21/2022 22:58	WG1977085
Sodium	82.8		2.00	1	12/21/2022 22:58	WG1977085
Strontium	1.33		0.0100	1	12/21/2022 22:58	WG1977085

SAMPLE RESULTS - 12 L1566306

Collected date/time: 12/06/22 10:20

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	307		10.0	1	12/13/2022 11:39	<u>WG1973349</u>
	Result	Qualifier	RDL	Dilution	Analysis	Batch
			mg/l		date / time	
Analyte	mg/l		5			
Analyte Alkalinity	mg/l 261		20.0	1	12/15/2022 14:39	WG1974945
mple Narrative:				1	12/15/2022 14:39	<u>WG1974945</u>

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	9.99		1.00	1	12/15/2022 11:25	WG1974156
Fluoride	ND		0.150	1	12/15/2022 11:25	WG1974156
Sulfate	19.7		5.00	1	12/15/2022 11:25	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.242		0.200	1	12/15/2022 17:38	WG1974497
Lithium	0.0359		0.0150	1	12/15/2022 17:38	<u>WG1974497</u>

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0732		0.00200	1	12/21/2022 23:02	WG1977085
Calcium	57.1		1.00	1	12/21/2022 23:02	WG1977085
Magnesium	12.8		1.00	1	12/21/2022 23:02	WG1977085
Sodium	43.2		2.00	1	12/21/2022 23:02	WG1977085
Strontium	1.35		0.0100	1	12/21/2022 23:02	WG1977085

SAMPLE RESULTS - 13 L1566306

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	353		10.0	1	12/15/2022 07:51	WG1974716	
Wet Chemistry by			RDI	Dilution	Analysis	Batch	
Wet Chemistry by	/ Method 2320 Result mg/l	B-2011 <u>Qualifier</u>	RDL mg/l	Dilution	Analysis date / time	Batch	

Sample Narrative:

L1566306-13 WG1974945: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	8.99		1.00	1	12/15/2022 11:37	WG1974156
Fluoride	ND		0.150	1	12/15/2022 11:37	WG1974156
Sulfate	29.5		5.00	1	12/15/2022 11:37	WG1974156

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.280		0.200	1	12/15/2022 17:41	WG1974497
Lithium	0.0349		0.0150	1	12/15/2022 17:41	WG1974497

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0933		0.00200	1	12/21/2022 23:05	WG1977085
Calcium	57.2		1.00	1	12/21/2022 23:05	WG1977085
Magnesium	12.2		1.00	1	12/21/2022 23:05	WG1977085
Sodium	48.8		2.00	1	12/21/2022 23:05	WG1977085
Strontium	1.42		0.0100	1	12/21/2022 23:05	WG1977085

SDG: L1566306 E.

Ŝr

SAMPLE RESULTS - 14 L1566306

Collected date/time: 12/08/22 12:35 Moth 4 2510 C 2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
	329		10.0	1	12/15/2022 07:51	WG1974716	
Dissolved Solids Wet Chemistry by		B-2011	10.0			10101110	
Dissolved Solids Wet Chemistry by	Method 2320			Dilution			
Wet Chemistry by	Method 2320 Result	B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch	
	Method 2320			Dilution			

L1566306-14 WG1974945: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	7
nalyte	mg/l		mg/l		date / time		
nloride	5.92		1.00	1	12/15/2022 12:40	WG1974156	8
Joride	ND		0.150	1	12/15/2022 12:40	WG1974156	Ŭ
ulfate	12.5		5.00	1	12/15/2022 12:40	WG1974156	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.304		0.200	1	12/16/2022 00:47	WG1974810
Lithium	0.0352		0.0150	1	12/16/2022 00:47	WG1974810

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.107		0.00200	1	12/21/2022 23:15	WG1977085
Calcium	56.7		1.00	1	12/21/2022 23:15	WG1977085
Magnesium	11.6		1.00	1	12/21/2022 23:15	WG1977085
Sodium	56.6		2.00	1	12/21/2022 23:15	WG1977085
Strontium	1.47		0.0100	1	12/21/2022 23:15	WG1977085

SAMPLE RESULTS - 15 L1566306

Collected date/time: 12/06/22 10:49 Gravimetric Analysis by Method 2540 C-2011

mg/l 509 od 2320 B-2011 Result <u>Qualifier</u>	mg/l 10.0 RDL	1	date / time 12/13/2022 11:39	<u>WG1973349</u>
od 2320 B-2011		1 Dilution		
	RDI	Dilution	Anglacia	Datak
	RDI	Dilution	Anakais	Datab
Result Qualifier	RDI	Dilution	Amelia	Datah
	NDL .	Dilution	Analysis	Batch
mg/l	mg/l		date / time	
302	20.0	1	12/15/2022 15:11	WG1974945
	302 pH 4.5 Headspace			

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁷ G
Analyte	mg/l		mg/l		date / time		G
Chloride	21.3		1.00	1	12/15/2022 12:52	WG1974156	8
Fluoride	ND		0.150	1	12/15/2022 12:52	WG1974156	Ă
Sulfate	129		5.00	1	12/15/2022 12:52	WG1974156	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.315		0.200	1	12/16/2022 00:49	WG1974810
Lithium	0.0436		0.0150	1	12/16/2022 00:49	WG1974810

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.124		0.00200	1	12/21/2022 23:18	WG1977085
Calcium	82.1		1.00	1	12/21/2022 23:18	<u>WG1977085</u>
Magnesium	17.4		1.00	1	12/21/2022 23:18	WG1977085
Sodium	76.2		2.00	1	12/21/2022 23:18	<u>WG1977085</u>
Strontium	2.14		0.0100	1	12/21/2022 23:18	WG1977085

SAMPLE RESULTS - 16 L1566306

Collected date/time: 12/05/22 13:30 . . ~-

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	523		10.0	1	12/13/2022 01:15	WG1973182	
Wet Chemistry by		B-2011					
		B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch	
	Method 2320		RDL mg/l	Dilution	Analysis date / time	Batch	

L1566306-16 WG1974945: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	7
Analyte	mg/l		mg/l		date / time		
hloride	13.8		1.00	1	12/15/2022 13:17	WG1974156	8
uoride	ND		0.150	1	12/15/2022 13:17	WG1974156	Ĭ.
ulfate	52.5		5.00	1	12/15/2022 13:17	WG1974156	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.332		0.200	1	12/16/2022 00:52	<u>WG1974810</u>
Lithium	0.0419		0.0150	1	12/16/2022 00:52	<u>WG1974810</u>

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0818		0.00200	1	12/21/2022 23:21	<u>WG1977085</u>
Calcium	70.5		1.00	1	12/21/2022 23:21	WG1977085
Magnesium	15.3		1.00	1	12/21/2022 23:21	WG1977085
Sodium	95.2		2.00	1	12/21/2022 23:21	WG1977085
Strontium	1.77		0.0100	1	12/21/2022 23:21	WG1977085

SAMPLE RESULTS - 17 L1566306

Collected date/time: 12/05/22 11:45 Gravimetric Analysis by Method 25/0 C-2011

Result	Qualifier	RDL	Dilution	Analysis	Batch	
mg/l		mg/l		date / time		
371		10.0	1	12/13/2022 01:15	WG1973182	
Method 2320	B-2011					
Result	Qualifier	RDL	Dilution	Analysis	Batch	L
mg/l		mg/l		date / time		
262		20.0	1	12/15/2022 15:24	<u>WG1974945</u>	
	mg/l 371 Method 2320 Result mg/l	mg/l 371 Method 2320 B-2011 Result Qualifier mg/l	mg/l mg/l 371 10.0 Method 2320 B-2011 Result Result Qualifier RDL mg/l mg/l mg/l	mg/l mg/l 371 10.0 1 Method 2320 B-2011 Image: Compare the second seco	mg/l mg/l date / time 371 10.0 1 12/13/2022 01:15 Method 2320 B-2011 Result Qualifier RDL Dilution Analysis mg/l mg/l date / time date / time date / time	mg/l mg/l date / time 371 10.0 1 12/13/2022 01:15 WG1973182 Method 2320 B-2011 Method 2320 B-2011 Dilution Analysis Batch mg/l mg/l date / time date / time Method 2320 B-2011 Dilution Analysis Batch

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	6.45		1.00	1	12/14/2022 16:11	WG1974289
Fluoride	ND		0.150	1	12/14/2022 16:11	WG1974289
Sulfate	49.6		5.00	1	12/14/2022 16:11	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.308		0.200	1	12/16/2022 00:55	WG1974810
Lithium	0.0375		0.0150	1	12/16/2022 00:55	<u>WG1974810</u>

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0631		0.00200	1	12/21/2022 23:25	<u>WG1977085</u>
Calcium	50.0		1.00	1	12/21/2022 23:25	WG1977085
Magnesium	10.7		1.00	1	12/21/2022 23:25	WG1977085
Sodium	67.8		2.00	1	12/21/2022 23:25	WG1977085
Strontium	1.22		0.0100	1	12/21/2022 23:25	WG1977085

SAMPLE RESULTS - 18 L1566306

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	354		10.0	1	12/13/2022 01:15	WG1973182	
wet chemistry by	/ Method 2320						
wet Chemistry by	Result	B-2011 Qualifier	RDL	Dilution	Analysis	Batch	
			RDL mg/l	Dilution	Analysis date / time	Batch	
Analyte Alkalinity	Result			Dilution 1		Batch WG1974945	
Analyte	Result mg/l		mg/l	Dilution 1	date / time		

L1566306-18 WG1974945: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	6.34		1.00	1	12/14/2022 16:25	WG1974289
Fluoride	ND		0.150	1	12/14/2022 16:25	WG1974289
Sulfate	38.9		5.00	1	12/14/2022 16:25	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.306		0.200	1	12/16/2022 01:03	WG1974810
Lithium	0.0335		0.0150	1	12/16/2022 01:03	WG1974810

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0759		0.00200	1	12/21/2022 23:28	WG1977085
Calcium	47.7		1.00	1	12/21/2022 23:28	WG1977085
Magnesium	10.2		1.00	1	12/21/2022 23:28	WG1977085
Sodium	68.1		2.00	1	12/21/2022 23:28	WG1977085
Strontium	1.22		0.0100	1	12/21/2022 23:28	WG1977085

SDG: L1566306 E.

SAMPLE RESULTS - 19 L1566306

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	(
Analyte	mg/l		mg/l		date / time		2
Dissolved Solids	302	<u>J4</u>	10.0	1	12/14/2022 12:54	WG1973969	2 -
Wet Chemistry by	/ Method 2320	B-2011					3
Wet Chemistry by	/ Method 2320 Result	B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch	3
Wet Chemistry by			RDL mg/l	Dilution	Analysis date / time	Batch	3

Sample Narrative:

L1566306-19 WG1974945: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

Wet Chemistry b	by Method 9056	4					(⁶ Qc
	Result	Qualifier	RDL	Dilution	Analysis	Batch	:	⁷ Gl
Analyte	mg/l		mg/l		date / time			G
Chloride	5.80		1.00	1	12/14/2022 17:23	WG1974289		8
Fluoride	ND		0.150	1	12/14/2022 17:23	WG1974289		ĂI
Sulfate	ND		5.00	1	12/14/2022 17:23	WG1974289		

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.278		0.200	1	12/16/2022 01:06	<u>WG1974810</u>
Lithium	0.0324		0.0150	1	12/16/2022 01:06	<u>WG1974810</u>

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0858		0.00200	1	12/21/2022 23:31	<u>WG1977085</u>
Calcium	39.3		1.00	1	12/21/2022 23:31	<u>WG1977085</u>
Magnesium	8.85		1.00	1	12/21/2022 23:31	WG1977085
Sodium	55.1		2.00	1	12/21/2022 23:31	<u>WG1977085</u>
Strontium	0.944		0.0100	1	12/21/2022 23:31	WG1977085

SDG: L1566306

DATE/TIME: 12/28/22 14:15

SAMPLE RESULTS - 20 L1566306

Collected date/time: 12/06/22 14:27 alucic by Moth 1.15 ۸

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1190		20.0	1	12/13/2022 11:39	WG1973349
Wet Chemistry by	Method 2320	B-2011				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
•			mg/l 20.0	1	date / time 12/15/2022 15:44	WG1974945
Analyte Alkalinity Sample Narrative:	mg/l			1		<u>WG1974945</u>

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	7
Analyte	mg/l		mg/l		date / time		
Chloride	14.1		1.00	1	12/14/2022 17:37	<u>WG1974289</u>	8
luoride	ND		0.150	1	12/14/2022 17:37	WG1974289	Ŭ
Sulfate	528		50.0	10	12/14/2022 18:20	WG1974289	L

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.479		0.200	1	12/16/2022 01:08	WG1974810
Lithium	0.173		0.0150	1	12/16/2022 01:08	WG1974810

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0241		0.00200	1	12/21/2022 23:35	WG1977085
Calcium	200		1.00	1	12/21/2022 23:35	WG1977085
Magnesium	53.2		1.00	1	12/21/2022 23:35	WG1977085
Sodium	81.8		2.00	1	12/21/2022 23:35	WG1977085
Strontium	4.77		0.0100	1	12/21/2022 23:35	WG1977085

SAMPLE RESULTS - 21 L1566306

Collected date/time: 12/05/22 16:40

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	331		10.0	1	12/13/2022 01:15	WG1973182
Mot Chamistry by	Mathad 2220	D 2011				
Wet Chemistry by	Method 2320	B-2011				
Wet Chemistry by	Method 2320 Result	B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch
Wet Chemistry by Analyte			RDL mg/l	Dilution	Analysis date / time	Batch
Analyte	Result			Dilution 1		Batch WG1975415
	Result mg/l		mg/l	Dilution	date / time	

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	7.46		1.00	1	12/14/2022 18:35	WG1974289
Fluoride	ND		0.150	1	12/14/2022 18:35	WG1974289
Sulfate	25.9		5.00	1	12/14/2022 18:35	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.277		0.200	1	12/16/2022 01:11	WG1974810
Lithium	0.0335		0.0150	1	12/16/2022 01:11	WG1974810

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.127		0.00200	1	12/20/2022 16:11	WG1975620
Calcium	52.1		1.00	1	12/20/2022 16:11	<u>WG1975620</u>
Magnesium	11.4		1.00	1	12/20/2022 16:11	WG1975620
Sodium	43.7		2.00	1	12/20/2022 16:11	<u>WG1975620</u>
Strontium	1.27	V	0.0100	1	12/20/2022 16:11	WG1975620

SAMPLE RESULTS - 22 L1566306

Collected date/time: 12/05/22 12:40 Gravimetric Analysis by Method 25/10 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	351		10.0	1	12/13/2022 01:15	WG1973182
Wet Chemistry b	y Method 2320 Result	B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch
Analyte	mg/l	dudinici	mg/l	Dilation	date / time	Baten
Alkalinity	299		20.0	1	12/19/2022 07:38	WG1975415
Sample Narrative: L1566306-22 WG197541	15: Endpoint pH 4.5 Headsp	асе				

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	4.44		1.00	1	12/14/2022 18:49	WG1974289
Fluoride	ND		0.150	1	12/14/2022 18:49	WG1974289
Sulfate	5.25		5.00	1	12/14/2022 18:49	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.327		0.200	1	12/16/2022 01:14	WG1974810
Lithium	0.0405		0.0150	1	12/16/2022 01:14	WG1974810

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0838		0.00200	1	12/20/2022 16:25	WG1975620
Calcium	43.9		1.00	1	12/20/2022 16:25	WG1975620
Magnesium	9.94		1.00	1	12/20/2022 16:25	WG1975620
Sodium	67.8		2.00	1	12/20/2022 16:25	WG1975620
Strontium	1.06		0.0100	1	12/20/2022 16:25	WG1975620

SAMPLE RESULTS - 23

Collected date/time: 12/05/22 16:00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	557		10.0	1	12/13/2022 01:15	WG1973182
Wet Chemistry by	y Method 2320	B-2011				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	285		20.0	1	12/19/2022 07:45	WG1975415
Sample Narrative:						
	: Endpoint pH 4.5 Headsr	bace				
L1566306-23 WG1975415						
·						

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	8.27		1.00	1	12/14/2022 19:04	WG1974289
Fluoride	ND		0.150	1	12/14/2022 19:04	WG1974289
Sulfate	162		5.00	1	12/14/2022 19:04	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.277		0.200	1	12/16/2022 01:17	WG1974810
Lithium	0.101		0.0150	1	12/16/2022 01:17	WG1974810

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0296		0.00200	1	12/20/2022 16:28	WG1975620
Calcium	88.6		1.00	1	12/20/2022 16:28	WG1975620
Magnesium	22.6		1.00	1	12/20/2022 16:28	WG1975620
Sodium	57.5		2.00	1	12/20/2022 16:28	WG1975620
Strontium	2.09		0.0100	1	12/20/2022 16:28	WG1975620

SDG: L1566306 GI

Â

SAMPLE RESULTS - 24 L1566306

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	ND		10.0	1	12/13/2022 11:39	WG1973349
Wet Chemistry by			201	Dil ii		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
			mall		date / time	
Analyte	mg/l		mg/l		uate / time	
Analyte Alkalinity	mg/l ND		20.0	1	12/19/2022 07:51	WG1975415
•			-	1		WG1975415

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	ND		1.00	1	12/14/2022 19:32	WG1974289
Fluoride	ND		0.150	1	12/14/2022 19:32	WG1974289
Sulfate	ND		5.00	1	12/14/2022 19:32	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/16/2022 01:19	WG1974810
Lithium	ND		0.0150	1	12/16/2022 01:19	WG1974810

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	ND		0.00200	1	12/20/2022 16:31	<u>WG1975620</u>
Calcium	ND		1.00	1	12/20/2022 16:31	<u>WG1975620</u>
Magnesium	ND		1.00	1	12/20/2022 16:31	WG1975620
Sodium	ND		2.00	1	12/20/2022 16:31	<u>WG1975620</u>
Strontium	ND		0.0100	1	12/20/2022 16:31	<u>WG1975620</u>

SAMPLE RESULTS - 25

Collected date/time: 12/07/22 14:20

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	ND	<u>J4</u>	10.0	1	12/14/2022 12:54	WG1973969
Wet Chemistry by	/ Method 2320	B-2011				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/19/2022 07:55	WG1975415
Sample Narrative:						

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁷ Gl
Analyte	mg/l		mg/l		date / time		
Chloride	ND		1.00	1	12/14/2022 19:47	WG1974289	8
Fluoride	ND		0.150	1	12/14/2022 19:47	WG1974289	Ă
Sulfate	ND		5.00	1	12/14/2022 19:47	WG1974289	
							⁹ Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/16/2022 01:22	WG1974810
Lithium	ND		0.0150	1	12/16/2022 01:22	WG1974810

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	ND		0.00200	1	12/20/2022 16:34	WG1975620
Calcium	ND		1.00	1	12/20/2022 16:34	WG1975620
Magnesium	ND		1.00	1	12/20/2022 16:34	WG1975620
Sodium	ND		2.00	1	12/20/2022 16:34	WG1975620
Strontium	ND		0.0100	1	12/20/2022 16:34	WG1975620

SAMPLE RESULTS - 26

L1566306

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	529		10.0	1	12/13/2022 11:39	WG1973349	
Wet Chemistry by	/ Method 2320	B-2011					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
			ma/l		date / time		
Analyte	mg/l		mg/l		date / time		
Analyte Alkalinity	mg/l 304		20.0	1	12/19/2022 07:59	<u>WG1975415</u>	
Alkalinity Sample Narrative:	304 5: Endpoint pH 4.5 Headsp		-	1		<u>WG1975415</u>	
Alkalinity Sample Narrative: L1566306-26 WG197541	304 5: Endpoint pH 4.5 Headsp		-	1 Dilution		<u>WG1975415</u> Batch	
Alkalinity Sample Narrative: L1566306-26 WG197541	304 i: Endpoint pH 4.5 Headsp / Method 90564	Ą	20.0	1 Dilution	12/19/2022 07:59		
Alkalinity Sample Narrative: L1566306-26 WG1975415 Wet Chemistry by	304 5: Endpoint pH 4.5 Headsp 7 Method 90567 Result	Ą	20.0 RDL	1 Dilution 1	12/19/2022 07:59 Analysis		
Alkalinity Sample Narrative: L1566306-26 WG1975415 Wet Chemistry by Analyte	304 5: Endpoint pH 4.5 Headsp 7 Method 90567 Result mg/l	Ą	20.0 RDL mg/l	1 Dilution 1 1	12/19/2022 07:59 Analysis date / time	Batch	

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.313		0.200	1	12/16/2022 01:25	WG1974810
Lithium	0.0446		0.0150	1	12/16/2022 01:25	WG1974810

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.123		0.00200	1	12/20/2022 16:45	<u>WG1975620</u>
Calcium	82.9		1.00	1	12/20/2022 16:45	WG1975620
Magnesium	17.6		1.00	1	12/20/2022 16:45	WG1975620
Sodium	75.3		2.00	1	12/20/2022 16:45	WG1975620
Strontium	2.12		0.0100	1	12/20/2022 16:45	WG1975620

SDG: L1566306

DATE/TIME: 12/28/22 14:15

SAMPLE RESULTS - 27 L1566306

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		2
Dissolved Solids	398		10.0	1	12/13/2022 11:39	WG1973349	
Wet Chemistry by	Result	B-2011 Qualifier	RDL	Dilution	Analysis	Batch	
			NDL	Dilution	Anulysis	Daten	
Analyte	mg/l		mg/l		date / time		4
Analyte Alkalinity			mg/l 20.0	1	date / time 12/19/2022 08:16	WG1975415	4

L1566306-27 WG1975415: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	5.96		1.00	1	12/14/2022 20:30	WG1974289
Fluoride	ND		0.150	1	12/14/2022 20:30	WG1974289
Sulfate	196		5.00	1	12/14/2022 20:30	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	1.97		0.200	1	12/16/2022 01:28	<u>WG1974810</u>
Lithium	0.0320		0.0150	1	12/16/2022 01:28	<u>WG1974810</u>

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0317		0.00200	1	12/20/2022 16:48	<u>WG1975620</u>
Calcium	6.56		1.00	1	12/20/2022 16:48	<u>WG1975620</u>
Magnesium	3.13		1.00	1	12/20/2022 16:48	<u>WG1975620</u>
Sodium	76.6		2.00	1	12/20/2022 16:48	WG1975620
Strontium	0.203		0.0100	1	12/20/2022 16:48	WG1975620

SDG: L1566306

DATE/TIME: 12/28/22 14:15 1

SAMPLE RESULTS - 28 L1566306

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	376		10.0	1	12/13/2022 11:39	WG1973349
Wet Chemistry by	Result	B-2011 Qualifier	RDL	Dilution	Analysis	Batch
Arrahar	mg/l		mg/l		date / time	
Analyte	ing/i					
Alkalinity	231		20.0	1	12/19/2022 08:19	WG1975415

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁷ G
Analyte	mg/l		mg/l		date / time		
Chloride	5.79		1.00	1	12/14/2022 21:28	WG1974289	8
Fluoride	ND		0.150	1	12/14/2022 21:28	WG1974289	Ă
Sulfate	88.9		5.00	1	12/14/2022 21:28	WG1974289	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/16/2022 08:31	WG1974941
Lithium	0.0463		0.0150	1	12/16/2022 08:31	WG1974941

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0871		0.00200	1	12/20/2022 16:52	WG1975620
Calcium	60.1		1.00	1	12/20/2022 16:52	WG1975620
Magnesium	13.5		1.00	1	12/20/2022 16:52	WG1975620
Sodium	51.8		2.00	1	12/20/2022 16:52	WG1975620
Strontium	1.41		0.0100	1	12/20/2022 16:52	WG1975620

SAMPLE RESULTS - 29 L1566306

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	ND		10.0	1	12/13/2022 11:39	WG1973349	
Wet Chemistry by	Method 2320	B-2011					
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Alkalinity	ND		20.0	1	12/19/2022 08:27	WG1975415	
Sample Narrative: L1566306-29 WG1975415:							

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	ND		1.00	1	12/14/2022 21:57	WG1974289
Fluoride	ND		0.150	1	12/14/2022 21:57	WG1974289
Sulfate	ND		5.00	1	12/14/2022 21:57	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/16/2022 08:42	WG1974941
Lithium	ND		0.0150	1	12/16/2022 08:42	WG1974941

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	ND		0.00200	1	12/20/2022 16:55	<u>WG1975620</u>
Calcium	ND		1.00	1	12/20/2022 16:55	<u>WG1975620</u>
Magnesium	ND		1.00	1	12/20/2022 16:55	WG1975620
Sodium	ND		2.00	1	12/20/2022 16:55	<u>WG1975620</u>
Strontium	ND		0.0100	1	12/20/2022 16:55	<u>WG1975620</u>

SAMPLE RESULTS - 30 L1566306

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	610		10.0	1	12/13/2022 01:15	WG1973182	
VALUE A COLORADO SERVICE AND A LEVEL							
wet Chemistry by	Method 2320	B-2011					
Wet Chemistry by	Method 2320 Result	B-2011 Qualifier	RDL	Dilution	Analysis	Batch	
Analyte			RDL mg/l	Dilution	Analysis date / time	Batch	

L1566306-30 WG1975415: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	37.5		1.00	1	12/14/2022 22:11	WG1974289
Fluoride	0.350		0.150	1	12/14/2022 22:11	WG1974289
Sulfate	297		25.0	5	12/16/2022 12:40	WG1974684

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.293		0.200	1	12/16/2022 08:45	WG1974941
Lithium	0.169		0.0150	1	12/16/2022 08:45	WG1974941

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0321		0.00200	1	12/20/2022 16:58	<u>WG1975620</u>
Calcium	51.5		1.00	1	12/20/2022 16:58	<u>WG1975620</u>
Magnesium	17.9		1.00	1	12/20/2022 16:58	WG1975620
Sodium	50.2		2.00	1	12/20/2022 16:58	<u>WG1975620</u>
Strontium	1.34		0.0100	1	12/20/2022 16:58	WG1975620

SDG: L1566306

DATE/TIME: 12/28/22 14:15

SAMPLE RESULTS - 31 L1566306

Collected date/time: 12/05/22 15:55

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	4620		50.0	1	12/13/2022 01:15	WG1973182
	Result	Qualifier	RDL	Dilution	Analysis	Batch
	Result	Qualifier	RDL	Dilution	Analysis	Batch
1.1	mg/l		mg/l		date / time	
alyte	iiig/i					

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	541		10.0	10	12/14/2022 22:25	WG1974289
Fluoride	1.56		1.50	10	12/14/2022 22:25	WG1974289
Sulfate	1920		50.0	10	12/14/2022 22:25	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/16/2022 08:48	WG1974941
Lithium	0.399		0.0150	1	12/16/2022 08:48	WG1974941

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0182		0.00200	1	12/20/2022 17:01	WG1975620
Calcium	342		1.00	1	12/20/2022 17:01	WG1975620
Magnesium	193		1.00	1	12/20/2022 17:01	WG1975620
Sodium	472		2.00	1	12/20/2022 17:01	WG1975620
Strontium	6.92		0.0100	1	12/20/2022 17:01	WG1975620

SAMPLE RESULTS - 32 L1566306

Gravimetric Analysis by Method 2540 C-2011

Gravinetice Analysis by method 2010 C 2011								
	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	mg/l		mg/l		date / time			2
Dissolved Solids	291		10.0	1	12/13/2022 01:15	WG1973182		Tc
Wet Chemistry by	Method 2320	B-2011						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l		date / time			⁴ Cn
Alkalinity	ND		20.0	1	12/19/2022 08:41	WG1975415		

Sample Narrative:

L1566306-32 WG1975415: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
nalyte	mg/l		mg/l		date / time	
nloride	18.0		1.00	1	12/14/2022 22:54	WG1974289
uoride	ND		0.150	1	12/14/2022 22:54	<u>WG1974289</u>
ılfate	98.8		5.00	1	12/14/2022 22:54	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/16/2022 08:51	WG1974941
Lithium	0.0836		0.0150	1	12/16/2022 08:51	WG1974941

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0296		0.00200	1	12/20/2022 17:05	WG1975620
Calcium	13.4		1.00	1	12/20/2022 17:05	WG1975620
Magnesium	5.36		1.00	1	12/20/2022 17:05	WG1975620
Sodium	22.6		2.00	1	12/20/2022 17:05	WG1975620
Strontium	0.335		0.0100	1	12/20/2022 17:05	WG1975620

SDG: L1566306 E.

۶r

SAMPLE RESULTS - 33 L1566306

Collected date/time: 12/05/22 14:57

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	1960		50.0	1	12/13/2022 01:15	WG1973182
Wet Chemistry by	Method 2320	B-2011				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
			mg/l		date / time	
Analyte	mg/l		iliy/i		date / time	
Analyte Alkalinity	mg/l ND		20.0	1	12/19/2022 08:46	<u>WG1975415</u>
				1		<u>WG1975415</u>

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
nalyte	mg/l		mg/l		date / time		
Chloride	179		1.00	1	12/14/2022 23:09	WG1974289	
luoride	0.763		0.150	1	12/14/2022 23:09	WG1974289	
ulfate	1310		100	20	12/14/2022 23:33	WG1974289	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/16/2022 08:59	WG1974941
Lithium	0.393		0.0150	1	12/16/2022 08:59	WG1974941

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0125		0.00200	1	12/20/2022 17:08	WG1975620
Calcium	197		1.00	1	12/20/2022 17:08	WG1975620
Magnesium	94.3		1.00	1	12/20/2022 17:08	WG1975620
Sodium	196		2.00	1	12/20/2022 17:08	WG1975620
Strontium	4.27		0.0100	1	12/20/2022 17:08	WG1975620

SAMPLE RESULTS - 34 L1566306

Collected date/time: 12/06/22 08:37

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	566		10.0	1	12/13/2022 11:39	WG1973349
	Method 2320					
			וחמ	Dilution	Analysis	Datab
Analyta	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte Alkalinity			RDL mg/l 20.0	Dilution	Analysis date / time 12/19/2022 08:51	Batch WG1975415

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁷ GI
Analyte	mg/l		mg/l		date / time		G
Chloride	46.0		1.00	1	12/15/2022 00:15	WG1974289	8
Fluoride	0.349		0.150	1	12/15/2022 00:15	WG1974289	ĬAĬ
Sulfate	182		5.00	1	12/15/2022 00:15	WG1974289	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.236		0.200	1	12/16/2022 09:02	WG1974941
Lithium	0.0237		0.0150	1	12/16/2022 09:02	<u>WG1974941</u>

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0746		0.00200	1	12/20/2022 17:11	<u>WG1975620</u>
Calcium	72.3		1.00	1	12/20/2022 17:11	<u>WG1975620</u>
Magnesium	18.5		1.00	1	12/20/2022 17:11	WG1975620
Sodium	67.1		2.00	1	12/20/2022 17:11	WG1975620
Strontium	0.879		0.0100	1	12/20/2022 17:11	WG1975620

SDG: L1566306

SAMPLE RESULTS - 35

Collected date/time: 12/05/22 13:02

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	552		10.0	1	12/13/2022 01:15	WG1973182
Wet Chemistry by	/ Method 2320	B-2011				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Alkalinity	ND		20.0	1	12/19/2022 08:55	WG1975415
Comple Newstine						
Sample Narrative:						

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁷ Gl
Analyte	mg/l		mg/l		date / time		G
Chloride	42.1		1.00	1	12/15/2022 00:44	WG1974289	8
Fluoride	0.333		0.150	1	12/15/2022 00:44	WG1974289	Ă١
Sulfate	225		25.0	5	12/16/2022 12:53	WG1974684	
							⁹ Sc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/16/2022 09:05	WG1974941
Lithium	0.155		0.0150	1	12/16/2022 09:05	WG1974941

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0191		0.00200	1	12/20/2022 17:14	<u>WG1975620</u>
Calcium	39.7		1.00	1	12/20/2022 17:14	<u>WG1975620</u>
Magnesium	19.7		1.00	1	12/20/2022 17:14	WG1975620
Sodium	37.0		2.00	1	12/20/2022 17:14	<u>WG1975620</u>
Strontium	0.694		0.0100	1	12/20/2022 17:14	WG1975620

SAMPLE RESULTS - 36 L1566306

Collected date/time: 12/05/22 13:36

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
analyte	mg/l		mg/l		date / time		
Dissolved Solids	2120		25.0	1	12/13/2022 01:15	WG1973182	
Wet Chemistry by			PDI	Dilution	Applycic	Patch	
	Result	B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch	
Net Chemistry by			RDL mg/l	Dilution	Analysis date / time	Batch	
	Result			Dilution 1		<u>Batch</u> <u>WG1975415</u>	
Analyte	Result mg/l		mg/l	Dilution 1	date / time		

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	35.0		1.00	1	12/15/2022 01:27	WG1974289
Fluoride	1.08		0.150	1	12/15/2022 01:27	WG1974289
Sulfate	1450		100	20	12/15/2022 01:42	WG1974289

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.582		0.200	1	12/16/2022 09:08	WG1974941
Lithium	0.863		0.0150	1	12/16/2022 09:08	<u>WG1974941</u>

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0246		0.00200	1	12/20/2022 17:24	WG1975620
Calcium	262		1.00	1	12/20/2022 17:24	WG1975620
Magnesium	101		1.00	1	12/20/2022 17:24	WG1975620
Sodium	100		2.00	1	12/20/2022 17:24	WG1975620
Strontium	5.64		0.0100	1	12/20/2022 17:24	WG1975620

SAMPLE RESULTS - 37 L1566306

Collected date/time: 12/05/22 13:59 Gravimetric Analysis by Method 25/0 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Dissolved Solids	456		10.0	1	12/13/2022 01:15	WG1973182
Wet Chemistry by			PDI	Dilution	Analysis	Batch
	Result	B-2011 Qualifier	RDL	Dilution	Analysis	Batch
Analyte Alkalinity			RDL mg/l 20.0	Dilution	Analysis date / time 12/19/2022 09:14	Batch WG1975415

L1566306-37 WG1975415: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
hloride	6.63		1.00	1	12/16/2022 08:47	WG1974445	
uoride	0.445		0.150	1	12/16/2022 08:47	WG1974445	
ulfate	208		25.0	5	12/16/2022 09:03	WG1974445	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/19/2022 20:14	WG1975471
Lithium	0.265		0.0150	1	12/19/2022 20:14	WG1975471

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0252		0.00200	1	12/20/2022 17:28	<u>WG1975620</u>
Calcium	33.0		1.00	1	12/20/2022 17:28	<u>WG1975620</u>
Magnesium	12.7		1.00	1	12/20/2022 17:28	WG1975620
Sodium	22.1		2.00	1	12/20/2022 17:28	WG1975620
Strontium	0.756		0.0100	1	12/20/2022 17:28	<u>WG1975620</u>

SAMPLE RESULTS - 38 L1566306

Collected date/time: 12/05/22 14:24

Note Note <th< th=""><th></th><th>Result</th><th>Qualifier</th><th>RDL</th><th>Dilution</th><th>Analysis</th><th>Batch</th></th<>		Result	Qualifier	RDL	Dilution	Analysis	Batch
et Chemistry by Method 2320 B-2011 Result Qualifier RDL Dilution Analysis Batch lyte mg/l mg/l date / time Batch	Analyte	mg/l		mg/l		date / time	
Result Qualifier RDL Dilution Analysis Batch lyte mg/l mg/l date / time	Dissolved Solids	617		10.0	1	12/13/2022 01:15	WG1973182
lyte mg/l mg/l date / time	Wet Chemistry by N				Dilution	Annalista	Datah
			Qualifier		Dilution	-	Batch
linity ND 20.0 1 12/19/2022 09:19 WG1975415	Analyte	mg/l		mg/l		date / time	
	Alkalinity	ND		20.0	1	12/19/2022 09:19	WG1975415
i <mark>ple Narrative:</mark> 1566306-38 WG1975415: Endpoint pH 4.5 Headspace	Sample Narrative:						

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
analyte	mg/l		mg/l		date / time	
nloride	38.4		1.00	1	12/16/2022 09:24	WG1974445
uoride	0.345		0.150	1	12/16/2022 09:24	WG1974445
Sulfate	311		25.0	5	12/16/2022 09:40	WG1974445

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.324		0.200	1	12/19/2022 20:17	WG1975471
Lithium	0.171		0.0150	1	12/19/2022 20:17	WG1975471

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0328		0.00200	1	12/20/2022 17:31	WG1975620
Calcium	52.3		1.00	1	12/20/2022 17:31	WG1975620
Magnesium	18.4		1.00	1	12/20/2022 17:31	WG1975620
Sodium	51.9		2.00	1	12/20/2022 17:31	WG1975620
Strontium	1.38		0.0100	1	12/20/2022 17:31	WG1975620

SAMPLE RESULTS - 39

Collected date/time: 12/05/22 16:33

Gravimetric Analysis by Method 2540 C-2011 Result Qualifier RDL Dilution Analysis Batch Analyte mg/l mg/l date / time Тс **Dissolved Solids** 178 10.0 1 12/13/2022 01:15 WG1973182 Wet Chemistry by Method 2320 B-2011 Ss Result Qualifier RDL Dilution Analysis Batch Analyte mg/l mg/l date / time Cn Alkalinity 40.2 20.0 12/19/2022 10:29 WG1975416 1 Sample Narrative: L1566306-39 WG1975416: Endpoint pH 4.5 Headspace Qc Wet Chemistry by Method 9056A ~ Detel - 1:0 GI

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Í GL
Analyte	mg/l		mg/l		date / time		
Chloride	3.94		1.00	1	12/15/2022 13:55	WG1974451	8
Fluoride	ND		0.150	1	12/15/2022 13:55	WG1974451	A
Sulfate	20.9		5.00	1	12/15/2022 13:55	WG1974451	

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	ND		0.200	1	12/19/2022 19:35	WG1975471
Lithium	ND		0.0150	1	12/19/2022 19:35	WG1975471

Metals (ICPMS) by Method 6020

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.130		0.00200	1	12/20/2022 17:34	<u>WG1975620</u>
Calcium	19.1		1.00	1	12/20/2022 17:34	<u>WG1975620</u>
Magnesium	3.46		1.00	1	12/20/2022 17:34	WG1975620
Sodium	15.9		2.00	1	12/20/2022 17:34	<u>WG1975620</u>
Strontium	0.151		0.0100	1	12/20/2022 17:34	<u>WG1975620</u>

SDG: L1566306

SAMPLE RESULTS - 40 L1566306

Collected date/time: 12/05/22 17:02

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Dissolved Solids	843		13.3	1	12/13/2022 01:15	WG1973182	
Vet Chemistry by			PDI	Dilution	Applycic	Patch	
Wet Chemistry by	Method 2320 Result	B-2011 <u>Qualifier</u>	RDL	Dilution	Analysis	Batch	
Wet Chemistry by			RDL mg/l	Dilution	Analysis date / time	Batch	

L1566306-40 WG1974241: Endpoint pH 4.5 Headspace

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Chloride	55.9		1.00	1	12/15/2022 18:14	WG1974451
Fluoride	0.798		0.150	1	12/15/2022 18:14	WG1974451
Sulfate	498		25.0	5	12/17/2022 00:34	WG1975825

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Boron	0.424		0.200	1	12/19/2022 20:20	WG1975471
Lithium	0.0414		0.0150	1	12/19/2022 20:20	WG1975471

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Barium	0.0213		0.00200	1	12/20/2022 17:37	WG1975620
Calcium	44.9		1.00	1	12/20/2022 17:37	WG1975620
Magnesium	37.2		1.00	1	12/20/2022 17:37	WG1975620
Sodium	101		2.00	1	12/20/2022 17:37	WG1975620
Strontium	1.11		0.0100	1	12/20/2022 17:37	WG1975620

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1566306-16,17,18,21,22,23,30,31,32,33,35,36,37,38,39,40

Method Blank (MB)

Method Didlik					1 C
(MB) R3872114-1 12/1	3/22 01:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	T
Dissolved Solids	U		10.0	10.0	
					³ Ss

L1566306-36 Original Sample (OS) • Duplicate (DUP)

(OS) L1566306-36 12/13	3/22 01:15 • (DUP)	R3872114-3 1	2/13/22 01	15		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	2120	2080	1	2.03		5

L1566451-01 Original Sample (OS) • Duplicate (DUP)

L1566451-01 Ori	iginal Sample	(OS) • Dup	olicate (I	DUP)		
(OS) L1566451-01 12/1	3/22 01:15 • (DUP) F	R3872114-4 12	2/13/22 01:1	5		
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	1160	1140	1	1.73		5

Laboratory Control Sample (LCS)

(LCS) R3872114-2 12/13	3/22 01:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8370	95.1	77.3-123	

DATE/TIME: 12/28/22 14:15

PAGE: 53 of 90 ⁺Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1566306-02,03,05,06

Method Blank (MB)

(MB) R3872516-1 12/13/	/22 10:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1564565-01 Original Sample (OS) • Duplicate (DUP)

L1564565-01 Origi	nal Sample	(OS) • Dup	plicate (DUP)		
(OS) L1564565-01 12/13/2	2 10:12 • (DUP) F	R3872516-3 1	2/13/22 10	:12		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	mg/l	mg/l		%		%
Dissolved Solids	83.0	89.0	1	6.98	<u>J3</u>	5

L1564850-06 Original Sample (OS) • Duplicate (DUP)

L1564850-06 O	riginal Sampl	e (OS) • Du	uplicate	(DUP)			⁷ Gl
(OS) L1564850-06 12	/13/22 10:12 • (DUF) R3872516-4	12/13/22 10	D:12			
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	126	132	1	4.65		5	°Sc

Laboratory Control Sample (LCS)

(LCS) R3872516-2 12/13	3/22 10:12				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	7710	87.6	77.3-123	

DATE/TIME: 12/28/22 14:15 Тс

Ss

[°]Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1566306-07,08,09,12,15,20,24,26,27,28,29,34

Method Blank (MB)

(MB) R3872513-1 12/13/2	22 11:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1564254-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1564254-05 12/1	13/22 11:39 • (DU	P) R3872513-3	12/13/22 11	:39		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	103	113	1	9.26	<u>J3</u>	5

L1566306-07 Original Sample (OS) • Duplicate (DUP)

L1566306-07 O	riginal Sample	e (OS) • Du	iplicate	(DUP)			
(OS) L1566306-07 12/	/13/22 11:39 • (DUP)	R3872513-4	12/13/22 11	39			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	UP RPD mits	
Analyte	mg/l	mg/l		%			
Dissolved Solids	375	400	1	6.45	<u>J3</u>		

Laboratory Control Sample (LCS)

(LCS) R3872513-2 12/13	3/22 11:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	7730	87.8	77.3-123	

DATE/TIME: 12/28/22 14:15

PAGE: 55 of 90 Тс

Ss

Cn

Sr

Qc

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1566306-01,10,19,25

Method Blank (MB)

(MB) R3872935-5 12/14/	22 12:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1564790-11 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD	64/90-11 Origi
Limits	L1564790-11 12/14/2
Analyte mg/l mg/l % %	rte

L1565129-02 Original Sample (OS) • Duplicate (DUP)

L1565129-02 Ori	ginal Sample	(OS) • Du	plicate	(DUP)			⁷ Gl
(OS) L1565129-02 12/14	4/22 12:54 • (DUP)	, R3872935-4	12/14/22 1	12:54			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	982	1030	1	4.77		5	°Sc

Laboratory Control Sample (LCS)

(LCS) R3872935-2 12/1	14/22 12:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	763	8.67	77.3-123	<u>J4</u>

DATE/TIME: 12/28/22 14:15

PAGE: 56 of 90 Тс

Ss

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1566306-04,11,13,14

Method Blank (MB)

(MB) R3872946-1 12/15	5/22 07:51			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1566280-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1566280-04 12/15/	'22 07:51 • (DUP)) R3872946-3	12/15/22	07:51			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	OUP RPD imits	
Analyte	mg/l	mg/l		%		Ó	
Dissolved Solids	992	1090	1	9.60	<u>J3</u>		

L1566280-05 Original Sample (OS) • Duplicate (DUP)

L1566280-05 O	1566280-05 Original Sample (OS) • Duplicate (DUP)									
(OS) L1566280-05 12/	/15/22 07:51 • (DUP)	R3872946-4	12/15/22	07:51						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				⁸ Al
Analyte	mg/l	mg/l		%		%				
Dissolved Solids	491	493	1	0.407		5				°Sc

Laboratory Control Sample (LCS)

(LCS) R3872946-2 12/15/22 07:51										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/l	mg/l	%	%						
Dissolved Solids	8800	7710	87.6	77.3-123						

DATE/TIME: 12/28/22 14:15 Тс

Ss

Cn

Sr

Qc

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY L1566306-01,02,03,05,40

Method Blank (MB)

(MB) R3872229-2 12/15/22 10:25									
	MB Result	MB Qualifier	MB MDL	MB RDL	2				
Analyte	mg/l		mg/l	mg/l	Tc				
Alkalinity	U		8.45	20.0					
					³ Ss				
Sample Narrative:									

Sample Narrative:

BLANK: Endpoint pH 4.5

L1566280-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1566280-05	12/15/22 10:48 • (DUF	P) R3872229-3	3 12/15/22	10:53		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	377	376	1	0.306		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1566281-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1566281-02 12/15/	/22 12:28 • (DUP) R3872229-4	12/15/22 1	2:32		
	Original Result DUP Result Dilution DUP RPD DUP Qual					
Analyte	mg/l	mg/l		%		%
Alkalinity	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

(LCS) R3872229-1 12/15	5/22 10:17							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/l	mg/l	%	%				
Alkalinity	100	101	101	90.0-110				
Sample Narrative: LCS: Endpoint pH 4.5								
	ACCOUNT:			PRO	DJECT:	SDG:	DATE/TIME:	PAGE:

GBMc & Associates - Bryant, AR

PROJECT: 1145-21-080

SDG: L1566306

DATE/TIME: 12/28/22 14:15

PAGE: 58 of 90 Cn

Sr

Â

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY

L1566306-06,07,08,09,10,11

Method Blank (MB)

					_
(MB) R3873261-2 12/	/19/22 06:57				_
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Alkalinity	U		8.45	20.0	
Sample Narrative:					

Sample Narrative:

BLANK: Endpoint pH 4.5

L1566306-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1566306-06 12/	/19/22 07:12 • (DUP) R3873261-3	12/19/22 (07:17		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1566929-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1566929-01 12/19/	/22 09:07 • (DUF	P) R3873261-4	12/19/22 (09:12			
	Original Result DUP Result Dilution DUP RPD DUP Qua						
Analyte	mg/l	mg/l		%		%	
Alkalinity	68.4	70.2	1	2.62		20	

Sample Narrative:

OS: Endpoint pH 4.5 Headspace DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

GBMc & Associates - Bryant, AR

(LCS) R3873261-1 12/19/	22 06:51						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/l	mg/l	%	%			
Alkalinity	100	101	101	90.0-110			
Sample Narrative: LCS: Endpoint pH 4.5							
	ACCOUNT:			PRO	ECT: SDG:	DATE/TIME:	PAGE:

1145-21-080

L1566306

12/28/22 14:15

PAGE: 59 of 90 Cn

Sr

Â

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY

L1566306-04,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3872467-2 12	/15/22 13:55				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Alkalinity	U		8.45	20.0	
					³ Ss
Sample Narrative:					

Sample Narrative:

BLANK: Endpoint pH 4.5

L1566280-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1566280-01 12/15/2	2 14:14 • (DUP)	R3872467-3	12/15/22 14	1:20		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	522	523	1	0.297		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1567160-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1567160-01 12/15/2	2 15:50 • (DUP)	R3872467-4	12/15/22 15	5:55		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	236	231	1	1.92		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

(LCS) R3872467-1 12/15	/22 13:48							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/l	mg/l	%	%				
Alkalinity	100	103	103	90.0-110				
Sample Narrative: LCS: Endpoint pH 4.5								
	ACCOUNT:				DJECT:	SDG:	DATE/TIME:	PAGE:

PROJECT: 1145-21-080

SDG: L1566306

DATE/TIME: 12/28/22 14:15 Cn

Sr

A

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY L1566306-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38

Method Blank (MB)

Method Didni					Cn
(MB) R3873259-2	12/19/22 07:10				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	⁻Tc
Alkalinity	U		8.45	20.0	
					³ Ss
Sample Narrative:					20

Sample Narrative:

BLANK: Endpoint pH 4.5

L1566475-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1566475-01 12/19/22	2 07:20 • (DUP)	R3873259-4	12/19/22	07:25		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	6000	5700	5	5.13		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1566306-38 Original Sample (OS) • Duplicate (DUP)

(OS) L1566306-38 12/19/2	22 09:19 • (DUP) R3873259-5	12/19/22	09:24		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

(LCS) R3873259-1 12/19/	22 07:02				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Alkalinity	100	98.5	98.5	90.0-110	
Sample Narrative: LCS: Endpoint pH 4.5					
LCS: Endpoint pH 4.5					

SDG: L1566306

DATE/TIME: 12/28/22 14:15

PAGE: 61 of 90 Cn

Sr

Â

Wet Chemistry by Method 2320 B-2011

QUALITY CONTROL SUMMARY L1566306-39

Method Blank (MB)

Method Blank	(MB)				
(MB) R3873475-2	12/19/22 10:07				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Тс
Alkalinity	U		8.45	20.0	
					³ Ss
Sample Narrative:					

Sample Narrative:

BLANK: Endpoint pH 4.5

L1566741-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1566741-02 12/	19/22 10:19 • (DUP)	R3873475-3	12/19/22 10):24		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	ND	ND	1	0.000		20

Sample Narrative:

OS: Endpoint pH 4.5 Headspace

DUP: Endpoint pH 4.5

L1567628-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1567628-01 12/19/2	22 12:23 • (DUP)	R3873475-4	12/19/22 12	2:29		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Alkalinity	110	110	1	0.343		20

Sample Narrative:

OS: Endpoint pH 4.5

DUP: Endpoint pH 4.5

Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Analyte Alkalinity	100	100	100	90.0-110	
Sample Narrative: LCS: Endpoint pH 4.5					
LCS: Endpoint pH 4.5					

DATE/TIME: 12/28/22 14:15 Cn

Sr

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1566306-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

Method Blank (MB)

(IVIB) R3872391-1 12	/15/22 04.56				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Chloride	U		0.379	1.00	
Fluoride	U		0.0640	0.150	³ Ss
Sulfate	U		0.594	5.00	

L1566251-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1566251-02 12/15/2	22 05:36 • (DUP) R3872391-3	12/15/22 (05:48		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	1.28	1.22	1	4.52		15
Fluoride	ND	ND	1	0.000		15
Sulfate	ND	ND	1	0.176		15

L1566306-13 Original Sample (OS) • Duplicate (DUP)

(OS) L1566306-13 12/15/22	2 11:37 • (DUP) F	23872391-6 1	2/15/22 11:5	50		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	8.99	9.00	1	0.0267		15
Fluoride	ND	ND	1	2.43		15
Sulfate	29.5	29.4	1	0.104		15

Laboratory Control Sample (LCS)

(LCS) R3872391-2 12/15/2	22 05:11				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	41.6	104	80.0-120	
Fluoride	8.00	8.69	109	80.0-120	
Sulfate	40.0	41.8	105	80.0-120	

ACCOUNT:
GBMc & Associates - Bryant, AR

PROJECT: 1145-21-080

DATE/TIME: 12/28/22 14:15

PAGE: 63 of 90 Ср

°Cn

Sr

ີQc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY <u>L1566306-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16</u>

L1566251-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1566251-02 12/15/22	2 05:36 • (MS)	R3872391-4 12	/15/22 06:01 •	(MSD) R38723	91-5 12/15/22 0	06:13						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	1.28	54.1	53.9	106	105	1	80.0-120			0.323	15
Fluoride	5.00	ND	5.62	5.58	112	112	1	80.0-120			0.671	15
Sulfate	50.0	ND	55.2	54.9	106	105	1	80.0-120			0.413	15

L1566306-13 Original Sample (OS) • Matrix Spike (MS)

(OS) L1566306-13 12/15/2	2 11:37 • (MS) R3	3872391-7 12/1	5/22 12:27				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	8.99	60.7	103	1	80.0-120	
Fluoride	5.00	ND	5.51	108	1	80.0-120	
Sulfate	50.0	29.5	80.0	101	1	80.0-120	

DATE/TIME: 12/28/22 14:15

PAGE: 64 of 90 Тс

Ss

Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L156630<u>6-17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36</u>

Ср

⁺Cn

Sr

*Q*c

GI

Â

Sc

65 of 90

Method Blank (MB)

(MB) R3872146-1	12/14/22 14:14

(1112) 11007 2110 1 12/	102211.11				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Chloride	0.389	J	0.379	1.00	
Fluoride	U		0.0640	0.150	
Sulfate	U		0.594	5.00	

L1566306-18 Original Sample (OS) • Duplicate (DUP)

(OS) L1566306-18 12/14/2	2 16:25 • (DUP)	R3872146-3	12/14/22 16	6:39		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	6.34	6.40	1	0.954		15
Fluoride	ND	ND	1	2.76		15
Sulfate	38.9	39.2	1	0.636		15

L1566306-35 Original Sample (OS) • Duplicate (DUP)

(OS) L1566306-35 12/15/2	2 00:44 • (DUP) R3872146-8	12/15/22 (00:59		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	42.1	42.1	1	0.176		15
Fluoride	0.333	0.333	1	0.180		15

Laboratory Control Sample (LCS)

GBMc & Associates - Bryant, AR

(LCS) R3872146-2 12/14/2	22 14:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	40.6	101	80.0-120	
Fluoride	8.00	8.41	105	80.0-120	
Sulfate	40.0	39.8	99.5	80.0-120	

L1566306-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1566306-18 12/14/22 16:25 • (MS) R3872146-4 12/14/22 16:54 • (MSD) R3872146-5 12/14/22 17:08													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	6.34	57.7	57.8	103	103	1	80.0-120			0.152	15	
Fluoride	5.00	ND	5.29	5.30	104	104	1	80.0-120			0.198	15	
	ACCOUNT:			PRC	JECT:			SDG:		DATE/	TIME:		PAGE:

L1566306

12/28/22 14:15

1145-21-080

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1566306-17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36

L1566306-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1566306-18 12/14/22 16:25 • (MS) R3872146-4 12/14/22 16:54 • (MSD) R3872146-5 12/14/22 17:08												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Sulfate	50.0	38.9	89.8	89.8	102	102	1	80.0-120			0.0257	15

L1566306-35 Original Sample (OS) • Matrix Spike (MS)

(OS) L1566306-35 12/15/22 00:44 • (MS) R3872146-9 12/15/22 01:13											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier				
Analyte	mg/l	mg/l	mg/l	%		%					
Chloride	50.0	42.1	91.8	99.4	1	80.0-120					
Fluoride	5.00	0.333	5.43	102	1	80.0-120					

DATE/TIME: 12/28/22 14:15

PAGE: 66 of 90

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3872632-1 12	MB) R3872632-1 12/15/22 23:00										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/l		mg/l	mg/l							
Chloride	U		0.379	1.00							
Fluoride	U		0.0640	0.150							
Sulfate	U		0.594	5.00							

L1566234-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1566234-01 12/16/2	(OS) L1566234-01 12/16/22 00:51 • (DUP) R3872632-3 12/16/22 01:13											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Chloride	18.7	17.3	1	7.68		15						
Fluoride	0.160	0.189	1	17.0	<u>P1</u>	15						
Sulfate	41.1	41.6	1	1.09		15						

L1566234-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1566234-05 12/16/	(OS) L1566234-05 12/16/22 03:44 • (DUP) R3872632-6 12/16/22 04:00											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Chloride	51.2	51.5	1	0.496		15						
Fluoride	ND	ND	1	200	<u>P1</u>	15						
Sulfate	39.2	39.5	1	0.859		15						

Laboratory Control Sample (LCS)

(LCS) R3872632-2 12/15	(LCS) R3872632-2 12/15/22 23:16										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/l	mg/l	%	%							
Chloride	40.0	40.2	101	80.0-120							
Fluoride	8.00	8.35	104	80.0-120							
Sulfate	40.0	40.7	102	80.0-120							

DATE/TIME: 12/28/22 14:15

Τс

Ss

Cn

Sr

ີQc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

L1566234-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1566234-01 12/16/22 00:51 • (MS) R3872632-4 12/16/22 01:29 • (MSD) R3872632-5 12/16/22 01:51												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	18.7	67.0	66.7	96.6	96.0	1	80.0-120			0.448	15
Fluoride	5.00	0.160	5.45	5.42	106	105	1	80.0-120			0.548	15
Sulfate	50.0	41.1	88.8	88.7	95.4	95.1	1	80.0-120			0.154	15

L1566234-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1566234-05 12/16/2	DS) L1566234-05 12/16/22 03:44 • (MS) R3872632-7 12/16/22 04:22											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Chloride	50.0	51.2	99.7	96.9	1	80.0-120						
Fluoride	5.00	ND	5.37	107	1	80.0-120						
Sulfate	50.0	39.2	87.9	97.5	1	80.0-120						

DATE/TIME: 12/28/22 14:15 PAGE: 68 of 90 Тс

Ss

Ċn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1566306-39,40

Method Blank (MB)

(MB) R3872733-1 12/15/2	2 11:07
-------------------------	---------

	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	mg/l		mg/l	mg/l	
ride	U		0.379	1.00	
oride	U		0.0640	0.150	
ılfate	U		0.594	5.00	

L1566306-40 Original Sample (OS) • Duplicate (DUP)

(OS) L1566306-40	12/15/22 18:14 •	(DUP) R3872733-6	12/15/22 18:57

	1 /					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	55.9	56.0	1	0.179		15
Fluoride	0.798	0.802	1	0.513		15
Sulfate	502	502	1	0.0512	E	15

L1566343-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1566343-02 12/15/2	22 14:09 • (DUP)	R3872733-3	12/15/22 1	4:24		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	363	361	5	0.505		15
Fluoride	ND	ND	5	2.28		15
Sulfate	506	505	5	0.295		15

Laboratory Control Sample (LCS)

(LCS) R3872733-2 12/15/2	22 11:21				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	40.5	101	80.0-120	
Fluoride	8.00	8.23	103	80.0-120	
Sulfate	40.0	39.1	97.7	80.0-120	

ACCOUNT:
GBMc & Associates - Bryant, AR

PROJECT: 1145-21-080

DATE/TIME: 12/28/22 14:15

PAGE: 69 of 90 Ср

⁴Cn

Sr

[°]Qc

GI

Â

QUALITY CONTROL SUMMARY

L1566306-40 Original Sample (OS) • Matrix Spike (MS)

(OS) L1566306-40 12/15/2	22 18:14 • (MS) R	3872733-7 12/	15/22 19:12				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	55.9	105	98.5	1	80.0-120	
Fluoride	5.00	0.798	5.96	103	1	80.0-120	
Sulfate	50.0	502	531	58.7	1	80.0-120	EV

L1566343-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1566343-02 12/15/	/22 14:09 • (MS)	R3872733-4 12	/15/22 14:38 •	(MSD) R38727	33-5 12/15/22	14:53						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	363	385	387	44.8	49.7	5	80.0-120	$\underline{\vee}$	$\underline{\vee}$	0.631	15
Fluoride	5.00	ND	5.20	5.06	94.4	91.7	5	80.0-120			2.65	15
Sulfate	50.0	506	518	521	23.7	28.8	5	80.0-120	$\underline{\vee}$	$\underline{\vee}$	0.489	15

DATE/TIME: 12/28/22 14:15

PAGE: 70 of 90 Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3872913-1 12/	/16/22 07:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Sulfate	U		0.594	5.00

L1566270-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1566270-08 12/16/	/22 10:58 • (DUP)) R3872913-3	12/16/22 1	1:11		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Sulfate	68.5	67.3	1	1.76		15

Laboratory Control Sample (LCS)

(LCS) R3872913-2 12/16	6/22 07:22				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Sulfate	40.0	40.7	102	80.0-120	

L1566270-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1566270-08 12/16/2	22 10:58 • (MS)	R3872913-4 12	/16/22 11:24 • (MSD) R387291	3-5 12/16/22 11	:36						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Sulfate	50.0	68.5	116	115	94.4	93.9	1	80.0-120			0.239	15

SDG: L1566306 DATE/TIME: 12/28/22 14:15

PAGE: 71 of 90 Тс

Ss

⁺Cn

Sr

Qc

GI

Â

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3873032-1 12/	/16/22 23:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Sulfate	U		0.594	5.00

L1567704-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1567704-01 12/17/2	22 02:07 • (DUF	P) R3873032-3	12/17/22 ()2:25		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Sulfate	7.05	6.86	1	2.82		15

Laboratory Control Sample (LCS)

(LCS) R3873032-2 12/17	7/22 00:16				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Sulfate	40.0	38.8	96.9	80.0-120	

L1567704-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1567704-01 12/17/22 02:07 • (MS) R3873032-4 12/17/22 02:43 • (MSD) R3873032-5 12/17/22 03:37													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Sulfate	50.0	7.05	57.8	58.0	102	102	1	80.0-120			0.330	15	

SDG: L1566306 DATE/TIME: 12/28/22 14:15

PAGE: 72 of 90 Тс

Ss

Cn

Sr

Qc

GI

Â

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3873672-1 12/	/20/22 00:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Boron	U		0.0200	0.200	
Lithium	U		0.00485	0.0150	

Laboratory Control Sample (LCS)

(LCS) R3873672-2 12/20/22 00:45									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/l	mg/l	%	%					
Boron	1.00	0.972	97.2	80.0-120					
Lithium	1.00	1.03	103	80.0-120					

L1565809-24 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1565809-24 12/20/22 13:37 • (MS) R3873908-4 12/20/22 14:54 • (MSD) R3873908-8 12/20/22 14:56													
	Spike Amount Original Res	It MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%		%			%	%		
Boron	1.00	1.01	1.01	101	101	1	75.0-125			0.00338	20		

DATE/TIME: 12/28/22 14:15

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1566306-04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

Method Blan	nk (MB)				
(MB) R3872437-1	12/15/22 16:25				
	MB Result	MB Qualifier	MB MDL	MB RDL	Г
Analyte	mg/l		mg/l	mg/l	
Boron	U		0.0200	0.200	
Lithium	U		0.00485	0.0150	

Laboratory Control Sample (LCS)

(LCS) R3872437-2 12/15/22 16:27								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/l	mg/l	%	%				
Boron	1.00	0.976	97.6	80.0-120				
Lithium	1.00	0.949	94.9	80.0-120				

L1563677-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1563677-02 12/15/22 16:30 • (MS) R3872437-4 12/15/22 16:36 • (MSD) R3872437-5 12/15/22 16:38														⁸ Al	L
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits			J.
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		9	1
Boron	1.00	0.302	1.29	1.28	98.6	97.7	1	75.0-125			0.685	20		SC	
Lithium	1.00	0.0373	1.02	1.02	98.1	98.6	1	75.0-125			0.462	20			1

DATE/TIME: 12/28/22 14:15 ¹Cn

GI

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1566306-14,15,16,17,18,19,20,21,22,23,24,25,26,27

Method Blank (MB)

Method Dial	ik (ivid)					1 Cn					
(MB) R3872480-1 12/16/22 00:30											
	MB Result	MB Qualifier	MB MDL	MB RDL		2					
Analyte	mg/l		mg/l	mg/l		Tc					
Boron	U		0.0200	0.200							
Lithium	U		0.00485	0.0150		³ Ss					

Laboratory Control Sample (LCS)

(LCS) R3872480-2 12	2/16/22 00:33					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/l	mg/l	%	%		
Boron	1.00	0.945	94.5	80.0-120		
Lithium	1.00	0.959	95.9	80.0-120		

L1565593-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1565593-11 12/16	OS) L1565593-11 12/16/22 00:36 • (MS) R3872480-4 12/16/22 00:41 • (MSD) R3872480-5 12/16/22 00:44													
Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits														
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		9
Boron	1.00	1.82	2.73	2.71	91.0	88.9	1	75.0-125			0.788	20		Sc
Lithium	1.00	0.0618	1.03	1.01	97.2	94.9	1	75.0-125			2.24	20		

SDG: L1566306

DATE/TIME: 12/28/22 14:15

PAGE: 75 of 90 ¹Cn

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY <u>L1566306-28,29,30,31,32,33,34,35,36</u>

Method Blank (MB)

Method Didlik				
MB) R3872684-1 1	2/16/22 08:26			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron	U		0.0200	0.200
Lithium	U		0.00485	0.0150

Laboratory Control Sample (LCS)

(LCS) R3872684-2 12/16	CS) R3872684-2 12/16/22 08:28									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/l	mg/l	%	%						
Boron	1.00	0.922	92.2	80.0-120						
Lithium	1.00	1.00	100	80.0-120						

L1566306-28 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1566306-28 12/16/22 08:31 • (MS) R3872684-4 12/16/22 08:37 • (MSD) R3872684-5 12/16/22 08:39													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	9
Boron	1.00	ND	1.09	1.10	91.8	92.9	1	75.0-125			0.999	20	SC
Lithium	1.00	0.0463	1.02	1.03	97.0	98.2	1	75.0-125			1.13	20	

DATE/TIME: 12/28/22 14:15

¹Cn

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1566306-37,38,39,40

Method Blank (MB)

Method Blan	< (MB)				1
(MB) R3873612-1 1	2/19/22 19:29				
	MB Result	MB Qualifier	MB MDL	MB RDL	E
Analyte	mg/l		mg/l	mg/l	
Boron	U		0.0200	0.200	
Lithium	U		0.00485	0.0150	3
					L

Laboratory Control Sample (LCS)

(LCS) R3873612-2 12/	CS) R3873612-2 12/19/22 19:32									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/l	mg/l	%	%						
Boron	1.00	0.974	97.4	80.0-120						
Lithium	1.00	1.01	101	80.0-120						

L1566306-39 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	.9	((,							
(OS) L1566306-39 12/19/22 19:35 • (MS) R3873612-4 12/19/22 19:40 • (MSD) R3873612-5 12/19/22 19:43														⁸ Al
Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits														
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		9
Boron	1.00	ND	1.04	1.03	98.8	97.5	1	75.0-125			1.25	20		SC
Lithium	1.00	ND	1.02	1.01	101	99.7	1	75.0-125			1.07	20		

DATE/TIME: 12/28/22 14:15

PAGE: 77 of 90 ¹Cn

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY L1566306-03

Method Blank (MB)

Method Blan												
(MB) R3874341-1 1	12/21/22 08:52											
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/l		mg/l	mg/l								
Boron	U		0.0200	0.200								
Lithium	U		0.00485	0.0150								

Laboratory Control Sample (LCS)

(LCS) R3874341-2 12	2/21/22 08:54					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/l	mg/l	%	%		
Boron	1.00	0.984	98.4	80.0-120		
Lithium	1.00	0.996	99.6	80.0-120		

L1565747-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

LISOS747-OT Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)														
(OS) L1565747-01 12/21/22 08:57 • (MS) R3874341-4 12/21/22 09:03 • (MSD) R3874341-5 12/21/22 09:06														A
	Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits													
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	g	•
Boron	1.00	85.8	98.4	95.8	1260	998	1	75.0-125	EV	EV	2.71	20		SC
Lithium	1.00	2.97	4.43	4.31	146	133	1	75.0-125	<u>J5</u>	<u>J5</u>	2.77	20	L	

DATE/TIME: 12/28/22 14:15 ¹Cn

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3873134-1 12	/17/22 14:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Barium	0.00127	J	0.000381	0.00200
Calcium	U		0.0936	1.00
Magnesium	U		0.0735	1.00
Sodium	U		0.376	2.00
Strontium	U		0.000590	0.0100

Laboratory Control Sample (LCS)

(LCS) R3873134-2 12	S) R3873134-2 12/17/22 14:36												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/l	mg/l	%	%									
Barium	0.0500	0.0515	103	80.0-120									
Calcium	5.00	5.27	105	80.0-120									
Magnesium	5.00	5.40	108	80.0-120									
Sodium	5.00	5.17	103	80.0-120									
Strontium	0.0500	0.0517	103	80.0-120									

L1564745-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1564745-01 12/17/2	DS) L1564745-01 12/17/22 14:40 • (MS) R3873134-4 12/17/22 14:46 • (MSD) R3873134-5 12/17/22 14:50													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Barium	0.0500	0.122	0.174	0.174	104	104	1	75.0-125			0.0903	20		
Calcium	5.00	199	202	199	71.4	6.90	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	1.61	20		
Magnesium	5.00	18.6	23.7	24.3	102	115	1	75.0-125			2.60	20		
Sodium	5.00	72.2	74.7	74.7	49.1	49.0	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.00540	20		
Strontium	0.0500	0.406	0.449	0.451	85.2	89.6	1	75.0-125			0.487	20		

DATE/TIME: 12/28/22 14:15 Тс

Ss

Cn

Sr

[°]Qc

GI

A

QUALITY CONTROL SUMMARY L1566306-21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40

Method Blank (MB)

(MB) R3874091-1 12/20/22 16:05

(1112) 11007 10011 12/20/2	2 10.00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Barium	0.000529	J	0.000381	0.00200
Calcium	0.106	J	0.0936	1.00
Magnesium	U		0.0735	1.00
Sodium	0.489	J	0.376	2.00
Strontium	U		0.000590	0.0100

Laboratory Control Sample (LCS)

(LCS) R3874091-2 12	S) R3874091-2 12/20/22 16:08													
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier									
Analyte	mg/l	mg/l	%	%										
Barium	0.0500	0.0476	95.1	80.0-120										
Calcium	5.00	4.92	98.3	80.0-120										
Magnesium	5.00	5.13	103	80.0-120										
Sodium	5.00	5.21	104	80.0-120										
Strontium	0.0500	0.0481	96.3	80.0-120										

L1566306-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1566306-21 12/20/2	(OS) L1566306-21 12/20/22 16:11 • (MS) R3874091-4 12/20/22 16:18 • (MSD) R3874091-5 12/20/22 16:21														
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits			
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%			
Barium	0.0500	0.127	0.179	0.175	105	96.4	1	75.0-125			2.37	20			
Calcium	5.00	52.1	57.4	57.1	105	99.3	1	75.0-125			0.500	20			
Magnesium	5.00	11.4	16.6	16.6	104	104	1	75.0-125			0.00458	20			
Sodium	5.00	43.7	49.4	49.2	113	109	1	75.0-125			0.403	20			
Strontium	0.0500	1.27	1.30	1.29	56.1	28.8	1	75.0-125	$\underline{\vee}$	V	1.06	20			

DATE/TIME: 12/28/22 14:15 Τс

Ss

Cn

Sr

Qc

Gl

AI

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3874087-1 12/20/22 14:50

(MD) 10007 +007 1 12/20/2	211.00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Barium	0.000405	J	0.000343	0.00180
Calcium	U		0.0842	0.900
Magnesium	U		0.0662	0.900
Sodium	U		0.338	1.80
Strontium	U		0.000531	0.00900

Laboratory Control Sample (LCS)

(LCS) R3874087-2 1	S) R3874087-2 12/20/22 14:53												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/l	mg/l	%	%									
Barium	0.0500	0.0424	84.7	80.0-120									
Calcium	5.00	4.40	88.0	80.0-120									
Magnesium	5.00	4.63	92.6	80.0-120									
Sodium	5.00	4.58	91.6	80.0-120									
Strontium	0.0500	0.0429	85.9	80.0-120									

L1565809-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1565809-03 12/20	/22 14:56 • (MS) R3874087-4	12/20/22 15:03	3 • (MSD) R3874	087-5 12/20/	22 15:06						
	Spike Amount Original Resul	t MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%		%			%	%
Barium	0.0450	0.0541	0.0532	99.3	97.3	.9	75.0-125			1.69	20
Calcium	4.50	14.6	14.4	98.3	95.1	.9	75.0-125			0.981	20
Magnesium	4.50	5.47	5.38	105	103	.9	75.0-125			1.67	20
Sodium	4.50	5.69	5.62	106	104	.9	75.0-125			1.20	20
Strontium	0.0450	0.0617	0.0615	97.9	97.4	.9	75.0-125			0.363	20

DATE/TIME: 12/28/22 14:15 Тс

Ss

Cn

Sr

[°]Qc

GI

AI

QUALITY CONTROL SUMMARY L1566306-10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3874637-1 12/21/22 22:35

	MB Result				
	MD Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Barium	U		0.000381	0.00200	
Calcium	U		0.0936	1.00	
Magnesium	U		0.0735	1.00	
Sodium	U		0.376	2.00	
Strontium	U		0.000590	0.0100	

Laboratory Control Sample (LCS)

(LCS) R3874637-2 12	S) R3874637-2 12/21/22 22:39													
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier									
Analyte	mg/l	mg/l	%	%										
Barium	0.0500	0.0455	90.9	80.0-120										
Calcium	5.00	5.06	101	80.0-120										
Magnesium	5.00	5.10	102	80.0-120										
Sodium	5.00	4.91	98.2	80.0-120										
Strontium	0.0500	0.0486	97.1	80.0-120										

L1567068-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1567068-02 12/21	1/22 22:42 • (MS)	R3874637-4 1	2/21/22 22:49	• (MSD) R3874	637-5 12/21/2	22 22:52						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Barium	0.0500	0.130	0.178	0.179	95.5	98.0	1	75.0-125			0.696	20
Calcium	5.00	217	216	218	0.000	17.1	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.997	20
Magnesium	5.00	86.7	88.5	90.3	35.6	72.5	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	2.06	20
Sodium	5.00	216	211	217	0.000	14.4	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	2.54	20
Strontium	0.0500	3.91	3.87	3.88	0.000	0.000	1	75.0-125	$\underline{\vee}$	$\underline{\vee}$	0.186	20

DATE/TIME: 12/28/22 14:15 Тс

Ss

Cn

Sr

Qc

GI

ΆI

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 1145-21-080

SDG: L1566306 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee ^{1 4}	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1566306

DA 12/2 Τс

Ss

Cn

Sr

Qc

Gl

AI

GBMC & Associates - B	Prunet AD	Billi	ng Information	n:					Analysis / Co	ontainer / Pre	eservative		Chain of Custod	y Page of S		
219 Brown Lane			counts Pay 9 Brown L yant, AR 7	n.		Pres Chk		24					- Pace Netional	Analytical®		
Bryant, AR 72022																
Report to: Jonathan Brown	onathan Brown			ncassoc.com	ı;		Pres						12065 Lebanon Ro Mount Juliet, TN 3 Phone: 615-758-5	7122		
Project Description: Entergy - White Bluff	tergy - White Bluff			eld, AR	Please PT MT		E-No	33					Phone: 800-767-5 Fax: 615-758-5859			
Phone: 501-847-7077	Client Project # 1145-21-080			Project # MCBAR-ENT	ERGYWB		250mlHDPE-NoPres	EONH -					-66304 -066			
Collected by (print): Danielle Braund	Site/Facility ID #		P.O. #				250m						Acctnum: GBMCBAR			
Collected by (signature):	Rush? (Lab N Same Day Next Day Two Day Three Day	IUST Be Notif Five Day 5 Day (Rad 10 Day (Rad	Only)	te # Date Results N	Veeded	No. of	CI, F, S04	Metals* 250mlHDPE					Template: T1 Prelogin: P9 PM: 134-M PB:			
Sample ID	Comp/Grat	Matrix*	Depth	Date	Time	Cntrs	ALK,	leta					Shipped Via:			
						M	2						Remarks	Sample # (lab only)		
MW-1015	Grab	GW	38.8	12/7/22	1537	12	X	×					5.51	-01		
MW-1025	Grab	GW	34.6	12/6/22	1415	2	×	X					5.94	-02		
MW-1035	Grab	GW	19.3	12/6/22	1345	2	×	X					4.74	-03		
MW-1045	Grab	GW	32.2	12/8/22	1135	2	×	X					4.90	-04		
MW-1055	Grab	GW	30.9	12/6/22	0907	2	×	×					5.57	-05		
MW-1065	Grab	GW	12.0	12/6/22	0943	2	×	×					3.83	-06		
MW-1105	Grab	GW	14.3	12/6/22	1309	2	X	×					4.11	-07		
MW-1115	Grab	GW	14.3	12/6/22	1013	2	×	×					3.71	-08		
MW-101D	Grab	GW	96.8	12/6/22	1620	2	×	×					7.15	-001		
MW-102D	Grab	GW	92.4	12/7/22	1435	27	×	X					6.80	-10		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Remarks: Metals = Ba, E Samples returned UPSFedEx	via:	g, Na, Sr	Final p	H in rema	arks	in	ternal CC	C2 ^{pH} - Flow _	Terr		COC Seal COC Sign Bottles Correct Sufficie VOA Zero	ample Receipt Present/Intac hed/Accurate: arrive intact: bottles used: ent volume sent <u>If Applic</u> b Headspace:	able		
Relinquished by : (Signature)		te: 2 9 2	2 Time:		ed by: (Signa	ature)			Trip Blank	Received:	HCL / MeoH	Preserva	ation Correct/C een <0.5 mR/hr:			
Relinquished by : (Signature)	Da	te:	Time:	Receiv	red by: (Signa	ature)			Temp:	°C ^{Bot}	ttles Received: 160	If preserve	ation required by I	Login: Date/Time		
Relinquished by : (Signature)	Da	te:	Time:	Receiv	red for lab by	/: (Signa	ture)	fr	Date:	Tir GG-0	ne: 1000	Hold:		Condition: NCF / OK		

CPMC & Accordiator P	want AP	Billin	g Information	ו:					Analysis / Cor	ntainer / Prese	rvative		Chain of Custody	Page 2 of S	
GBMC & Associates - B 219 Brown Lane Bryant, AR 72022	219	counts Pay 9 Brown Li yant, AR 72	n.		Pres Chk		N.					- Pace National C	Analytical [®] enter for Testing & Innovatio		
Report to: Jonathan Brown			il To: own@gbm	ncassoc.com	ı;	Đ	Pres						12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58		
Project Description: Entergy - White Bluff		City/St Collect	ted: Redfie	ld, AR	Please PT MT		-No	m					Phone: 800-767-5859 Fax: 615-758-5859		
Phone: 501-847-7077	1145-21-080 GBMCBAR-EN				ERGYWB		250mIHDPE-NoPr	- HNO3					SDG# 1566306		
Collected by (print): Danielle Braund	Site/Facility ID #		P.O. #				SSOM 10						Table # Acctnum: GBMCBAR		
Collected by (signature):	Rush? (Lab M Same Day Next Day Two Day Three Day	UST Be Notifi Five Day 5 Day (Rad C 10 Day (Rad	ed) Quot	te # Date Results N	leeded	No. of	Cl, F, SO4	als* 250mIHDP					PB:		
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntrs	ALK,	Metals ³					Shipped Via: Remarks	Sample # (lab only)	
MW-103D	Grab	GW	40.6	12/8/22	1337	4200	XA	×					7.43	-11	
MW-104D	Grab	GW	86.8	12/6/22	1020	P	X	X					7.62	-12	
MW-105D	Grab	GW	80.1	12/8/22	0922	2	X	X					7.32	-13	
MW-106D	Grab	GW	41.3	12/8/22	1235	2	X	X					7.21	-14	
MW-107D	Grab	GW	24.0	12/6/22	1049	2	X	X					7.13	-15	
MW-108D	Grab	GW	46.0	12/5/22	1330	2	×	X					7.63	-16	
MW-109D	Grab	GW	79.4	12/5/22	1145	2	×	X					7.71	-17	
MW-110D	Grab	GW	33.8	12/5/22	1430	2	×	X					7.71	-18	
MW-112D	Grab	GW	87.4	12/7/22	1640	2	×	X					7.15	-19	
MW-113D	Grab	GW	9.7	12/6/22	1427	2/	×	X					6.76	-20	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Remarks: Metals = Ba, B Samples returned v UPSFedEx	via:	g, Na, Sr	Final p	H in rema	¥ arks	int	ernal CC	PC2 PH Flow	Temp Other		COC Seal COC Signe Bottles a Correct b Sufficien	mple Receipt (Present/Intac d/Accurate: rrive intact: ottles used: t volume sent <u>If Applica</u> Headspace:	t:NPY1 Y1 Y1 Y1 :Y1	
Relinquished by : (Signature)		12/9/2	Z 090	00	ed by: (Signa				Trip Blank F	H	s / No ICL / MeoH BR	Preservat RAD Scree	ion Correct/C n <0.5 mR/hr:	<u>_</u> Y	
Relinquished by : (Signature)	Dat	e:	Time:	Receiv	ed by: (Signa	ature)			Temp:	°C Bottle	es Received:	If preservat	ion required by L	ogin: Date/Time	
Relinquished by : (Signature)	Dat	e:	Time:	Receiv	ed for lab by	r: (Signat	ture)	0~	Date:	Time	the second s	Hold:		Condition: NCF / OK	

CPMC & Acception	Descent AD	Billi	ing Informatio	n:		Τ			Analysis / Con	tainer / Preservative		Chain of Custody	Page of S
GBMC & Associates - E 219 Brown Lane Bryant, AR 72022	219 Brown Lane Bryant, AR 72022			yable n. 2022		Pres Chk		40				Pace / National Ce	Analytical *
Report to: Jonathan Brown			ail To: rown@gbn	ncassoc.c	:om;		res					12065 Lebanon Rd Mount Juliet, TN 37	
Project Description: Entergy - White Bluff		City/S	and the second se		Please PT MT	etircle:	-NoF					Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859	
Phone: 501-847-7077	1145-21-080			Project # MCBAR-E	NTERGYWB		SO4 250mIHDPE-NoPres	-HNO3				SDG # 154	6306
Collected by (print): Danielle Braund	Site/Facility ID #	P.O. #				250m	HDPE				Acctnum: GB	MCBAR	
Collected by (signature): Define the second	Rush? (Lab Same Day Next Day Two Day Three Day	MUST Be Notif Five Day 5 Day (Rad 10 Day (Ra	Only)		lts Needed	No. of	CI, F,	Metals* 250mlHDP				Template: T19 Prelogin: P90 PM: 134-Ma PB: Shipped Via:	53501
Sample ID	Comp/Gra	b Matrix*	Depth	Date	Time	Cntrs	ALK,	Me		-		Remarks	Sample # (lab only)
MW-114D	Grab	GW	60.5	12/5/2	2 1640	420	1000000	×				7.81	-21
MW-115D	Grab	GW	75.0	12/5/2	1240	2	X	×				7.78	-22
MW-118D	Grab	GW	41.1	12/5/2	2 1600	2	×	×				7.23	-23
FIELD BLANK 1	Grab	GW	-	12/6/2	1530	2	×	X				DI H2O	-24
FIELD BLANK 2	Grab	GW	-	12/7/2	2 1420	2	X	×				DI H2O	-25
DUPLICATE 1 107D	Grab	GW	24.0	12/6/2	2 1049	2	X	×				7.13	-24
DUPLICATE 2 1065	Grab	GW	14.3	12/6/2	2 1309	2	×	X				411	-27
DUPLICATE 3 101D	Grab	GW	96.8	12/6/2	2 1620	2/	X	×				7.15	-28
	Grab	GW	7			V							
	Grab	GW											
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Remarks: Metals=Ba,B Samples returned UPSFedEx	via: Courier		Tra	n remarks		erna	COC2	pH Flow	Temp Other	COC Seal COC Sign Bottles Correct Sufficie VOA Zero	ample Receipt Cl Present/Intact ed/Accurate: arrive intact: bottles used: int volume sent: <u>If Applicab</u> Headspace:	:NPYN YN YN YN YN YN YN
Relinquished by : (Signature) Relinquished by : (Signature)	il 1	ote: 2 9 22 ote:	Time: 09(Time:	00	ceived by: (Signa				Trip Blank R	eceived: Yes No HCL / MeoH TBR C Bottles Received:	RAD Scre	en <0.5 mR/hr:	<u>_</u> YN
Condustice by (Signature)		ne.	nine:	Red	ceived by: (Signa	iture)			Temp:	C Bottles Received:	in preserva	ation required by Lo	gin: Date/Time
Relinquished by : (Signature)	Da	ate:	Time:	Red	ceived for lab by	: (Signa	ture))~	Date:	Time:	Hold:		Condition: NCF / OK

		Bill	ling Inform	ation:		1	T		Analysis / Cor	ntainer / Preservative		Chain of Custody	Page S of S	
GBMC & Associates - E	Bryant, AR			Payable		Pres		2					I uge V OI V	
		the start was a start of the second	219 Brown Ln.					V				2	A	
219 Brown Lane		B	ryant, A	R 72022								National Ce	Analytical®	
Bryant, AR 72022														
Report to:	State of the second	Em	nail To:				S					12065 Lebanon Rd	INAL	
Jonathan Brown		jb	rown@g	gbmcassoc.co	om;	Ŧ	Pr.					Mount Juliet, TN 37 Phone: 615-758-585		
Project Description: Entergy - White Bluff		City/: Colle	State ected: Red	dfield, AR	Please PT MT		-No	_				Phone: 800-767-585 Fax: 615-758-5859		
Phone: 501-847-7077	none: 501-847-7077 Client Project # 1145-21-080		Lab Project # GBMCBAR-ENTERGYWB				SO4 250mlHDPE-NoPres	E-HNO3				SDG# 156		
Collected by (print):	Site/Facility ID #		P	P.O. #			Om	BE				Table #		
Danielle Braund	CADL-CCR		Đ				25	모				Acctnum: GB	MCBAR	
Collected by (signature):	Rush? (Lab	MUST Be Noti	ified)	Quote #			6	250mIHDP				Template: T19	8831	
Damekel	Same Day	Five Day	L					50				Prelogin: P90		
Immediately	Next Day Two Day	5 Day (Rad 10 Day (Ra		Date Result	s Needed	No.	, F,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				PM: 134-Ma	rk Beasley	
Packed on Ice N Y X	Three Day					of	Ū,	als				PB:		
Sample ID	Comp/Gr	ab Matrix*	Dep	oth Date	Time	Cntrs	LK,	Metals*				Shipped Via:		
						- (1	MA					Remarks	Sample # (lab only)	
RP FIELD BLANK	Grab	GW	-	12/6/22	0900	47	X	X				DI H2O	-29	
RP DUPLICATE RP-8	Grab	GW	11.7	12/5/22	2 1424	2	×	X				3.61	-30	
	Grab	GW				2	×	×						
	Grab	GW				2	×	×			C. C. C.			
	Grab	GW				2	×	X						
	Grab	GW				2	×	X						
	Grab	GW				2	×	X						
	Grab	GW				2	×	X						
	Grab	GW				2	×	X						
	Grab	GW				2	X	X						
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water	Remarks: Metals = Ba,		,Na,Sr	Final pH i	in remarks	-		al COC2	pH	Temp Other	COC Si Bottle Correc	Sample Receipt Cr al Present/Intact gned/Accurate: s arrive intact: t bottles used:	:NPYN YN YN YN	
OT - Other	Samples returned UPSFedEx			_ Trac	king #						and the second	ient volume sent: If Applicab	YN le	
Relinquished by : (Signature)		ate:	Tim	e: Rece	eived by: (Signa	ature)			Trip Blank Re	eceived: Yes	Preser	ro Headspace: vation Correct/Ch	ecked: _Y _N	
Damesz	\bigcirc 1	29/22	0	900						HCL / MeoH	RAD Sc	reen <0.5 mR/hr:	Y_N	
Relinquished by : (Signature)	D	ate:	Tim	e: Rece	eived by: (Signa	ature)			Temp:	*C Bottles Received:	If prese	rvation required by Log	gin: Date/Time	
Relinquished by : (Signature)	D	ate:	Tim	e: Rece	eived for lab by		ture)	0	Date:	Time:	Hold:		Condition:	
	The second				110	H	1	0-	12-10	-22 1000			NCF / OK	

ſ

CDMC 0 A		Billing	Informatio	n:		T			Analysis / C	ontainer / Preservative		Chain of Custod	y Page y of S	
GBMC & Associates -	Bryant, AR		ounts Pa			Pres		3						
219 Brown Lane Bryant, AR 72022			219 Brown Ln. Bryant, AR 72022					V				Pace	Analytical [®] Center for Testing & Innovation	
Report to:		Email	To:				es					12065 Lebanon Rd	E 16.2 E 1	
Jonathan Brown		jbro	wn@gbn	ncassoc.co	om;						1. 199	Mount Juliet, TN 3 Phone: 615-758-58	7122	
Project Description: Entergy - White Bluff		City/Sta Collecte	te ed: Redfie	eld, AR	Please PT MT		-No	_				Phone: 800-767-58 Fax: 615-758-5859	359	
Phone: 501-847-7077 Client Project # 1145-21-080			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Project # MCBAR-EN	NTERGYWB		250mIHDPE-NoPr	E-HNO3				SDG# 156630		
Collected by (print):	Site/Facility ID #		P.O.	#			Om	Be				Table #		
Danielle Braund	CADL-CCR						25	모				Acctnum: GE		
Collected by (signature): Dauer C Immediately Packed on Ice N _ Y _ X	Rush? (Lab M Same Day Next Day Two Day Three Day	UST Be Notifie Five Day 5 Day (Rad Or 10 Day (Rad O	nly)	te # Date Result	s Needed	No. of	, Cl, F, SO4	als* 250mlHDPI				Template: T1 Prelogin: P9 PM: 134-M PB:		
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntrs	ALK,	Metals				Shipped Via:		
			1	1	1	41 /	A					Remarks	Sample # (lab only)	
RP-1	Grab	GW	9.5	12/5/22	1555	176	MX	X				3.61	-31	
RP-2	Grab	GW	15.8	12/5/22	2 1529	2	×	X				4.46	-32	
RP-3	Grab	GW	8.6	12/5/22	2 1457	2	×	×				3.61	-33	
RP-4	Grab	GW	9.2	12/6/22	2 0837	2	×	X				5.53	-34	
RP-5	Grab	GW	10.2	12/5/22	1302	2	×	X			240	3.35	-35	
RP-6	Grab	GW	10.5	12/5/22	2 1336	2	X	X				3.91	-36	
RP-7	Grab	GW	11.7	12/5/22	1359	2	×	X				3.46	-21	
RP-8	Grab	GW	11.7	12/5/22	2 1424	2	×	X				3.61	-28	
RP-9	Grab	GW	9.6	12/5/22	1633	2	×	X				6.32	-39	
RP-10	Grab	GW	8.7	12/5/22	2 1702	12	X	X				3.20	-40	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	Remarks: Metals=Ba,B,K Samples returned v UPSFedEx	ia:	a,Sr F	Final pH in	remarks	int	ernal	COC2	pH	Temp Other	COC S Bott Corre Suff:	Sample Receipt (Seal Present/Intac Signed/Accurate: les arrive intact: ect bottles used: icient volume sent <u>If Applica</u> Zero Headspace:	t:NPXN YN YN YN YN YN	
Relinquished by : (Signature)) Date	alan	Time:		eived by: (Signa	iture)			Trip Blank	Received: Yes No HCL/Me	Prese	ervation Correct/C Screen <0.5 mR/hr:		
Relinquished by : (Signature)	Date		Time:		eived by: (Signa	iture)			Temp:	TBR °C Bottles Receive	and the second	servation required by L	ogin: Date/Time	
Relinquished by : (Signature)	Date	e:	Time:	Rece	eived for lab by	A Longer And	ture)	Dr	Date:	101 Time:	Hold:		Condition: NCF / OK	

1566306 9619 Tracking Numbers 6537 7757 3026 ahtt bttt GABAJ Temperature 4 0.7 0.4 0.8 5.6

APPENDIX C ALTERNATE SOURCE DEMONSTRATIONS

Alternate Source Demonstration

2nd Half 2021 Sampling Event

Entergy White Bluff Plant Coal Ash Disposal Landfill Redfield, Jefferson County, Arkansas

July 2022

Prepared For Entergy Arkansas, LLC White Bluff Plant 1100 White Bluff Road Redfield, Arkansas 72132

Jason S. House Senior Project Manager

TRC Environmental Corporation | Entergy Arkansas, LLC Alternate Source Demonstration – Entergy White Bluff Plant Final © 2022 TRC All Rights Reserved

Executive Summary

Entergy Arkansas, LLC (Entergy) performed the most recent semiannual detection monitoring sampling (2nd Half 2021) in December 2021 for Cells 1 through 4 of the coal ash disposal landfill (CADL) pursuant to the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* 40 CFR Part 257 (CCR Rule). Cells 1 through 4 of the CADL constitute the coal combustion residuals (CCR) Unit per the CCR Rule. Per 40 CFR 257.94, the samples were analyzed for the Appendix III detection monitoring parameters. Upon receipt of the laboratory analytical results, statistical analysis was performed during March 2022.

In accordance with the statistical analyses, the following 19 statistically significant increases (SSI) above background concentrations were identified in three monitoring wells in Stratum I and four monitoring wells in Stratum III, based on either increasing trends at 98% confidence levels using Sen's Slope test and/or intrawell prediction limits statistical analyses:

- Calcium, fluoride, sulfate and total dissolved solids (TDS) (MW-106S);
- Boron and calcium (MW-110S);
- Boron, calcium, fluoride, sulfate and TDS (MW-111S);
- Calcium (MW-101D);
- Boron, calcium and TDS (MW-112D);
- Calcium (MW-114D); and
- Calcium, fluoride, sulfate (MW-118D).

The information provided in this report serves as Entergy's alternate source demonstration (ASD) prepared in accordance with 40 CFR 257.94(e)(2) and successfully demonstrates that the SSIs are not due to a release from the CCR Unit to groundwater, but are due to the following:

- Natural groundwater geochemistry conditions such as pH, electrical conductivity (EC), oxidationreduction potential (ORP) and the naturally occurrence of sulfide minerals;
- Natural variation in groundwater quality;
- Releases from historic fill or portions of the CADL closed before the effective date of the CCR Rule (October 19, 2015); and/or
- Surface water that has come into contact with on-site CCR and has migrated into the subsurface.

Therefore, based on the information provided in this ASD report, Entergy will continue to conduct semiannual detection monitoring for Appendix III constituents in accordance with 40 CFR 257.94 at the certified groundwater monitoring well system (Certified Monitoring Well Network) for the CCR Unit and will continue to implement improvements to stormwater management practices at the CADL.

Executive	Summary	ii
Section 1 I	ntroduction	1-1
1.1	Background	1-1
	1.1.1 Groundwater Monitoring and Statistical Analysis	
1.2	Purpose	
Section 2 H	Iydrogeology and Geochemistry	2-1
2.1	Site Hydrogeology	2-1
2.2	General Groundwater Quality	
2.3	Groundwater Geochemistry	
	2.3.1 Boron in Groundwater	
	2.3.2 Fluoride in Groundwater	2-4
	2.3.3 Sulfate in Groundwater	2-5
	2.3.4 Calcium in Groundwater	2-5
	2.3.5 TDS in Groundwater	2-6
Section 3 A	Alternate Source Demonstration	3-1
3.1	MW-106S: Calcium, Fluoride, Sulfate, and TDS	
3.2	Fluoride at MW-106S	
3.3	Sulfate at MW-106S	3-4
3.4	TDS at MW-106S	3-4
3.5	Boron at MW-110S	3-5
3.6	Calcium at MW-110S	
3.7	Boron at MW-111S	3-6
3.8	Calcium at MW-111S	
3.9	Fluoride at MW-111S	
3.10	Sulfate at MW-111S	3-9
3.11	TDS at MW-111S	3-10
3.12	Calcium at MW-101D	3-11
3.13	Boron at MW-112D	3-11
3.14	Calcium at MW-112D	3-12
3.15	TDS at MW-112D	
3.16	Calcium at MW-114D	3-13
3.17	Calcium at MW-118D	3-14
3.18	Fluoride at MW-118D	

3.19	Sulfate at MW-118D3-	15
Section 4 C	Conclusions4	-1
Section 5 R	leferences5	5-1

List of Figures

Figure 1 Site Location Map Figure 2 CADL Extent and CCR Groundwater Monitoring Locations

1.1 Background

Entergy Arkansas, LLC (Entergy) operates the Entergy White Bluff Plant (Plant), a coal-fired power plant, to generate electricity. The Plant is located at 1100 White Bluff Road in Redfield, Jefferson County, Arkansas as shown on Figure 1. Coal combustion residuals (CCR) are produced as part of the electrical generation operations. The Plant has been generating and disposing of CCR in a portion of the on-site coal ash disposal landfill (CADL) since it began operations in 1981. The CADL is a Class 3N non-commercial industrial landfill and operates under Arkansas Division of Environmental Quality (ADEQ) Solid Waste Permit No. 0199-S3N-R3.

The ADEQ-permitted CADL consists of approximately 153-acres at the Plant and encompasses the following three areas:

- Approximately 50-acre portion of the CADL historically used for CCR disposal from 1981 until prior to the effective date of the CCR Rule (October 19, 2015). CCR was placed into ravines. This area was closed in accordance with the Plant's original solid waste permit (TRC, 2018a);
- Cells 1 through 4, which are the current cells used for CCR disposal and were constructed on top of, and adjacent to, the above-noted closed CCR disposal areas prior to the effective date of the CCR Rule. Cells 1 through 4 encompass approximately 30 acres and were constructed as follows:
 - Cells 1, 2, and 3 were constructed with an 18-inch thick compacted clay bottom liner;
 - Cell 4 was constructed with a two-foot thick compacted clay bottom liner and a leachate collection system; and
- Approximately 100-acre portion of the CADL that is currently undeveloped and may be used for CCR and/or non-CCR disposal.

In addition to the current 153-acre permitted landfill, there is an approximately 25 acre area to the immediate west of Cells 1 through 4 where during the initial period of operation of the Plant, ash was placed pursuant to the permits issued at that time. This historic fill area is covered with soil and vegetated.

Cells 1 through 4 accept CCR for disposal in accordance with the federal *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule* (CCR

Rule), effective October 19, 2015, and subsequent Final Rules promulgated by the United States Environmental Protection Agency (USEPA). Cells 1 through 4 comprise the CCR management unit (CCR Unit) per the CCR Rule and are the focus of this ASD. The approximate limits of Cells 1 through 4, the closed disposal areas, and the undeveloped, future disposal areas within the ADEQ-permitted footprint of the CADL are shown in Figure 2.

Historical CCR management by Entergy has consisted of the following activities:

- Beneficial use in local construction projects;
- Beneficial use as roadbed material at the CADL; and
- Placement into the CADL.

1.1.1 Groundwater Monitoring and Statistical Analysis

In accordance with 40 CFR 257.90 through 257.94, Entergy installed a groundwater monitoring system for Cells 1 through 4 and has collected samples from the Certified Monitoring Well Network for laboratory analysis for CCR constituents and performed statistical analysis of the collected samples. Entergy installed a Certified Monitoring Well Network for the CCR Unit in accordance with 40 CFR 257.90 and 257.91. The Certified Monitoring Well Network consists of 23 wells installed into two stratigraphic units as follows:

- Eight wells are installed into an upper silty and clayey sand unit (Stratum I), which are designated as "S" monitoring wells; and
- Fifteen wells are installed into a lower silty and clayey sand and clay unit (Stratum III), which are designated as "D" monitoring wells.

Pursuant to 40 CFR 257.91(f), Entergy obtained certification by a qualified Arkansas-registered professional engineer (P.E.) stating that the Certified Monitoring Well Network has been designed and constructed to meet the requirements of 40 CFR 257.91 (see Groundwater Monitoring System Certification, TRC, February 26, 2018) of the CCR Rule (TRC 2018b).

As discussed above, Stratum I and Stratum III are currently being monitored pursuant to the CCR Rule. A groundwater sampling and analysis program including selection of statistical procedures to evaluate groundwater data was prepared per the CCR Rule (see Groundwater Sampling and Analysis Plan (FTN, 2017b)). Eight quarterly background CCR detection monitoring events were performed from October 2015 through June 2017 in accordance with 40 CFR 257.93(d) and 257.94(b). The eight quarterly detection monitoring background samples were analyzed for Appendix III to Part 257 – Constituents for Detection Monitoring and for Appendix IV to Part 257 – Constituents for Assessment Monitoring.

Following completion of quarterly background detection monitoring in June 2017, Entergy implemented semiannual detection monitoring per 40 CFR 257.94(b) for the CCR Unit. The first semiannual detection monitoring event was performed in August 2017 (2nd Half 2017). Subsequent detection monitoring events, with associated verification sampling when appropriate, have been performed on a semiannual basis since August 2017. Entergy performed the most recent semiannual detection monitoring event (2nd Half 2021) in December 2021. Per the CCR Rule, the semiannual detection monitoring event samples were analyzed for Appendix III constituents.

After completion of each semiannual detection monitoring event, the Appendix III laboratory analytical data were statistically evaluated to identify potential SSIs for Appendix III constituents above background levels. In accordance with 40 CFR 257.93(f)(6), Entergy obtained certification by a qualified Arkansas-registered P.E. stating that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR Unit (see Statistical Methods Certification, TRC, October 16, 2017).

Pursuant to 40 CFR 257.93(h), statistical analysis and re-analysis of the laboratory analytical data were performed to identify potential SSIs for the 2nd Half 2021 semiannual detection monitoring event. A total of 19 SSIs were identified for five Appendix III constituents: boron, calcium, fluoride, sulfate, and total dissolved solids (TDS). SSIs were identified in three Stratum I and four Stratum III monitoring wells.

1.2 Purpose

Pursuant to 40 CFR 257.94(e)(2), Entergy may demonstrate that a source other than the CCR Unit caused the SSIs identified or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The purpose of this report is to provide written documentation of the successful ASD for the SSIs identified for the 2nd Half 2021 semiannual detection monitoring event, pursuant to 40 CFR 257.94(e)(2) of the CCR Rule.

2.1 Site Hydrogeology

Historical subsurface investigations have identified the following three stratigraphic horizons of the Jackson Group (Kresse, et. al., 2014) and their associated hydrogeology for the CCR Unit and the CADL:

• Stratum 1. Interbedded Clay, Silt, and Sand.

Stratum 1 ranges from approximately 10 to 54-feet thick and consists of interbedded silty sand (SM), clayey sand (SC), silts (ML and MH), and clay (CL and CH). Occasional deposits of carbonaceous material are present throughout Stratum 1. Based on the results of in-situ slug tests, hydraulic conductivity values range from 4.0 x 10^{-5} to 4.0×10^{-4} cm/sec;

Stratum 2. Clay.

Stratum 2 ranges from approximately 14 to 49-feet thick and consists of a very stiff clay (CH) with occasional silt and/or very fine-grained sand laminations. Occasional deposits of carbonaceous mater are present throughout Stratum 2. Based on the results of in-situ slug tests, hydraulic conductivity values range from 4.7 x 10^{-6} to 1.4 x 10^{-8} cm/sec;

• Stratum 3. Clayey and Silty Sand.

Stratum 3 ranges from approximately 5 to 19-feet thick and consists primarily of clayey sand (SC) and/or silty sand (SM). A poorly graded, fine-grained sand (SM) was identified in one piezometer. The upper limits of Stratum 3 were encountered at elevations of 263 to 289-feet NGVD (depths ranging from 19 to 97-feet bgs). Based on results of in-situ slug tests, hydraulic conductivity was determined to be spatially variable and ranged from 4.2×10^{-7} to 2.5×10^{-4} cm/sec; and

Underlying Clay.

A clay unit underlies Stratum 3 and is described as a very dark grey clay that is highly laminated with light grey silt and very fined-grained sand. Based on results of an insitu slug test, the vertical hydraulic conductivity was 3.7×10^{-8} cm/sec.

It was concluded that Stratum 1 was not laterally continuous across the approximately 153-acre landfill. The estimated calculated seepage velocities in Stratums 1 and 3 were as follows:

- Stratum 1: 2 to 20 feet/year; and
- Stratum 3: <1 to 10 feet/year.

While Stratum I and Stratum III have been monitored per the CCR Rule since October 2015, it is unclear whether Stratum I and Stratum III are aquifers that are capable of providing sustainable well yields consistent with USEPA aquifer use criteria (*e.g.*, 0.1 gallons per minute). This uncertainty is based on the following evidence:

- Stratum I is present to the west of the CADL and only present within the western portion of the ADEQ-permitted boundaries of the CADL, approximately corresponding to the boundaries of the closed portions of the CADL. The CCR Unit and Stratum I are not continuous to the east across the entire footprint of the CADL;
- In-situ hydraulic conductivities are low to very low for both Stratum I and Stratum III, indicating that sustainable well yields may not be obtainable from Stratum I and Stratum III at volumes that meet the minimum USEPA well use criteria (*e.g.*, 0.1 gallons per minute); and
- During the quarterly and semiannual detection monitoring events performed from October 2015 through December 2021, which have been performed using the low-flow purge and sample methodology, the sampling teams have consistently documented that turbidity values are often greater than 10 Nephelometric Turbidity Units (NTU). Furthermore, wells have been pumped dry during sampling for both Stratum I and Stratum III, indicating that neither sustainable well yields nor useable drinking water are associated with Stratum I and Stratum III.

To evaluate this uncertainty, Entergy began performing hydrogeologic investigations during 2019 and 2020, continuing through 2021 to evaluate both the stratigraphy and hydrogeology beneath the CCR Unit and to identify the aquifer(s) making up the uppermost aquifer system at the CCR Unit and CADL and the appropriateness of the current Certified Monitioring Well Network.

2.2 General Groundwater Quality

Regionally, groundwater quality in the Jackson Group consists of a sodium- and calcium-sulfate water type, with generally poor water quality (FTN 2014, Kresse et. al 2014). Reported water quality concentrations for select secondary drinking water contaminants compared to USEPA secondary maximum contaminant levels (MCLs) are provided in the table below.

	Concentral	ion Range	USEPA
Constituent	Low	High	Secondary MCL
Iron (mg/L)	0.05	19	0.3
pH (s.u.)	2.9	8.0	6.5 - 8.5
Sulfate (mg/L)	0.6	3,080	250
TDS (mg/L)	11	5,330	500

As noted in the table above, the natural range of groundwater quality within the Jackson Group, which includes both Stratum I and Stratum III, exceeds the secondary drinking water MCLs established by the USEPA for drinking water or, in the case of pH, is less than its secondary MCL. Finally, the results of historical groundwater monitoring at the Plant conducted from 1991 through 1996 showed that normal indicator parameters were masked by naturally elevated concentrations of the monitored constituents (FTN 2014, TRC 2018a).

2.3 Groundwater Geochemistry

Understanding the geochemistry of groundwater is essential to examining the groundwater monitoring data, explaining the relationships between the characteristics, and analyzing natural as well as anthropogenic impacts on groundwater systems. Source apart, geochemical processes play an important role in controlling the chemical composition of groundwater, including carbonate equilibrium, oxidation-reduction reactions and adsorption-desorption processes. Based the site geological conditions, several groundwater parameters are discussed as follows, including boron, fluoride, sulfate, calcium, and TDS.

2.3.1 Boron in Groundwater

Boron in normally considered as a minor constituent in groundwater as it is generally present in low concentrations (Palmucci & Rusi, 2014). Source apart, the primary origin of boron in groundwater is the process of sorption and desorption to the mineral surfaces including rocks and soils (Ravenscroft & McArthur, 2004). The regulatory guideline values of boron in drinking water are given at 0.5 mg/L by WHO and 0.9 mg/L by USEPA in human consumption for longterm exposure (WHO, 2008; USEPA, 2008). Boron is often cited as contamination tracer and usually occurs as a non-ionized form as H₃BO₃ in soils at pH<8.5, but above this pH, it exists as an anion, B(OH)₄ (Upadhyaya et al., 2014).

The factors that may influence the boron concentration in groundwater include weathering, human activity, evaporative concentration, ion-exchange, electrical conductivity (EC), and pH. Ravenscroft & McArthur (2004) studied the mechanism of regional boron enrichment groundwater and the results indicated that the main process caused high boron enriched in groundwater was the flushing by fresh groundwater other than geolofical setting, climate or age. The desorption of Boron from mineral surfaces could be affected by pH, ionic strength, salinity and HCO₃/CO₃. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron adsorption favors high pH and boron desorption favors low pH on rocks, soils and organic matters (Hollis et al., 1988; Keren & Communar, 2009; Tabelin et al., 2014).

A few more research studies confirmed that the presence of boron in groundwater depends on the EC (salinity), such that it increases with increasing EC. Halim et al. (2010) reported that the

2 - 3

increasing of Cl⁻ concentration contributes to increase in EC value since a strong linear correlation ($R^2 = 0.88$) between EC and Cl⁻ was observed. Palmucci & Rusi (2014) observed a clear correlation between the high concentrations of boron and the chloride-sodium facies, which are characterized by high saline content, negative redox potential, and low value of the SO_{4²}/Cl⁻ ratio. Rodriguez-Espinosa et al. (2020) found that the Boron concentration in groundwater was related to the SO_{4²} and age affect.

Regarding to the Boron concentration level on the sites, the main source of Boron is more natural than anthropogenic. Therefore, the detected increasing of Boron concentration is likely due to the geochemistry condition changes, such as pH, ion exchanges, EC and salinity.

2.3.2 Fluoride in Groundwater

The common natural source of fluoride in groundwater is the dissolution of natural fluoridebearing mineral, such as fluorspar, fluorapatite, amphiboles, hornblende, tremolite and biotite (Luo et al., 2018). The natural concentration of fluoride in groundwater depends on the geological, chemical and physical characteristics of the aquifer, the porosity and acidity of the soil and rocks, the surrounding temperature, the action of other chemical elements, depth of the aquifer and intensity of weathering (Brindha & Elango, 2011). Due to the concentration range of this site, geochemical process is the main factor controlling fluoride in groundwater.

Ion exchange, evaporation, adsorption-desorption, ion competition, mixing, salinization and anthropogenic pollution are geochemical processes that can take place and cause the occurrence of fluoride in groundwater (Luo et al., 2018). Main factors that might cause the increase of fluoride concentration in groundwater include alkaline pH, high concentration of sodium and bicarbonate, and low concentration of calcium.

Alkaline pH can increase the fluoride dissolution from mineral surfaces into groundwater. Saxena & Ahmed (2001) observed that alkaline conditions with pH ranging between 7.6 and 8.6 are favorable for dissolution of fluorite mineral from the host rocks.

Sodium bicarbonate type waters are typical of high fluoride waters. Many research studies have demonstrated positive correlations between fluoride and both bicarbonate and sodium as well as an inverse relation between fluoride and calcium. (Mondal et al., 2014; Guo et al., 2012; Chen et al., 2020). The chemical reactions for the dissolution of fluoride in the presence of high bicarbonate and sodium, and low calcium content is described as follows (Kimambo et al., 2019):

$$Na^+$$
 + +HCO₃⁻ → NaHCO₃
CaF₂ + +2NaHCO₃ → CaCO₃ + 2Na⁺ + 2F⁻ + H₂O + CO₂

Luo et al. (2018) reported that cation exchange can increase the fluoride concentration when increasing the Na/Ca molar ratio via ion complexation, and salt effect can further increase the fluoride dissolution from mineral surfaces.

In addition, evaporation is another potential reason to increase the fluoride concentration in shallow groundwater. Evaporation could directly remove water from shallow aquifers and elevate the fluoride concentration. Evaporation could increase ion concentrations, leading to the precipitation of some major minerals, reducing the calcium concentration, and favoring the dissolution of fluoride. Anthropogenic sources may also increase the fluoride in groundwater, such as pesticide and fertilizer use, and industrial waste discharge.

2.3.3 Sulfate in Groundwater

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. There are many potential sources of sulfate including mineral dissolution, atmospheric deposition, and other anthropogenic sources (mining, fertilizer, synthetic detergents, industrial wastewater etc.) (Miao et al., 2012). As water moves through soil and rock formations that contain sulfate minerals, some of the sulfate dissolves into the groundwater. Minerals that contain sulfate include magnesium sulfate (Epsom salt), sodium sulfate (Glauber's salt), and calcium sulfate (gypsum). Gypsum is an important contributor to the high levels of sulphate in many aquifers of the world. Higher levels of sulfate in groundwater are common in the western part of the United States (MDH, 2008).

Sulfate is mobile in soil and inputs to soil will impact groundwater eventually. Many research studies indicated that atmospheric deposition, dissolution of gypsum, oxidation of sulfide mineral and anthropogenic inputs will contribute to sulfate. Based on the geological condition of the site, atmospheric deposition and anthropogenic activities could be the main factors (Einsiedl & Mayer, 2005; Pu et al., 2012).

2.3.4 Calcium in Groundwater

Calcium is one of the most important ionic constituents in groundwater (Razowska-jaworek, 2014). Water-rock interaction occurs when water meets rocks or minerals, limestone, marble, calcite, dolomite, gypsum, fluorite and apatite. Natural dissolution of carbonate rocks and minerals is the primary source of calcium in groundwater (Jiang et al., 2009). Calcium is an important determinant of water hardness (Ca²⁺), while magnesium is the other hardness determinant. The most common shallow groundwater type is Ca-HCO₃ dominated and Ca(Mg)-HCO₃ dominated.

A literature review indicates the major factors that may influence the calcium concentration in groundwater include rock weathering, pH, electrical conductivity and anthropogenic activities (mining, concrete material dissolution, fertilizer etc.) (Hájek et al., 2021; Schot & Wassen, 1993; Shi et al., 2018). Based on the geological condition of the site, pH, electrical conductivity and anthropogenic activities could be the potential reasons for the calcium SSI.

2.3.5 TDS in Groundwater

Total dissolved solids represent the combined total of inorganic and organic substances contained in the groundwater, and it can be a general indicator of water quality. These solids are primarily minerals, salts, and organic matters, which may originate from sources such as weathering of minerals, urban runoff, sewage, effluent discharges, agricultural, decaying organisms, and other human activities (de-icing roads, water softer use). Common salts that contribute to TDS are sodium, chloride, calcium, magnesium, potassium, sulfates, and bicarbonates (Olumuyiwa I. Ojo, 2012).

TDS levels in groundwater is usually higher than surface water due to the longer contact time with the underlying rocks and sediments. Since many minerals are water soluble, high concentrations can accumulate over time through the constantly reoccurring process of precipitation and evaporation.

TDS is related to other water quality parameters like hardness, which may occur if the high TDS content is due to the presence of carbonates. A few research studies simulated the relationship between TDS and other groundwater parameters such as EC and salinity, using different models. Due to the complicated geological conditions, the observation was not consistent at different study sites (Atekwana et al., 2004; Banadkooki et al., 2020; Poursaeid et al., 2020).

Section 3 Alternate Source Demonstration

Pursuant to 40 CFR 257.94(e)(2), Entergy may demonstrate that a source other than the CCR Unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. As discussed previously, the 2nd Half 2021 semiannual detection monitoring event was performed in December 2021. Statistical analysis of the 2nd Half 2021 semiannual detection monitoring data was performed pursuant to 40 CFR 257.93(f) and (g) and in accordance with the Statistical Methods Certification (TRC 2017b) and the Statistical Analysis Plan (FTN 2017a). Based on either increasing trends at 98% confidence levels using Sen's Slope test and/or intrawell prediction limits statistical analyses, the following 19 SSIs were identified:

- Calcium, fluoride, sulfate and TDS (MW-106S);
- Boron and calcium (MW-110S);
- Boron, calcium, fluoride, sulfate and TDS (MW-111S);
- Calcium (MW-101D);
- Boron, calcium and TDS (MW-112D);
- Calcium (MW-114D); and
- Calcium, fluoride and sulfate (MW-118D).

Other Appendix III constituent concentrations were within their trends at 98% confidence levels using Sen's slope test and/or intrawell prediction limits in the CCR Rule groundwater monitoring system wells.

A discussion for each of the individual SSIs identified for the Stratum I and III wells and associated evidence demonstrating that the 19 SSIs were not caused by a release from the CCR Unit is provided in the subsections below.

3.1 MW-106S: Calcium, Fluoride, Sulfate, and TDS

The potential SSIs identified at MW-106S (calcium, fluoride, sulfate, and TDS) are a result of the acidic geochemistry condition in groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, or potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Calcium was detected in MW-106S at a concentration of 40.2 mg/L in the December 2021 sample. Compared to the value of 32.5 mg/L in the June 2021 sample, the calcium concentration increased by 24%. Normality analysis of the calcium data set at MW-106S was non-normal requiring trend analysis of the data set to determine a potential significance increase. The Mann-Kendal statistic of 116 exceeded the critical value of 58 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, pH and EC could affect calcium concentrations in groundwater. A low pH value of 3.91 was detected in the December 2021 sample and the historical data review shows pH in MW-106S stays in a steady range of 3.6 4.5, which indicates the groundwater in this area is acidic and it was related to pre-CCR Rule disposal source or natural geochemistry conditions. The acidic groundwater condition favors the dissolution of calcium from 16 mg/L in 2015 to 40 mg/L in 2021 could be a result of the acidic geochemistry condition. The increasing cation and anion concentrations will also lead to the increasing EC, which will affect other metals dissolution.
- The concentrations of calcium in MW-101S, which is a background well, have varied from 14 to 98.5 mg/L during the overall time period of CCR detection monitoring. The calcium concentration of 98.5 mg/L for MW-101S is greater than the calcium concentration of 40.2 mg/L measured at MW-106S during the 2nd Half 2021 semiannual detection monitoring event. Therefore, the calcium concentration measured at MW-106S is within the range of natural variation in background groundwater quality.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-106S, it appears that MW-106S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-106S are likely more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to

MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

3.2 Fluoride at MW-106S

The Fluoride SSI identified at MW-106S is a result of potential favorable geochemistry condition in groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Fluoride was detected in MW-106S at a concentration of 0.681 mg/L in the December 2021 sample, which was consistent with 0.683 mg/L in the June 2021 sample. This concentration exceeded the intrawell prediction limit of 0.545 mg/L and the maximum fluoride concentrations of 0.1 to 0.135 mg/L measured in the three Stratum I background monitoring wells (MW-101S, MW-102S, and MW-104S). However, it should be noted that the measured fluoride concentrations are less than the federal primary drinking water maximum contaminant level (MCL) standard of 4.0 mg/L.
- The fluoride concentration in MW-106S stayed in a narrow range of 0.6-0.68 mg/L in the past two years. pH of the groundwater is not an impact of the exceedance since fluoride dissolution favors alkaline pH. As discussed in Section 2.3, fluoride has positive correlation with both bicarbonate and sodium, and an inverse relation with calcium. With the increasing trend of calcium in the groundwater, ion exchange process with high sodium and bicarbonate can result in the increasing of fluoride in groundwater.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-106S, it appears that MW-106S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

3.3 Sulfate at MW-106S

The sulfate SSI identified at MW-106S is a result of natural geochemistry condition in soil and groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Sulfate was detected in MW-106S at a concentration of 710 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 538 mg/L. Compared to the value of 640 mg/L in the June 2021 sample, the sulfate concentration increased by 11%. The sulfate increasing proportion was consistent with TDS, which indicated that more salts were dissoved into groundwater. It could be caused by the acidic geochemistry condition discussed above or an anthropogenic source since sulfate is mobile in soils and can get into groundwater via surface water infiltration. Another potential reseaon is the natural occurrence of sulfide minerals in the soil, such as pyrite. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.
- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-106S, MW-106S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR unit; therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.4 TDS at MW-106S

The TDS SSI identified at MW-106S is a result of the acidic groundwater geochemistry condition, sodium sulfate source, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

 TDS was detected in MW-106S at a concentration of 1090 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 765.5 mg/L and the maximum TDS

TRC Environmental Corporation | Entergy Arkansas, LLC Alternate Source Demonstration – Entergy White Bluff Plant concentrations (196 mg/L to 421 mg/L) detected in the three Stratum I background wells (MW-101S, MW-102S, and MW-104S). Compared to the value of 980 mg/L in the June 2021 sample, the TDS concentration increased by 11%, which indicated that more salts were dissoved into groundwater. As discussed in Section 2.2, the Jackson Group groundwater is sodium- and calcium-sulfate water type. Sodium could be another main contribution to the TDS exceedance with calcium and sulfate. High sodium concentration can also cause the fluoride exceedance. The acidic groundwater could be one of the potential reasons. An alternate source containing sodium sulfate should also be considered, which can be mineral dissolution, surface water flux or atmospheric deposition.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-106S, MW-106S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may be impacting the MW-106S monitoring results.

3.5 Boron at MW-110S

The Boron SSI identified at MW-110S is a result of the acidic groundwater geochemistry condition and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

Boron was detected in MW-110S at a concentration of 1.47 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 1.299 mg/L. Compared to the value of 1.83 mg/L in the June 2021 sample, the boron concentration decreased by 24%. The Mann-Kendal statistic of 102 exceeded the critical value of 58 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, the main factors that may influence boron concentration in groundwater are pH and EC. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron in groundwater will increase with the increasing of EC. The historical data review shows the relatively low salts concentrations in MW-110S area, which indicates EC is not the factor causing the boron increasing trend. A low pH value of 4.55 was detected in the December 2021 sample. The acidic groundwater condition favors the boron dissolution from soil and mineral surface. Based on the consistent

boron levels in groundwater, the significant increasing trend of boron is more likely relative to the acidic geochemistry condition other than a contamination source.

Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-110S, it appears that MW-110S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-110S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.6 Calcium at MW-110S

The calcium SSI identified at MW-110S is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Calcium was detected in MW-110S at a concentration of 6.16 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 5.915 mg/L. Compared to the value of 16.1 mg/L in the June 2021 sample, the calcium concentration decreased by 62%. Background concentrations of calcium have varied from 14 to 98.5 mg/L at upgradient monitoring well MW-101S, which is greater than the calcium concentration of 6.16 mg/L detected in MW-110S during the 2nd Half 2021 semiannual detection monitoring event. Therefore, the calcium exceedance is within the range of natural variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL underlying and adjoining the CCR Unit, and the CCR Unit relative to MW-110S, MW-110S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the unit; therefore, concentrations measured in MW-110S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.7 Boron at MW-111S

The boron SSI identified at MW-111S is a result of natural groundwater geochemistry conditions with low pH and high EC, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Boron was detected in MW-111S at a concentration of 5.82 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 4.209 mg/L. Compared to the value of 4.86 mg/L in the June 2021 sample, the boron concentration increased by 20%. The Mann-Kendal statistic of 95 exceeded the critical value of 58 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, the main factors that may influence boron concentration in groundwater are pH and EC. Decreasing of pH will increase the

dissolution of boron from the mineral surfaces. Boron in groundwater will increase with the increasing of EC. A low pH value of 3.76 was detected in the December 2021 sample and the pH of groundwater in the area of MW-111S stayed in a steady range of 3.6 to 4.5 in the past five years. The acidic groundwater condition favors the boron dissolution from soil and mineral surface. The increasing of calcium, sulfate and TDS in MW-111S demonstrates that the groundwater in this area has relatively high EC, which will cause the increasing of boron concentration in groundwater. Based on the consistent boron levels, the significant increasing trend of boron is more likely relative to the geochemistry conditions with low pH and high EC other than a contamination source.

- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may be impacting the MW-111S monitoring results.

3.8 Calcium at MW-111S

The calcium SSI identified at MW-111S is a result of natural groundwater geochemistry conditions with low pH and high EC, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Calcium was detected in MW-111S at a concentration of 110 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 34.76 mg/L. Compared to the value of 83.5 mg/L in the June 2021 sample, the calcium concentration increased by 32%. Normality analysis of the calcium data set at MW-111S was non-normal requiring trend analysis of the data set to determine a potential significance increase. The Mann-Kendal statistic of 116 exceeded the critical value of 58 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.3, pH and EC could affect calcium concentrations in groundwater. A low pH value of 3.76 was detected in the December 2021 sample and the pH of groundwater in the area of MW-111S stayed in a steady range of 3.6 to 4.5 in the past five years. The acidic condition favors the dissolution of calcium from soil and mineral

surfaces to water phase. The relatively high EC in groundwater discussed above can also increase the calcium concentration. The significant increasing trend of calcium could be a result of the natural geochemistry conditions with low pH and high EC.

- Background concentrations of calcium have varied from 14 to 98.5 mg/L at upgradient monitoring well MW-101S. The calcium concentration of 110 mg/L at MW-110S during the 2nd Half 2021 semiannual detection monitoring event is beyond but close to the top background concnetration. Therefore, the calcium exceedance is still in the range of natural variation in background groundwater quality.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.9 Fluoride at MW-111S

The fluoride SSI identified at MW-111S is a result of natural groundwater geochemistry conditions, potential impact of CCR disposed at the CADL prior to October 19, 2015 and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Fluoride was detected in MW-111S at a concentration of 0.782 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 0.2466 mg/L and the maximum fluoride concentrations of 0.1 to 0.135 mg/L measured in the three Stratum I background monitoring wells (MW-101S, MW-102S, and MW-104S). Compared to the value of 0.604 mg/L in the June 2021 sample, the fluoride concentration increased by 29%. The Mann-Kendal statistic of 112 exceeded the critical value of 58 indicating a significant increasing trend at the 98% confidence level. However, it should be noted that the measured fluoride concentrations are less than the federal primary drinking water MCL of 4.0 mg/L. pH of the groundwater is not an impact of the exceedance since fluoride dissoluction favors alkaline pH. As discussed in Section 2.3, fluoride has positive correlation with both bicarbonate and sodium, and an

inverse relation with calcium. With the increasing trend of calcium in the groundwater, ion exchange process with high sodium and bicarbonate can result in the increasing of fluoride in groundwater. The fluoride increasing trend could also be a result of continuous dissoved salts from the soils and minerals associated with the increased TDS.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.10 Sulfate at MW-111S

The sulfate SSI identified at MW-111S is a result of natural groundwater geochemistry condition of low pH and potential oxidation of sulfide minerals, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Sulfate was detected in MW-111S at a concentration of 841 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 348 mg/L. Compared to the value of 649 mg/L in the June 2021 sample, the sulfate concentration increased by 29%. The Mann-Kendal statistic of 104 exceeded the critical value of 58 indicating a significant increasing trend at the 98% confidence level. The sulfate increasing was consistent with the TDS increasing, which indicated that more salts were dissoved into groundwater. It could be caused by the acidic geochemistry condition discussed above or an anthropogenic source since sulfate is soluble in soils and can get into groundwater via surface water infiltration. Another potential reseaon is the naturally occurrence of sulfide minerals in the soil, such as pyrite. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH. To further investigate this hypothesis, the analysis of ORP is recommended for MW-111S in the next sampling event.

- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.11 TDS at MW-111S

The TDS SSI identified at MW-111S is a result of the acidic groundwater geochemistry conditions with natural occurrence of sulfide minerals, sodium sulfate source, the potential impact of CCR disposed at the CADL prior to October 19, 2015 and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- TDS was detected in MW-111S at a concentration of 1240 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 765.5 mg/L and the maximum TDS concentrations (196 mg/L to 421 mg/L) detected in the three Stratum I background wells (MW-101S, MW-102S, and MW-104S). Compared to the value of 1030 mg/L in the June 2021 sample, the TDS concentration increased by 20%. The Mann-Kendal statistic of 117 exceeded the critical value of 58 indicating a significant increasing trend at the 98% confidence level. As discussed in Section 2.2, the Jackson Group groundwater is sodium- and calcium-sulfate water type. Sodium could be another main contribution to the TDS exceedance with the increasing of calcium and sulfate. High sodium concentration can also cause the fluoride exceedance. The acidic groundwater could be one of the potential reasons. An alternate source containing sodium sulfate should also be considered, which can be mineral dissolution, surface water flux or atmospheric deposition.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the Unit.

Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.12 Calcium at MW-101D

The calcium SSI identified at MW-101D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Calcium was detected in MW-101D at a concentration of 56.3 mg/L in the December 2021 sample, which was consistent with 55.3 mg/L in the June 2021 sample. This concentration exceeded the intrawell prediction limit of 48.1 mg/L. Calcium concentrations measured at MW-118D have ranged from 68.4 to 83.2 mg/L. MW-118D likely represents background groundwater quality for Stratum III, since it is located approximately 1,650 feet to the east of the CCR Unit. Therefore, the calcium exceedance at MW-101D appears to be within the range of variation in background groundwater quality.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-101D, MW-101D is located approximately 325 feet to historic fill areas, but approximately 850 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-101D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.13 Boron at MW-112D

The boron SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

Boron was detected in MW-112D at a concentration of 0.27 mg/L in the December 2021 sample, which was consistent with 0.278 mg/L in the June 2021 sample. This concentration exceeds the intrawell prediction limit of 0.236 mg/L. Boron concentrations measured at MW-118D (background well for Stratum III) have ranged from 0.274 to 0.355 mg/L. Therefore, the boron exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of boron measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of boron at MW-112D likely represents either potential pre-CCR Rule migration from historic fill or background groundwater quality for Stratum III.</p>

3.14 Calcium at MW-112D

The calcium SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Calcium was detected in MW-112D at a concentration of 35.4 mg/L in the December 2021 sample, which was consistent with 55.3 mg/L in the June 2021 sample. This concentration exceeds the intrawell prediction limit of 19.2 mg/L. A pH value of 8.27 was detected at in the December 2021 sample and the historical data review shows MW-112D area has a netural pH condition in groundwater. The relatively low TDS indicated that EC in groundwater is not a factor to the calcium exceedance. Calcium concentrations measured at MW-118D (background well for Stratum III) have ranged from 68.4 to 83.2 mg/L. Therefore, the calcium exceedance at MW-101D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-112D likely represents either potential pre-CCR Rule migration from historic fill or background groundwater quality for Stratum III.</p>

3-12

3.15 TDS at MW-112D

The TDS SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- TDS was detected in MW-112D at a concentration of 275 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 187.6 mg/L. Compared to the value of 292 mg/L in the June 2021 sample, the TDS concentration decreased by 6%. TDS concentrations measured at MW-118D (background well for Stratum III) have ranged from 415 to 484 mg/L. A review of groundwater parameters in Stratum III indicates that sulfate is a great contributor to TDS and the sulfte concentration at MW-112D is very low (less than 4 mg/L). It could be a result of the lack of sulfide minerals in soil. Therefore, the TDS exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of TDS at MW-112D likely represents either potential pre-CCR Rule migration from the historic fill or background groundwater quality for Stratum III.</p>

3.16 Calcium at MW-114D

The calcium SSI identified at MW-114D is a result of natural variation in groundwater quality. The following evidence supports this determination:

Calcium was detected in MW-114D at a concentration of 53.4 mg/L in the December 2021 sample, which was consistent with 51.7 mg/L in the June 2021 sample. This concentration exceeds the intrawell prediction limit of 48.9 mg/L. A pH value of 8 was detected at in the December 2021 sample and the historical data review shows MW-114D area has a netural pH condition in groundwater. Calcium concentrations measured at MW-118D (background well for Stratum III) have ranged from 68.4 to 83.2 mg/L. Therefore, the calcium exceedance at MW-114D is within the range of variation in background groundwater quality and is not a potential environmental concern.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-114D, MW-114D is located 950 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-114D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-114D is located approximately 950 feet from the CCR Unit, any release from the pre-CCR Rule closed portions of the CADL or the CCR Unit would be detected in Stratum III at MW-114D within approximately 95 years, which is significantly longer than either the CADL or the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-114D likely represents background natural groundwater quality for Stratum III.</p>

3.17 Calcium at MW-118D

The calcium SSI identified at MW-118D is a result of natural groundwater geochemistry conditions with high EC. The following evidence supports this determination:

- Calcium was detected in MW-118D at a concentration of 103 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 86.24 mg/L. Compared to the value of 76.4 mg/L in the June 2021 sample, the calcium concentration increased by 35%. The netural pH range of 6.7 to 7.4 at MW-118D indicates that pH of groundwater is not a factor to the calcium exceedance. The increasing sulfate and TDS concentrations can lead to the increasing EC in groundwater, which favors calcium dissolution and thus increases the calcium concentration in groundwater. Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-118D, MW-118D is located 1,650 feet east of the CCR Unit. Therefore, the calcium exceedance detected in MW-118D is more likey relative to the geochemistry conditions with increasing EC rather than to the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-118D is located approximately 1,650 feet from the CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-118D within approximately 165 years, which is significantly longer than either the the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-118D likely represents background natural groundwater quality for Stratum III.</p>

3.18 Fluoride at MW-118D

The fluoride SSI identified at MW-118D is a result of natural variation in groundwater quality. The following evidence supports this determination:

- Fluoride was detected in MW-118D at a concentration of 0.156 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 0.116 mg/L. Compared to the value of 0.305 mg/L in the June 2021 sample, the fluoride concentration decreased by 49%. A historical groundwater parameter data review of MW-118D suggests that it is possible there was an analysis error in June 2021 sampling event and the fluoride concentration of 0.156 mg/L is within the range of natural variation in groundwater quality. No geochemical factor that could increase the fluoride concentration in groundwater was found. Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-118D, MW-118D is located 1,650 feet east of the CCR Unit. Therefore, the concentrations of fluoride measured in MW-118D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-118D is located approximately 1,650 feet from the CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-118D within approximately 165 years, which is significantly longer than either the the CCR Unit has been in operation. Therefore, the concentration of fluoride at MW-118D likely represents background natural groundwater quality for Stratum III.</p>

3.19 Sulfate at MW-118D

The sulfate SSI identified at MW-118D is a result of natural groundwater geochemistry conditions with potential high ORP or an alternative sulfate source. The following evidence supports this determination:

- Sulfate was detected in MW-118D at a concentration of 222 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 157.2 mg/L. Compared to the value of 157 mg/L in the June 2021 sample, the calcium concentration increased by 41%. The increasing of sulfate was consistent with the increasing of TDS, which indicated that more sulfate salts dissoved into groundwater from or through soils. Since sulfate is mobile in soils, anthropogenic sulfate source with surface water infiltration is a potential reason. Another potential reseaon is the naturally occurrence of sulfate into groundwater, which will lead to the increasing of sulfate. Based on the hydrogeology location of Stratum III, the sulfate exceedance is more likely related to geochemistry conditions with sulfide minerals releasing rather than surface water infiltration. To further investigate this hypothesis, the analysis of ORP is recommended for MW-118D in the next sampling event.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-118D, MW-118D is located 1,650 feet east of the CCR Unit. Therefore, the concentrations of sulfate measured in MW-118D may be more reflective of background natural water quality rather than of the CCR Unit.

3-15

As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-118D is located approximately 1,650 feet from the CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-118D within approximately 165 years, which is significantly longer than either the the CCR Unit has been in operation. Therefore, the concentration of sulfate at MW-118D likely represents background natural groundwater quality for Stratum III.</p>

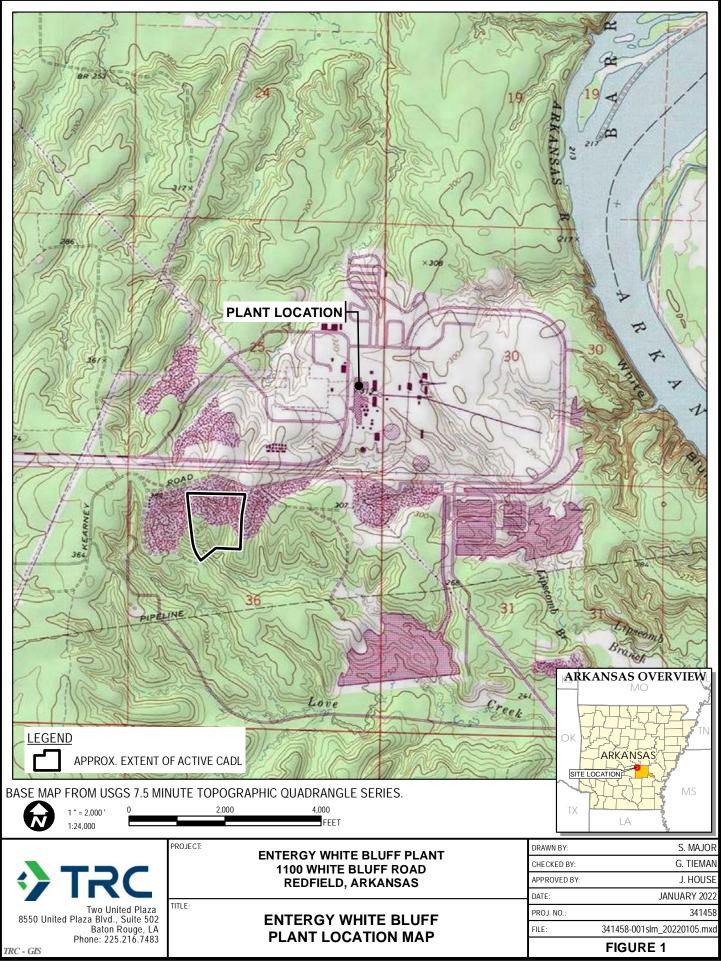
Section 4 Conclusions

The information provided in this report serves as the ASD prepared in accordance with 40 CFR 257.94(e)(2) of the CCR Rule. Statistical evaluation identified 19 potential SSIs in three monitoring wells in Stratums I and four monitoring wells in Stratums III. This ASD has demonstrated the following lines of reasoning that support alternative sources for the identified SSIs:

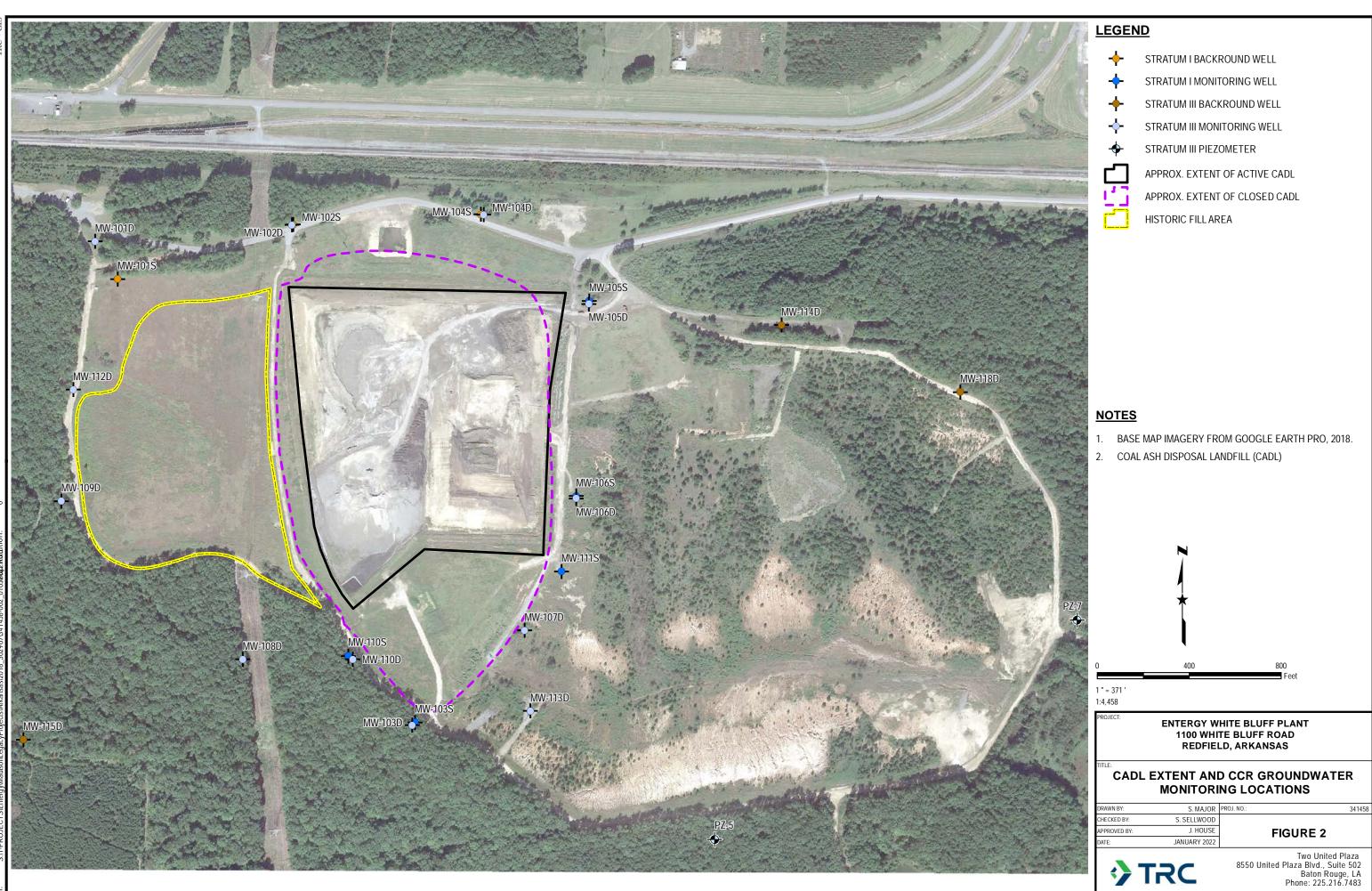
- Low pH detected in Stratums I indicated the acidic groundwater geochemistry conditions in MW-106S, MW-110S and MW111-S. The 11 SSIs identified in Stratums I are related to the naurtal groundwater geochemistry conditions, such as low pH, high electrical conductivity, potential presence of sulfide minerals in soils and relatively high oxidation-reduction potential.
- The 8 SSIs identified in Stratums III are mostly within the natural variation in groundwater quality compared to MW-118D, which likely represents background natural groundwater quality for Stratum III due to its location to CCR Unit and groundwater flow velocities.
- Releases from historic fill or portions of the CADL closed before the effective date of the CCR Rule (October 19, 2015); and/or
- Surface water that has come into contact with on-site CCR and has migrated into the subsurface.

Therefore, the SSIs determined based on statistical analysis of the 2nd Half 2021 semiannual detection monitoring event performed in December of 2021 are not due to a release from the CCR Unit to Stratums I and III of the Jackson Group.Based on the information provided in this ASD report, Entergy will continue to conduct semiannual detection monitoring in accordance with 40 CFR 257.94 at the Certified Monitoring Well Network for the CCR Unit.

- Atekwana, E. A., Atekwana, E. A., Rowe, R. S., Werkema, D. D., & Legall, F. D. (2004). The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics, 56(4), 281–294.
- Banadkooki, F. B., Ehteram, M., Panahi, F., Sh. Sammen, S., Othman, F. B., & EL-Shafie, A. (2020). Estimation of total dissolved solids (TDS) using new hybrid machine learning models. Journal of Hydrology, 587(February), 124989.
- Brindha, K., & Elango, L. (2011). Fluoride in groundwater: Causes, implications and mitigation measures. Fluoride: Properties, Applications and Environmental Management, 113–136.
- Chen, Q., Jia, C., Wei, J., Dong, F., Yang, W., Hao, D., Jia, Z., & Ji, Y. (2020). Geochemical process of groundwater fluoride evolution along global coastal plains: Evidence from the comparison in seawater intrusion area and soil salinization area. Chemical Geology, 552(July), 119779.
- Einsiedl, F., & Mayer, B. (2005). Sources and Processes Affecting Sulfate in a Karstic Groundwater System of the Franconian Alb, Southern Germany. Environmental Science & Technology, 39(18), 7118–7125.
- FTN. 2014. Supplemental Geotechnical and Hydrogeological Investigation Report, Entergy White Bluff Plant Class 3N Landfill. Prepared for Entergy Arkansas, Inc. Little Rock, AR: FTN Associates, Ltd. October 1, 2014.
- FTN. 2017a. Statistical Analysis Plan, Entergy White Bluff Plant. Little Rock, AR: FTN Associates, Ltd.
- FTN. 2017b. Groundwater Sampling and Analysis Plan, Entergy White Bluff Landfill. Little Rock, AR: FTN Associates, LTD.
- Guo, H., Zhang, Y., Xing, L., & Jia, Y. (2012). Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Applied Geochemistry, 27(11), 2187–2196.
- Hájek, M., Jiménez-Alfaro, B., Hájek, O., Brancaleoni, L., Cantonati, M., Carbognani, M., Dedić, A., Díte, D., Gerdol, R., Hájková, P., Horsáková, V., Jansen, F., Kamberović, J., Kapfer, J., Kolari, T. H. M., Lamentowicz, M., Lazarević, P., Mašić, E., Moeslund, J. E., ...


5-1

Horsák, M. (2021). A European map of groundwater pH and calcium. Earth System Science Data, 13(3), 1089–1105.


- Hollis, J. F., Keren, R., & Gal, M. (1988). Boron Release and Sorption by Fly Ash as Affected by pH and Particle Size. Journal of Environmental Quality, 17(2), 181–184.
- Jiang, Y., Wu, Y., Groves, C., Yuan, D., & Kambesis, P. (2009). Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1–4), 49–61.
- Keren, R., & Communar, G. (2009). Boron Sorption on Wastewater Dissolved Organic Matter: pH Effect. Soil Science Society of America Journal, 73(6), 2021–2025.
- Kimambo, V., Bhattacharya, P., Mtalo, F., Mtamba, J., & Ahmad, A. (2019). Fluoride occurrence in groundwater systems at global scale and status of defluoridation State of the art. Groundwater for Sustainable Development, 9(August 2018), 100223.
- Kresse, T.M., P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeier, D.A. Westerman, J.M. Blackstock, and J.L. Battreal. 2014. Aquifers of Arkansas—Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas [USGS Scientific Investigations Report 2014– 5149]. Prepared in Cooperation with the Arkansas Natural Resources Commission. Reston, VA: US Geological Survey. 334 pp.
- Luo, W., Gao, X., & Zhang, X. (2018). Geochemical processes controlling the groundwater chemistry and fluoride contamination in the yuncheng basin, China—an area with complex hydrogeochemical conditions. PLoS ONE, 13(7).
- MDH. (2008). Sulfate in well water. In Minnesota Department of Health, Well Management Section, Environmental Health Division.
- Miao, Z., Brusseau, M. L., Carroll, K. C., Carreón-Diazconti, C., & Johnson, B. (2012). Sulfate reduction in groundwater: Characterization and applications for remediation. Environmental Geochemistry and Health, 34(4), 539–550.
- Mondal, D., Gupta, S., Reddy, D. V., & Nagabhushanam, P. (2014). Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. Journal of Geochemical Exploration, 145, 190–206.
- Olumuyiwa I. Ojo,. (2012). Groundwater: Characteristics, qualities, pollutions and treatments: An overview. International Journal of Water Resources and Environmental Engineering, 4(6), 162–170.

- Palmucci, W., & Rusi, S. (2014). Boron-rich groundwater in Central Eastern Italy: a hydrogeochemical and statistical approach to define origin and distribution. Environmental Earth Sciences, 72(12), 5139–5157.
- Poursaeid, M., Mastouri, R., Shabanlou, S., & Najarchi, M. (2020). Estimation of total dissolved solids, electrical conductivity, salinity and groundwater levels using novel learning machines. Environmental Earth Sciences, 79(19), 1–25.
- Pu, J., Yuan, D., Zhang, C., & Zhao, H. (2012). Hydrogeochemistry and possible sulfate sources in karst groundwater in Chongqing, China. Environmental Earth Sciences 2012 68:1, 68(1), 159–168.
- Ravenscroft, P., & McArthur, J. M. (2004). Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. Applied Geochemistry, 19(9), 1413–1430.
- Razowska-jaworek, L. (2014). Calcium and Magnesium in Groundwater. In Calcium and Magnesium in Groundwater.
- Saxena, V., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: a water-rock interaction study. Environmental Geology, 40(9), 1084–1087.
- Schot, P. P., & Wassen, M. J. (1993). Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. Journal of Hydrology, 141(1–4), 197–217.
- Shi, X., Wang, Y., Jiao, J. J., Zhong, J., Wen, H., & Dong, R. (2018). Assessing major factors affecting shallow groundwater geochemical evolution in a highly urbanized coastal area of Shenzhen City, China. Journal of Geochemical Exploration, 184, 17–27.
- Tabelin, C. B., Hashimoto, A., Igarashi, T., & Yoneda, T. (2014). Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. Science of The Total Environment, 473–474, 244–253.
- TRC. 2017. Statistical Methods Certification, White Bluff Steam Electric Generating Station, Redfield, Arkansas. Prepared for Entergy Arkansas Inc. Baton Rouge: TRC Environmental Corporation.
- TRC. 2018a. Site Conceptual Model: Entergy White Bluff Plant Coal Ash Disposal Landfill, Redfield, Jefferson County, Arkansas. January 2018.

- TRC. 2018b. Groundwater Monitoring System Certification, White Bluff Steam Electric Generating Station, Redfield, Arkansas. Prepared for Entergy Arkansas Inc. Baton Rouge: TRC Environmental Corporation.
- Upadhyaya, D., Survaiya, M. D., Basha, S., Mandal, S. K., Thorat, R. B., Haldar, S., Goel, S., Dave, H., Baxi, K., Trivedi, R. H., & Mody, K. H. (2014). Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. Environmental Science and Pollution Research, 21(5), 3880–3890.
- USEPA. (2008). Drinking Water Health Advisory For Boron. Office of Water U.S. Environmental Protection Agency Washington, DC, 822-R-08–0.
- United States Environmental Protection Agency. 2017. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals, March 8, 2017.
- WHO. (2008). Guidelines for Drinking Water Quality, third ed. World Health Organization, Geneva.

S:\1-PROJECTS\Entergy\MadisonLegacyProjects\Arkansas\2018_302967\341458-001s\m_20220105.mxd -- Saved By: DSTITCHER on 1/5/2022, 15:53:10 PM

341458-002_01052022.mxd

Alternate Source Demonstration

1st Half 2022 Sampling Event

Entergy White Bluff Plant Coal Ash Disposal Landfill Redfield, Jefferson County, Arkansas

December 2022

Prepared For Entergy Arkansas, LLC White Bluff Plant 1100 White Bluff Road Redfield, Arkansas 72132

Jason S. House Senior Project Manager

TRC Environmental Corporation | Entergy Arkansas, LLC Alternate Source Demonstration – Entergy White Bluff Plant Final © 2022 TRC All Rights Reserved

Executive Summary

Entergy Arkansas, LLC (Entergy) performed the most recent semiannual detection monitoring sampling (1st Half 2022) in June 2022 for Cells 1 through 4 of the coal ash disposal landfill (CADL) pursuant to the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* 40 CFR Part 257 (CCR Rule). Cells 1 through 4 of the CADL constitute the coal combustion residuals (CCR) Unit per the CCR Rule. Per 40 CFR 257.94, the samples were analyzed for the Appendix III detection monitoring parameters. Upon receipt of the laboratory analytical results, statistical analysis was performed during March 2022.

In accordance with the statistical analyses, the following 26 statistically significant increases (SSI) above background concentrations were identified in three monitoring wells in Stratum I and four monitoring wells in Stratum III, based on either increasing trends at 98% confidence levels using Sen's Slope test and/or intrawell prediction limits statistical analyses:

- Calcium, fluoride, sulfate and TDS (MW-106S);
- Boron, sulfate and TDS (MW-110S);
- Boron, calcium, chloride, fluoride, sulfate and TDS (MW-111S);
- Calcium (MW-101D);
- TDS (MW-106D);
- TDS (MW-109D);
- Boron, calcium, chloride and TDS (MW-112D);
- Chloride (MW-113D);
- Calcium and TDS (MW-114D);
- Calcium (MW-115D); and
- Calcium and TDS (MW-118D).
- The information provided in this report serves as Entergy's alternate source demonstration (ASD) prepared in accordance with 40 CFR 257.94(e)(2) and successfully demonstrates that the SSIs are not due to a release from the CCR Unit to groundwater, but are due to the following:
- Natural groundwater geochemistry conditions such as pH, electrical conductivity (EC), oxidationreduction potential (ORP) and the naturally occurrence of sulfide minerals;
- Natural variation in groundwater quality;
- Releases from historic fill or portions of the CADL closed before the effective date of the CCR Rule (October 19, 2015); and/or

TRC Environmental Corporation | Entergy Arkansas, LLC Alternate Source Demonstration – Entergy White Bluff Plant • Surface water that has come into contact with on-site CCR and has migrated into the subsurface.

Therefore, based on the information provided in this ASD report, Entergy will continue to conduct semiannual detection monitoring for Appendix III constituents in accordance with 40 CFR 257.94 at the certified groundwater monitoring well system (Certified Monitoring Well Network) for the CCR Unit and will continue to implement improvements to stormwater management practices at the CADL.

Executive	Summary	ii
Section 1 In	ntroduction	1-1
1.1	Background	1-1
	1.1.1 Groundwater Monitoring and Statistical Analysis	
1.2	Purpose	
Section 2 H	Iydrogeology and Geochemistry	2-1
2.1	Site Hydrogeology	2-1
2.2	General Groundwater Quality	2-2
2.3	Groundwater Geochemistry	2-3
	2.3.1 Boron in Groundwater	2-3
	2.3.2 Fluoride in Groundwater	2-4
	2.3.3 Sulfate in Groundwater	2-5
	2.3.4 Calcium in Groundwater	2-5
	2.3.5 TDS in Groundwater	2-6
Section 3 A	Alternate Source Demonstration	3-1
3.1	Calcium at MW-106S	
3.2	Fluoride at MW-106S	3-3
3.3	Sulfate at MW-106S	
3.4	TDS at MW-106S	
3.5	Boron at MW-110S	3-5
3.6	Sulfate at MW-110S	
3.7	TDS at MW-110S	
3.8	Boron at MW-111S	
3.9	Calcium at MW-111S	
3.10	Chloride at MW-111S	
3.11	Fluoride at MW-111S	
3.12	Sulfate at MW-111S	
3.13	TDS at MW-111S	
3.14	Calcium at MW-101D	
3.15	TDS at MW-106D	
3.16	TDS at MW-109D	
3.17	Boron at MW-112D	
3.18	Calcium at MW-112D	

3.19	Chloride at MW-112D	3-15	
3.20	TDS at MW-112D	3-15	
3.21	Chloride at MW-113D	3-16	
3.22	Calcium at MW-114D	3-16	
3.23	TDS at MW-114D	3-17	
3.24	Calcium at MW-115D	3-18	
3.25	Calcium at MW-118D	3-18	
3.26	TDS at MW-118D	3-19	
Section 4 Conclusions			
Section 5 References			

List of Figures

Figure 1 Site Location Map Figure 2 CADL Extent and CCR Groundwater Monitoring Locations

1.1 Background

Entergy Arkansas, LLC (Entergy) operates the Entergy White Bluff Plant (Plant), a coal-fired power plant, to generate electricity. The Plant is located at 1100 White Bluff Road in Redfield, Jefferson County, Arkansas as shown on Figure 1. Coal combustion residuals (CCR) are produced as part of the electrical generation operations. The Plant has been generating and disposing of CCR in a portion of the on-site coal ash disposal landfill (CADL) since it began operations in 1981. The CADL is a Class 3N non-commercial industrial landfill and operates under Arkansas Division of Environmental Quality (ADEQ) Solid Waste Permit No. 0199-S3N-R3.

The ADEQ-permitted CADL consists of approximately 153-acres at the Plant and encompasses the following three areas:

- Approximately 50-acre portion of the CADL historically used for CCR disposal from 1981 until prior to the effective date of the CCR Rule (October 19, 2015). CCR was placed into ravines. This area was closed in accordance with the Plant's original solid waste permit (TRC, 2018a);
- Cells 1 through 4, which are the current cells used for CCR disposal and were constructed on top of, and adjacent to, the above-noted closed CCR disposal areas prior to the effective date of the CCR Rule. Cells 1 through 4 encompass approximately 30 acres and were constructed as follows:
 - Cells 1, 2, and 3 were constructed with an 18-inch thick compacted clay bottom liner;
 - Cell 4 was constructed with a two-foot thick compacted clay bottom liner and a leachate collection system; and
- Approximately 100-acre portion of the CADL that is currently undeveloped and may be used for CCR and/or non-CCR disposal.

In addition to the current 153-acre permitted landfill, there is an approximately 25 acre area to the immediate west of Cells 1 through 4 where during the initial period of operation of the Plant, ash was placed pursuant to the permits issued at that time. This historic fill area is covered with soil and vegetated.

Cells 1 through 4 accept CCR for disposal in accordance with the federal *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule* (CCR

Rule), effective October 19, 2015, and subsequent Final Rules promulgated by the United States Environmental Protection Agency (USEPA). Cells 1 through 4 comprise the CCR management unit (CCR Unit) per the CCR Rule and are the focus of this ASD. The approximate limits of Cells 1 through 4, the closed disposal areas, and the undeveloped, future disposal areas within the ADEQ-permitted footprint of the CADL are shown in Figure 2.

Historical CCR management by Entergy has consisted of the following activities:

- Beneficial use in local construction projects;
- Beneficial use as roadbed material at the CADL; and
- Placement into the CADL.

1.1.1 Groundwater Monitoring and Statistical Analysis

In accordance with 40 CFR 257.90 through 257.94, Entergy installed a groundwater monitoring system for Cells 1 through 4 and has collected samples from the Certified Monitoring Well Network for laboratory analysis for CCR constituents and performed statistical analysis of the collected samples. Entergy installed a Certified Monitoring Well Network for the CCR Unit in accordance with 40 CFR 257.90 and 257.91. The Certified Monitoring Well Network consists of 23 wells installed into two stratigraphic units as follows:

- Eight wells are installed into an upper silty and clayey sand unit (Stratum I), which are designated as "S" monitoring wells; and
- Fifteen wells are installed into a lower silty and clayey sand and clay unit (Stratum III), which are designated as "D" monitoring wells.

Pursuant to 40 CFR 257.91(f), Entergy obtained certification by a qualified Arkansas-registered professional engineer (P.E.) stating that the Certified Monitoring Well Network has been designed and constructed to meet the requirements of 40 CFR 257.91 (see Groundwater Monitoring System Certification, TRC, February 26, 2018) of the CCR Rule (TRC 2018b).

As discussed above, Stratum I and Stratum III are currently being monitored pursuant to the CCR Rule. A groundwater sampling and analysis program including selection of statistical procedures to evaluate groundwater data was prepared per the CCR Rule (see Groundwater Sampling and Analysis Plan (FTN, 2017b)). Eight quarterly background CCR detection monitoring events were performed from October 2015 through June 2017 in accordance with 40 CFR 257.93(d) and 257.94(b). The eight quarterly detection monitoring background samples were analyzed for Appendix III to Part 257 – Constituents for Detection Monitoring and for Appendix IV to Part 257 – Constituents for Assessment Monitoring.

Following completion of quarterly background detection monitoring in June 2017, Entergy implemented semiannual detection monitoring per 40 CFR 257.94(b) for the CCR Unit. The first semiannual detection monitoring event was performed in August 2017 (2nd Half 2017). Subsequent detection monitoring events, with associated verification sampling when appropriate, have been performed on a semiannual basis since August 2017. Entergy performed the most recent semiannual detection monitoring event (1st Half 2022) in June 2022. Per the CCR Rule, the semiannual detection monitoring event samples were analyzed for Appendix III constituents.

After completion of each semiannual detection monitoring event, the Appendix III laboratory analytical data were statistically evaluated to identify potential SSIs for Appendix III constituents above background levels. In accordance with 40 CFR 257.93(f)(6), Entergy obtained certification by a qualified Arkansas-registered P.E. stating that the selected statistical method is appropriate for evaluating the groundwater monitoring data for the CCR Unit (see Statistical Methods Certification, TRC, October 16, 2017).

Pursuant to 40 CFR 257.93(h), statistical analysis and re-analysis of the laboratory analytical data were performed to identify potential SSIs for the 1st Half 2022 semiannual detection monitoring event. A total of 26 SSIs were identified for six Appendix III constituents: boron, calcium, chloride, fluoride, sulfate, and total dissolved solids (TDS). SSIs were identified in three Stratum I and eight Stratum III monitoring wells.

1.2 Purpose

Pursuant to 40 CFR 257.94(e)(2), Entergy may demonstrate that a source other than the CCR Unit caused the SSIs identified or that the SSIs resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The purpose of this report is to provide written documentation of the successful ASD for the SSIs identified for the 1st Half 2022 semiannual detection monitoring event, pursuant to 40 CFR 257.94(e)(2) of the CCR Rule.

2.1 Site Hydrogeology

Historical subsurface investigations have identified the following three stratigraphic horizons of the Jackson Group (Kresse, et. al., 2014) and their associated hydrogeology for the CCR Unit and the CADL:

• Stratum 1. Interbedded Clay, Silt, and Sand.

Stratum 1 ranges from approximately 10 to 54-feet thick and consists of interbedded silty sand (SM), clayey sand (SC), silts (ML and MH), and clay (CL and CH). Occasional deposits of carbonaceous material are present throughout Stratum 1. Based on the results of in-situ slug tests, hydraulic conductivity values range from 4.0 x 10^{-5} to 4.0×10^{-4} cm/sec;

Stratum 2. Clay.

Stratum 2 ranges from approximately 14 to 49-feet thick and consists of a very stiff clay (CH) with occasional silt and/or very fine-grained sand laminations. Occasional deposits of carbonaceous mater are present throughout Stratum 2. Based on the results of in-situ slug tests, hydraulic conductivity values range from 4.7×10^{-6} to 1.4×10^{-8} cm/sec;

• Stratum 3. Clayey and Silty Sand.

Stratum 3 ranges from approximately 5 to 19-feet thick and consists primarily of clayey sand (SC) and/or silty sand (SM). A poorly graded, fine-grained sand (SM) was identified in one piezometer. The upper limits of Stratum 3 were encountered at elevations of 263 to 289-feet NGVD (depths ranging from 19 to 97-feet bgs). Based on results of in-situ slug tests, hydraulic conductivity was determined to be spatially variable and ranged from 4.2×10^{-7} to 2.5×10^{-4} cm/sec; and

Underlying Clay.

A clay unit underlies Stratum 3 and is described as a very dark grey clay that is highly laminated with light grey silt and very fined-grained sand. Based on results of an insitu slug test, the vertical hydraulic conductivity was 3.7×10^{-8} cm/sec.

It was concluded that Stratum 1 was not laterally continuous across the approximately 153-acre landfill. The estimated calculated seepage velocities in Stratums 1 and 3 were as follows:

- Stratum 1: 2 to 20 feet/year; and
- Stratum 3: <1 to 10 feet/year.

While Stratum I and Stratum III have been monitored per the CCR Rule since October 2015, it is unclear whether Stratum I and Stratum III are aquifers that are capable of providing sustainable well yields consistent with USEPA aquifer use criteria (*e.g.*, 0.1 gallons per minute). This uncertainty is based on the following evidence:

- Stratum I is present to the west of the CADL and only present within the western portion of the ADEQ-permitted boundaries of the CADL, approximately corresponding to the boundaries of the closed portions of the CADL. The CCR Unit and Stratum I are not continuous to the east across the entire footprint of the CADL;
- In-situ hydraulic conductivities are low to very low for both Stratum I and Stratum III, indicating that sustainable well yields may not be obtainable from Stratum I and Stratum III at volumes that meet the minimum USEPA well use criteria (*e.g.*, 0.1 gallons per minute); and
- During the quarterly and semiannual detection monitoring events performed from October 2015 through June 2022, which have been performed using the low-flow purge and sample methodology, the sampling teams have consistently documented that turbidity values are often greater than 10 Nephelometric Turbidity Units (NTU). Furthermore, wells have been pumped dry during sampling for both Stratum I and Stratum III, indicating that neither sustainable well yields nor useable drinking water are associated with Stratum I and Stratum III.

To evaluate this uncertainty, Entergy began performing hydrogeologic investigations during 2019 and 2020, continuing through 2022 to evaluate both the stratigraphy and hydrogeology beneath the CCR Unit and to identify the aquifer(s) making up the uppermost aquifer system at the CCR Unit and CADL and the appropriateness of the current Certified Monitioring Well Network.

2.2 General Groundwater Quality

Regionally, groundwater quality in the Jackson Group consists of a sodium- and calcium-sulfate water type, with generally poor water quality (FTN 2014, Kresse et. al 2014). Reported water quality concentrations for select secondary drinking water contaminants compared to USEPA secondary maximum contaminant levels (MCLs) are provided in the table below.

	Concentration Range		USEPA
Constituent	Low	High	Secondary MCL
Iron (mg/L)	0.05	19	0.3
pH (s.u.)	2.9	8.0	6.5 - 8.5
Sulfate (mg/L)	0.6	3,080	250
TDS (mg/L)	11	5,330	500

As noted in the table above, the natural range of groundwater quality within the Jackson Group, which includes both Stratum I and Stratum III, exceeds the secondary drinking water MCLs established by the USEPA for drinking water or, in the case of pH, is less than its secondary MCL. Finally, the results of historical groundwater monitoring at the Plant conducted from 1991 through 1996 showed that normal indicator parameters were masked by naturally elevated concentrations of the monitored constituents (FTN 2014, TRC 2018a).

2.3 Groundwater Geochemistry

Understanding the geochemistry of groundwater is essential to examining the groundwater monitoring data, explaining the relationships between the characteristics, and analyzing natural as well as anthropogenic impacts on groundwater systems. Source apart, geochemical processes play an important role in controlling the chemical composition of groundwater, including carbonate equilibrium, oxidation-reduction reactions and adsorption-desorption processes. Based the site geological conditions, several groundwater parameters are discussed as follows, including boron, fluoride, sulfate, calcium, and TDS.

2.3.1 Boron in Groundwater

Boron in normally considered as a minor constituent in groundwater as it is generally present in low concentrations (Palmucci & Rusi, 2014). Source apart, the primary origin of boron in groundwater is the process of sorption and desorption to the mineral surfaces including rocks and soils (Ravenscroft & McArthur, 2004). The regulatory guideline values of boron in drinking water are given at 0.5 mg/L by WHO and 0.9 mg/L by USEPA in human consumption for longterm exposure (WHO, 2008; USEPA, 2008). Boron is often cited as contamination tracer and usually occurs as a non-ionized form as H₃BO₃ in soils at pH<8.5, but above this pH, it exists as an anion, B(OH)₄ (Upadhyaya et al., 2014).

The factors that may influence the boron concentration in groundwater include weathering, human activity, evaporative concentration, ion-exchange, electrical conductivity (EC), and pH. Ravenscroft & McArthur (2004) studied the mechanism of regional boron enrichment groundwater and the results indicated that the main process caused high boron enriched in groundwater was the flushing by fresh groundwater other than geolofical setting, climate or age. The desorption of Boron from mineral surfaces could be affected by pH, ionic strength, salinity and HCO₃/CO₃. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron adsorption favors high pH and boron desorption favors low pH on rocks, soils and organic matters (Hollis et al., 1988; Keren & Communar, 2009; Tabelin et al., 2014).

A few more research studies confirmed that the presence of boron in groundwater depends on the EC (salinity), such that it increases with increasing EC. Halim et al. (2010) reported that the increasing of Cl⁻ concentration contributes to increase in EC value since a strong linear correlation ($R^2 = 0.88$) between EC and Cl⁻ was observed. Palmucci & Rusi (2014) observed a clear correlation between the high concentrations of boron and the chloride-sodium facies, which are characterized by high saline content, negative redox potential, and low value of the SO_{4²}/Cl⁻ ratio. Rodriguez-Espinosa et al. (2020) found that the Boron concentration in groundwater was related to the SO_{4²} and age affect.

Regarding to the Boron concentration level on the sites, the main source of Boron is more natural than anthropogenic. Therefore, the detected increasing of Boron concentration is likely due to the geochemistry condition changes, such as pH, ion exchanges, EC and salinity.

2.3.2 Fluoride in Groundwater

The common natural source of fluoride in groundwater is the dissolution of natural fluoridebearing mineral, such as fluorspar, fluorapatite, amphiboles, hornblende, tremolite and biotite (Luo et al., 2018). The natural concentration of fluoride in groundwater depends on the geological, chemical and physical characteristics of the aquifer, the porosity and acidity of the soil and rocks, the surrounding temperature, the action of other chemical elements, depth of the aquifer and intensity of weathering (Brindha & Elango, 2011). Due to the concentration range of this site, geochemical process is the main factor controlling fluoride in groundwater.

Ion exchange, evaporation, adsorption-desorption, ion competition, mixing, salinization and anthropogenic pollution are geochemical processes that can take place and cause the occurrence of fluoride in groundwater (Luo et al., 2018). Main factors that might cause the increase of fluoride concentration in groundwater include alkaline pH, high concentration of sodium and bicarbonate, and low concentration of calcium.

Alkaline pH can increase the fluoride dissolution from mineral surfaces into groundwater. Saxena & Ahmed (2001) observed that alkaline conditions with pH ranging between 7.6 and 8.6 are favorable for dissolution of fluorite mineral from the host rocks.

Sodium bicarbonate type waters are typical of high fluoride waters. Many research studies have demonstrated positive correlations between fluoride and both bicarbonate and sodium as well as an inverse relation between fluoride and calcium. (Mondal et al., 2014; Guo et al., 2012; Chen et al., 2020). The chemical reactions for the dissolution of fluoride in the presence of high bicarbonate and sodium, and low calcium content is described as follows (Kimambo et al., 2019):

$$Na^+$$
 + +HCO₃⁻ → NaHCO₃
CaF₂ + +2NaHCO₃ → CaCO₃ + 2Na⁺ + 2F⁻ + H₂O + CO₂

Luo et al. (2018) reported that cation exchange can increase the fluoride concentration when increasing the Na/Ca molar ratio via ion complexation, and salt effect can further increase the fluoride dissolution from mineral surfaces.

In addition, evaporation is another potential reason to increase the fluoride concentration in shallow groundwater. Evaporation could directly remove water from shallow aquifers and elevate the fluoride concentration. Evaporation could increase ion concentrations, leading to the precipitation of some major minerals, reducing the calcium concentration, and favoring the dissolution of fluoride. Anthropogenic sources may also increase the fluoride in groundwater, such as pesticide and fertilizer use, and industrial waste discharge.

2.3.3 Sulfate in Groundwater

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. There are many potential sources of sulfate including mineral dissolution, atmospheric deposition, and other anthropogenic sources (mining, fertilizer, synthetic detergents, industrial wastewater etc.) (Miao et al., 2012). As water moves through soil and rock formations that contain sulfate minerals, some of the sulfate dissolves into the groundwater. Minerals that contain sulfate include magnesium sulfate (Epsom salt), sodium sulfate (Glauber's salt), and calcium sulfate (gypsum). Gypsum is an important contributor to the high levels of sulphate in many aquifers of the world. Higher levels of sulfate in groundwater are common in the western part of the United States (MDH, 2008).

Sulfate is mobile in soil and inputs to soil will impact groundwater eventually. Many research studies indicated that atmospheric deposition, dissolution of gypsum, oxidation of sulfide mineral and anthropogenic inputs will contribute to sulfate. Based on the geological condition of the site, atmospheric deposition and anthropogenic activities could be the main factors (Einsiedl & Mayer, 2005; Pu et al., 2012).

2.3.4 Calcium in Groundwater

Calcium is one of the most important ionic constituents in groundwater (Razowska-jaworek, 2014). Water-rock interaction occurs when water meets rocks or minerals, limestone, marble, calcite, dolomite, gypsum, fluorite and apatite. Natural dissolution of carbonate rocks and minerals is the primary source of calcium in groundwater (Jiang et al., 2009). Calcium is an important determinant of water hardness (Ca²⁺), while magnesium is the other hardness determinant. The most common shallow groundwater type is Ca-HCO₃ dominated and Ca(Mg)-HCO₃ dominated.

A literature review indicates the major factors that may influence the calcium concentration in groundwater include rock weathering, pH, electrical conductivity and anthropogenic activities (mining, concrete material dissolution, fertilizer etc.) (Hájek et al., 2021; Schot & Wassen, 1993; Shi et al., 2018). Based on the geological condition of the site, pH, electrical conductivity and anthropogenic activities could be the potential reasons for the calcium SSI.

2.3.5 TDS in Groundwater

Total dissolved solids represent the combined total of inorganic and organic substances contained in the groundwater, and it can be a general indicator of water quality. These solids are primarily minerals, salts, and organic matters, which may originate from sources such as weathering of minerals, urban runoff, sewage, effluent discharges, agricultural, decaying organisms, and other human activities (de-icing roads, water softer use). Common salts that contribute to TDS are sodium, chloride, calcium, magnesium, potassium, sulfates, and bicarbonates (Olumuyiwa I. Ojo, 2012).

TDS levels in groundwater is usually higher than surface water due to the longer contact time with the underlying rocks and sediments. Since many minerals are water soluble, high concentrations can accumulate over time through the constantly reoccurring process of precipitation and evaporation.

TDS is related to other water quality parameters like hardness, which may occur if the high TDS content is due to the presence of carbonates. A few research studies simulated the relationship between TDS and other groundwater parameters such as EC and salinity, using different models. Due to the complicated geological conditions, the observation was not consistent at different study sites (Atekwana et al., 2004; Banadkooki et al., 2020; Poursaeid et al., 2020).

Section 3 Alternate Source Demonstration

Pursuant to 40 CFR 257.94(e)(2), Entergy may demonstrate that a source other than the CCR Unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. As discussed previously, the 1st Half 2022 semiannual detection monitoring event was performed in June 2022. Statistical analysis of the 1st Half 2022 semiannual detection monitoring data was performed pursuant to 40 CFR 257.93(f) and (g) and in accordance with the Statistical Methods Certification (TRC 2017b) and the Statistical Analysis Plan (FTN 2017a). Based on either increasing trends at 98% confidence levels using Sen's Slope test and/or intrawell prediction limits statistical analyses, the following 26 SSIs were identified:

- Calcium, fluoride, sulfate and TDS (MW-106S);
- Boron, sulfate and TDS (MW-110S);
- Boron, calcium, chloride, fluoride, sulfate and TDS (MW-111S);
- Calcium (MW-101D);
- TDS (MW-106D);
- TDS (MW-109D);
- Boron, calcium, chloride and TDS (MW-112D);
- Chloride (MW-113D);
- Calcium and TDS (MW-114D);
- Calcium (MW-115D); and
- Calcium and TDS (MW-118D).

Other Appendix III constituent concentrations were within their trends at 98% confidence levels using Sen's slope test and/or intrawell prediction limits in the CCR Rule groundwater monitoring system wells.

A discussion for each of the individual SSIs identified for the Stratum I and III wells and associated evidence demonstrating that the 25 SSIs were not caused by a release from the CCR Unit is provided in the subsections below.

3.1 Calcium at MW-106S

The potential SSIs identified at MW-106S (calcium, fluoride, sulfate, and TDS) are a result of the acidic geochemistry condition in groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, or potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Calcium was detected in MW-106S at a concentration of 30.0 mg/L in the June 2022 sample. As discussed in Section 2.3, pH and EC could affect calcium concentrations in groundwater. A low pH value of 4.01 was detected in the June 2022 sample and the historical data review shows pH in MW-106S stays in a steady range of 3.6 4.5, which indicates the groundwater in this area is acidic and it was related to pre-CCR Rule disposal source or natural geochemistry conditions. The acidic groundwater condition favors the dissolution of calcium from soil and mineral surfaces to water phase. The significant increasing trend of calcium from 16 mg/L in 2015 to 30 mg/L in 2022 could be a result of the acidic geochemistry condition. The increasing cation and anion concentrations will also lead to the increasing EC, which will affect other metals dissolution.
- The concentrations of calcium in MW-101S, which is a background well, have varied from 14 to 98.5 mg/L during the overall time period of CCR detection monitoring. The calcium concentration of 98.5 mg/L for MW-101S is greater than the calcium concentration of 30.0 mg/L measured at MW-106S during the 1st Half 2022 semiannual detection monitoring event. Therefore, the calcium concentration measured at MW-106S is within the range of natural variation in background groundwater quality.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-106S, it appears that MW-106S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-106S are likely more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

3.2 Fluoride at MW-106S

The Fluoride SSI identified at MW-106S is a result of potential favorable geochemistry condition in groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Fluoride was detected in MW-106S at a concentration of 0.661 mg/L in the June 2022 sample, which was consistent with 0.681 mg/L in the Decmber 2021 sample. This concentration exceeded the intrawell prediction limit of 0.545 mg/L and the maximum fluoride concentrations of 0.1 to 0.135 mg/L measured in the three Stratum I background monitoring wells (MW-101S, MW-102S, and MW-104S). However, it should be noted that the measured fluoride concentrations are less than the federal primary drinking water maximum contaminant level (MCL) standard of 4.0 mg/L.
- The fluoride concentration in MW-106S stayed in a narrow range of 0.6-0.68 mg/L in the past two years. pH of the groundwater is not an impact of the exceedance since fluoride dissolution favors alkaline pH. As discussed in Section 2.3, fluoride has positive correlation with both bicarbonate and sodium, and an inverse relation with calcium. With the increasing trend of calcium in the groundwater, ion exchange process with high sodium and bicarbonate can result in the increasing of fluoride in groundwater.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-106S, it appears that MW-106S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.

3.3 Sulfate at MW-106S

The sulfate SSI identified at MW-106S is a result of natural geochemistry condition in soil and groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

- Sulfate was detected in MW-106S at a concentration of 633 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 538 mg/L. It could be caused by the acidic geochemistry condition discussed above or an anthropogenic source since sulfate is mobile in soils and can get into groundwater via surface water infiltration. Another potential reseaon is the natural occurrence of sulfide minerals in the soil, such as pyrite. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may have impacted the MW-106S monitoring results.
- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-106S, MW-106S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR unit; therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.4 TDS at MW-106S

The TDS SSI identified at MW-106S is a result of the acidic groundwater geochemistry condition, sodium sulfate source, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-106S. The following evidence supports this determination:

TDS was detected in MW-106S at a concentration of 920 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 765.5 mg/L and the maximum TDS concentrations (196 mg/L to 421 mg/L) detected in the three Stratum I background wells (MW-101S, MW-102S, and MW-104S). As discussed in Section 2.2, the Jackson Group groundwater is sodium- and calcium-sulfate water type. Sodium could be another main

contribution to the TDS exceedance with calcium and sulfate. High sodium concentration can also cause the fluoride exceedance. The acidic groundwater could be one of the potential reasons. An alternate source containing sodium sulfate should also be considered, which can be mineral dissolution, surface water flux or atmospheric deposition.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-106S, MW-106S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-106S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-106S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-106S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-106S, it appears likely that surface water infiltration may be impacting the MW-106S monitoring results.

3.5 Boron at MW-110S

The Boron SSI identified at MW-110S is a result of the acidic groundwater geochemistry condition and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Boron was detected in MW-110S at a concentration of 2.03 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 1.299 mg/L. As discussed in Section 2.3, the main factors that may influence boron concentration in groundwater are pH and EC. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron in groundwater will increase with the increasing of EC. The historical data review shows the relatively low salts concentrations in MW-110S area, which indicates EC is not the factor causing the boron increasing trend. A low pH value of 5.49 was detected in the June 2022 sample. The acidic groundwater condition favors the boron dissolution from soil and mineral surface. Based on the consistent boron levels in groundwater, the significant increasing trend of boron is more likely relative to the acidic geochemistry condition other than a contamination source.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-110S, it appears that MW-110S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore,

concentrations measured in MW-110S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.6 Sulfate at MW-110S

The sulfate SSI identified at MW-110S is a result of natural geochemistry condition in soil and groundwater, potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Sulfate was detected in MW-110S at a concentration of 244 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 211.3 mg/L. It could be caused by the acidic geochemistry condition discussed above or an anthropogenic source since sulfate is mobile in soils and can get into groundwater via surface water infiltration. Another potential reseaon is the natural occurrence of sulfide minerals in the soil, such as pyrite. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-110S, it appears that MW-110S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-110S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.7 TDS at MW-110S

The TDS SSI identified at MW-110S is a result of the acidic groundwater geochemistry condition, sodium sulfate source, potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- TDS was detected in MW-110S at a concentration of 466 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 429.9 mg/L and the maximum TDS concentrations (196 mg/L to 421 mg/L) detected in the three Stratum I background wells (MW-101S, MW-102S, and MW-104S). As discussed in Section 2.2, the Jackson Group groundwater is sodium-and calcium-sulfate water type. Sodium could be another main contribution to the TDS exceedance with calcium and sulfate. High sodium concentration can also cause the fluoride exceedance. The acidic groundwater could be one of the potential reasons. An alternate source containing sodium sulfate should also be considered, which can be mineral dissolution, surface water flux or atmospheric deposition.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL underlying the CCR Unit, and the CCR Unit relative to MW-110S, it appears that MW-110S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore,

concentrations measured in MW-110S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.8 Boron at MW-111S

The boron SSI identified at MW-111S is a result of natural groundwater geochemistry conditions with low pH and high EC, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- Boron was detected in MW-111S at a concentration of 5.39 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 4.209 mg/L. As discussed in Section 2.3, the main factors that may influence boron concentration in groundwater are pH and EC. Decreasing of pH will increase the dissolution of boron from the mineral surfaces. Boron in groundwater will increase with the increasing of EC. A low pH value of 4.05 was detected in the June 2022 sample and the pH of groundwater in the area of MW-111S stayed in a steady range of 3.6 to 4.5 in the past five years. The acidic groundwater condition favors the boron dissolution from soil and mineral surface. The increasing of calcium, sulfate and TDS in MW-111S demonstrates that the groundwater in this area has relatively high EC, which will cause the increasing of boron concentration in groundwater. Based on the consistent boron levels, the significant increasing trend of boron is more likely relative to the geochemistry conditions with low pH and high EC other than a contamination source.
- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may be impacting the MW-111S monitoring results.

3.9 Calcium at MW-111S

The calcium SSI identified at MW-111S is a result of natural groundwater geochemistry conditions with low pH and high EC, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- Calcium was detected in MW-111S at a concentration of 115 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 34.76 mg/L. As discussed in Section 2.3, pH and EC could affect calcium concentrations in groundwater. A low pH value of 3.76 was detected in the December 2021 sample and the pH of groundwater in the area of MW-111S stayed in a steady range of 3.6 to 4.5 in the past five years. The acidic condition favors the dissolution of calcium from soil and mineral surfaces to water phase. The relatively high EC in groundwater discussed above can also increase the calcium concentration. The significant increasing trend of calcium could be a result of the natural geochemistry conditions with low pH and high EC.
- Background concentrations of calcium have varied from 14 to 98.5 mg/L at upgradient monitoring well MW-101S. The calcium concentration of 115 mg/L at MW-110S during the 1st Half 2022 semiannual detection monitoring event is beyond but close to the top background concnetration. Therefore, the calcium exceedance is still in the range of natural variation in background groundwater quality.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.10 Chloride at MW-111S

The chloride SSI identified at MW-111S is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Chloride was detected in MW-111S at a concentration of 10.3 mg/L in the June 2022 sample. Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the underlying pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.11 Fluoride at MW-111S

The fluoride SSI identified at MW-111S is a result of natural groundwater geochemistry conditions, potential impact of CCR disposed at the CADL prior to October 19, 2015 and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

Fluoride was detected in MW-111S at a concentration of 0.748 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 0.2466 mg/L and the maximum fluoride concentrations of 0.1 to 0.135 mg/L measured in the three Stratum I background monitoring wells (MW-101S, MW-102S, and MW-104S). However, it should be noted that the measured fluoride concentrations are less than the federal primary drinking water MCL of 4.0 mg/L. pH of the groundwater is not an impact of the exceedance since fluoride dissoluction favors alkaline pH. As discussed in Section 2.3, fluoride has positive correlation with both bicarbonate and sodium, and an inverse relation with calcium. With the increasing trend of calcium in the groundwater, ion exchange process with high sodium and bicarbonate can result in the increasing of fluoride in groundwater. The fluoride increasing trend could also

be a result of continouse dissoved salts from the soils and minerals associated with the increased TDS.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.12 Sulfate at MW-111S

The sulfate SSI identified at MW-111S is a result of natural groundwater geochemistry condition of low pH and potential oxidation of sulfide minerals, potential impact of CCR disposed at the CADL prior to October 19, 2015, and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- Sulfate was detected in MW-111S at a concentration of 804 mg/L in the June 2021 s2mple, which exceeded the intrawell prediction limit of 348 mg/L. It could be caused by the acidic geochemistry condition discussed above or an anthropogenic source since sulfate is soluble in soils and can get into groundwater via surface water infiltration. Another potential reseaon is the naturally occurrence of sulfide minerals in the soil, such as pyrite. The oxidation of sulfide minerals will slowly release sulfate and hydrogen ion into groundwater, which will lead to the increasing of sulfate and decreasing of pH. To further investigate this hypothesis, the analysis of ORP is recommended for MW-111S in the next sampling event.
- Based on review of potentiometric surface mapping and locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit; therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within

TRC Environmental Corporation | Entergy Arkansas, LLC Alternate Source Demonstration – Entergy White Bluff Plant the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.13 TDS at MW-111S

The TDS SSI identified at MW-111S is a result of the acidic groundwater geochemistry conditions with natural occurrence of sulfide minerals, sodium sulfate source, the potential impact of CCR disposed at the CADL prior to October 19, 2015 and potential infiltration of surface water impacted by on-site CCR into the subsurface in the area of MW-111S. The following evidence supports this determination:

- TDS was detected in MW-111S at a concentration of 1230 mg/L in the December 2021 sample, which exceeded the intrawell prediction limit of 765.5 mg/L and the maximum TDS concentrations (196 mg/L to 421 mg/L) detected in the three Stratum I background wells (MW-101S, MW-102S, and MW-104S). As discussed in Section 2.2, the Jackson Group groundwater is sodium- and calcium-sulfate water type. Sodium could be another main contribution to the TDS exceedance with the increasing of calcium and sulfate. High sodium concentration can also cause the fluoride exceedance. The acidic groundwater could be one of the potential reasons. An alternate source containing sodium sulfate should also be considered, which can be mineral dissolution, surface water flux or atmospheric deposition.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-111S, MW-111S may monitor groundwater associated with the pre-CCR Rule closed portions of the CADL rather than the CCR Unit. Therefore, concentrations measured in MW-111S may be more reflective of pre-CCR Rule disposal rather than of the Unit.
- Surface water that has come into contact with on-site CCR at the CCR Unit has migrated from the perimeter drainage swale for the CCR Unit due to periodic build-up of sediment within the perimeter surface water swale. When this build-up occurs, surface water flows out of the swale and over the adjoining access road and then to the area of MW-111S. This drainage swale carries surface water runoff from closed portions of the CADL as well as from the CCR Unit. This surface water ultimately migrates from the MW-111S area via surface water swales within the ADEQ-permitted CADL footprint, with ultimate discharge into the site surge pond as per Entergy's NPDES permit. Based on the close proximity of this surface water to MW-111S, it appears likely that surface water infiltration may have impacted the MW-111S monitoring results.

3.14 Calcium at MW-101D

The calcium SSI identified at MW-101D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Calcium was detected in MW-101D at a concentration of 50.8 mg/L in the June 2022 sample, which was consistent with 56.3 mg/L in the December 2021 sample. This concentration exceeded the intrawell prediction limit of 48.1 mg/L. Calcium concentrations measured at MW-118D have ranged from 68.4 to 83.2 mg/L. MW-118D likely represents background groundwater quality for Stratum III, since it is located approximately 1,650 feet to the east of the CCR Unit. Therefore, the calcium exceedance at MW-101D appears to be within the range of variation in background groundwater quality.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-101D, MW-101D is located approximately 325 feet to historic fill areas, but approximately 850 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-101D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.15 TDS at MW-106D

The TDS SSI identified at MW-106D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- TDS was detected in MW-106D at a concentration of 531 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 379.5 mg/L. concentrations measured at MW-118D (background well for Stratum III) have ranged from 415 to 585 mg/L. Therefore, the TDS exceedance at MW-106D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-106D, MW-106D is located immediately adjacent (approximately 25 feet) to historic fill. Therefore, the concentrations of TDS measured in MW-106D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

3.16 TDS at MW-109D

The TDS SSI identified at MW-109D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- TDS was detected in MW-109D at a concentration of 559 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 423 mg/L. TDS concentrations measured at MW-118D (background well for Stratum III) have ranged from 415 to 585 mg/L. Therefore, the TDS exceedance at MW-109D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-109D, MW-109D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 1,000 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-109D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-109D is located approximately 1000 feet from the CCR unit, any release from the CCR Unit would be detected in Stratum III at MW-109D within approximately 100 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of TDS at MW-109D likely represents either potential pre-CCR Rule migration from the historic fill or background groundwater quality for Stratum III.</p>

3.17 Boron at MW-112D

The boron SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Boron was detected in MW-112D at a concentration of 0.278 mg/L in the June 2022 sample, which was consistent with 0.27 mg/L in the December 2021 sample. This concentration exceeds the intrawell prediction limit of 0.236 mg/L. Boron concentrations measured at MW-118D (background well for Stratum III) have ranged from 0.274 to 0.355 mg/L. Therefore, the boron exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit.

Therefore, the concentrations of boron measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

Groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of boron at MW-112D likely represents either potential pre-CCR Rule migration from historic fill or background groundwater quality for Stratum III.</p>

3.18 Calcium at MW-112D

The calcium SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Calcium was detected in MW-112D at a concentration of 30.0 mg/L in the June 2022 sample, which was consistent with 35.4 mg/L in the December 2021 sample. This concentration exceeds the intrawell prediction limit of 19.2 mg/L. A pH value of 8.15 was detected at in the June 2022 sample and the historical data review shows MW-112D area has a netural pH condition in groundwater. The relatively low TDS indicated that EC in groundwater is not a factor to the calcium exceedance. Calcium concentrations measured at MW-118D (background well for Stratum III) have ranged from 68.4 to 83.2 mg/L. Therefore, the calcium exceedance at MW-101D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-112D likely represents either potential pre-CCR Rule migration from historic fill or background groundwater quality for Stratum III.</p>

3.19 Chloride at MW-112D

The chloride SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

Chloride was detected in MW-112D at a concentration of 6.49 mg/L in the June 2022 sample. This concentration exceeds the intrawell prediction limit of 4.645 mg/L. Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of chloride measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of chloride at MW-112D likely represents either potential pre-CCR Rule migration from historic fill or background groundwater quality for Stratum III.

3.20 TDS at MW-112D

The TDS SSI identified at MW-112D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- TDS was detected in MW-112D at a concentration of 270 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 187.6 mg/L. TDS concentrations measured at MW-118D (background well for Stratum III) have ranged from 415 to 585 mg/L. A review of groundwater parameters in Stratum III indicates that sulfate is a great contributor to TDS and the sulfte concentration at MW-112D is very low (less than 4 mg/L). It could be a result of the lack of sulfide minerals in soil. Therefore, the TDS exceedance at MW-112D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of historic fill, locations of closed portions of the CADL, and the CCR Unit relative to MW-112D, MW-112D is located immediately adjacent (approximately 25 feet) to historic fill, but approximately 950 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-112D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.

As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-112D is located approximately 950 feet from the CCR unit, any release from the CCR Unit would be detected in Stratum III at MW-112D within approximately 95 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of TDS at MW-112D likely represents either potential pre-CCR Rule migration from the historic fill or background groundwater quality for Stratum III.</p>

3.21 Chloride at MW-113D

The chloride SSI identified at MW-113D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Chloride was detected in MW-113D at a concentration of 14.4 mg/L in the June 2022 sample. This concentration exceeds the intrawell prediction limit of 13.9 mg/L. Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-113D, MW-113D is located approximately 20 feet from closed portions of the CADL, but approximately 800 feet from the CCR Unit. Therefore, the concentrations of chloride measured in MW-113D may be more reflective of pre-CCR Rule disposal rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-113D is located approximately 800 feet from pre-CCR rule closed portions of the CADL, any release from the CCR Unit would be detected in Stratum III at MW-113D within approximately 80 years, which is significantly longer than the CCR Unit has been in operation. Therefore, the concentration of chloride at MW-113D likely represents either potential pre-CCR Rule migration from the closed portions of the CADL or background groundwater quality for Stratum III.</p>

3.22 Calcium at MW-114D

The calcium SSI identified at MW-114D is a result of natural variation in groundwater quality. The following evidence supports this determination:

Calcium was detected in MW-114D at a concentration of 53.1 mg/L in the June 2022 sample, which was consistent with 53.4 mg/L in the December 2021 sample. This concentration exceeds the intrawell prediction limit of 48.9 mg/L. A pH value of 8 was detected at in the June 2022 sample and the historical data review shows MW-114D area has a netural pH condition in groundwater. Calcium concentrations measured at MW-118D (background well for Stratum III) have ranged from 68.4 to 83.2 mg/L. Therefore, the calcium exceedance at

3-16

MW-114D is within the range of variation in background groundwater quality and is not a potential environmental concern.

- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-114D, MW-114D is located 950 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-114D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-114D is located approximately 950 feet from the CCR Unit, any release from the pre-CCR Rule closed portions of the CADL or the CCR Unit would be detected in Stratum III at MW-114D within approximately 95 years, which is significantly longer than either the CADL or the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-114D likely represents background natural groundwater quality for Stratum III.</p>

3.23 TDS at MW-114D

The calcium SSI identified at MW-114D is a result of natural variation in groundwater quality. The following evidence supports this determination:

- TDS was detected in MW-114D at a concentration of 319 mg/L in the June 2022 sample. This concentration exceeds the intrawell prediction limit of 309.8 mg/L. TDS concentrations measured at MW-118D (background well for Stratum III) have ranged from 415 to 585 mg/L. Therefore, the TDS exceedance at MW-114D is within the range of variation in background groundwater quality and is not a potential environmental concern.
- Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-114D, MW-114D is located 950 feet from the CCR Unit. Therefore, the concentrations of TDS measured in MW-114D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-114D is located approximately 950 feet from the CCR Unit, any release from the pre-CCR Rule closed portions of the CADL or the CCR Unit would be detected in Stratum III at MW-114D within approximately 95 years, which is significantly longer than either the CADL or the CCR Unit has been in operation. Therefore, the concentration of TDS at MW-114D likely represents background natural groundwater quality for Stratum III.</p>

3.24 Calcium at MW-115D

The calcium SSI identified at MW-115D is a result of natural variation in groundwater quality and potential impact of CCR disposed at the CADL prior to October 19, 2015. The following evidence supports this determination:

- Calcium was detected in MW-115D at a concentration of 43.6 mg/L in the June 2022 sample. This concentration exceeds the intrawell prediction limit of 42.9 mg/L. Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-115D, MW-115D is located 850 feet from pre-CCR Rule closed portions of the CADL and 1,450 feet from the CCR Unit. Therefore, the concentrations of calcium measured in MW-115D may be more reflective of background natural water quality rather than of the CCR Unit.
- The concentrations of calcium measured at MW-118D have ranged from 68.4 to 103 mg/L, which are greater than the concentration of calcium of 43.6 mg/L measured at MW-115D in June 2022. As discussed previously, MW-118D likely represents background groundwater quality for Stratum III, since it is located approximately 1,650 feet to the east of the CCR Unit. Therefore, the calcium concentration measured at MW-115D appears to be within the range of variation in background groundwater quality.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-115D is located approximately 850 feet from pre-CCR Rule closed portions of the CADL and approximately 1,450 feet from the CCR Unit, any release from the pre-CCR Rule closed portions of the CADL or the CCR Unit would be detected in Stratum III at MW-115D within approximately 85 to 145 years, which is significantly longer than either the CADL or the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-115D likely represents background natural groundwater quality for Stratum III.</p>

3.25 Calcium at MW-118D

The calcium SSI identified at MW-118D is a result of natural groundwater geochemistry conditions with high EC. The following evidence supports this determination:

Calcium was detected in MW-118D at a concentration of 91.2 mg/L in the June 2022 sample, which exceeded the intrawell prediction limit of 86.24 mg/L.. The netural pH range of 6.7 to 7.4 at MW-118D indicates that pH of groundwater is not a factor to the calcium exceedance. The increasing sulfate and TDS concentrations can lead to the increasing EC in groundwater, which favors calcium dissolution and thus increases the calcium concentration in groundwater. Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-118D, MW-118D is located 1,650

3-18

feet east of the CCR Unit. Therefore, the calcium exceedance detected in MW-118D is more likey relative to the geochemistry conditions with increasing EC rather than to the CCR Unit.

As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-118D is located approximately 1,650 feet from the CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-118D within approximately 165 years, which is significantly longer than either the the CCR Unit has been in operation. Therefore, the concentration of calcium at MW-118D likely represents background natural groundwater quality for Stratum III.</p>

3.26 TDS at MW-118D

The TDS SSI identified at MW-118D is a result of natural groundwater geochemistry conditions. The following evidence supports this determination:

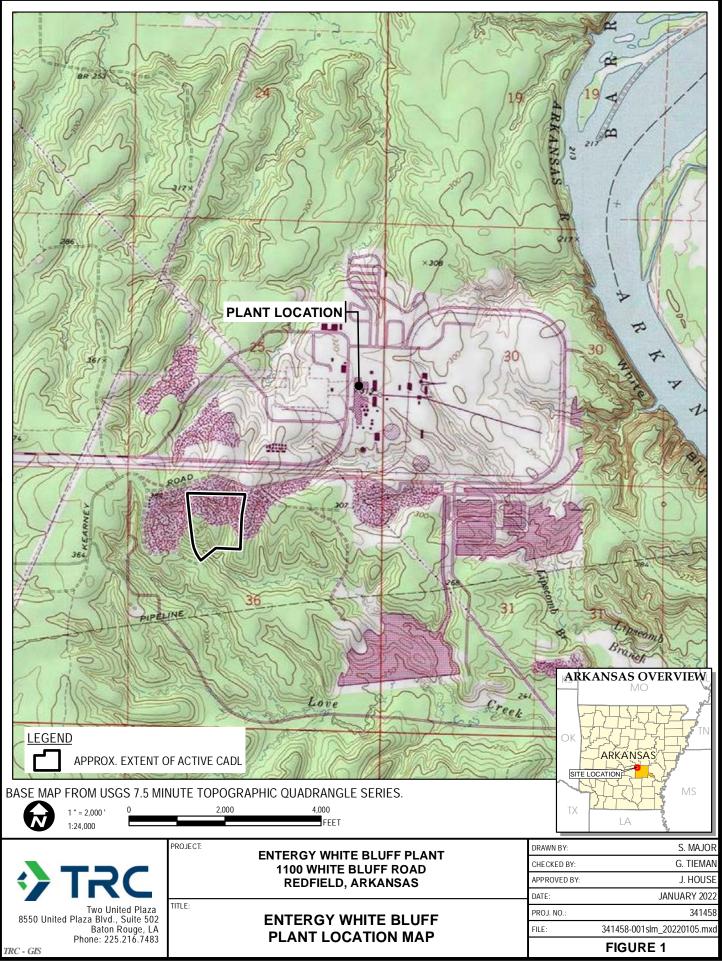
- TDS was detected in MW-118D at a concentration of 585 mg/L in the June 2022 sample. This concentration exceeds the intrawell prediction limit of 516.2 mg/L. Based on review of potentiometric surface mapping, locations of closed portions of the CADL, and the CCR Unit relative to MW-118D, MW-118D is located 1,650 feet east of the CCR Unit. Therefore, the concentrations of TDS measured in MW-118D may be more reflective of background natural water quality rather than of the CCR Unit.
- As discussed previously, groundwater flow velocities in Stratum III are estimated to be approximately <1 ft/year to 10 ft/year (TRC 2018a). Since, MW-118D is located approximately 1,650 feet from the CCR Unit, any release from the CCR Unit would be detected in Stratum III at MW-118D within approximately 165 years, which is significantly longer than either the the CCR Unit has been in operation. Therefore, the concentration of TDS at MW-118D likely represents background natural groundwater quality for Stratum III.</p>

Section 4 Conclusions

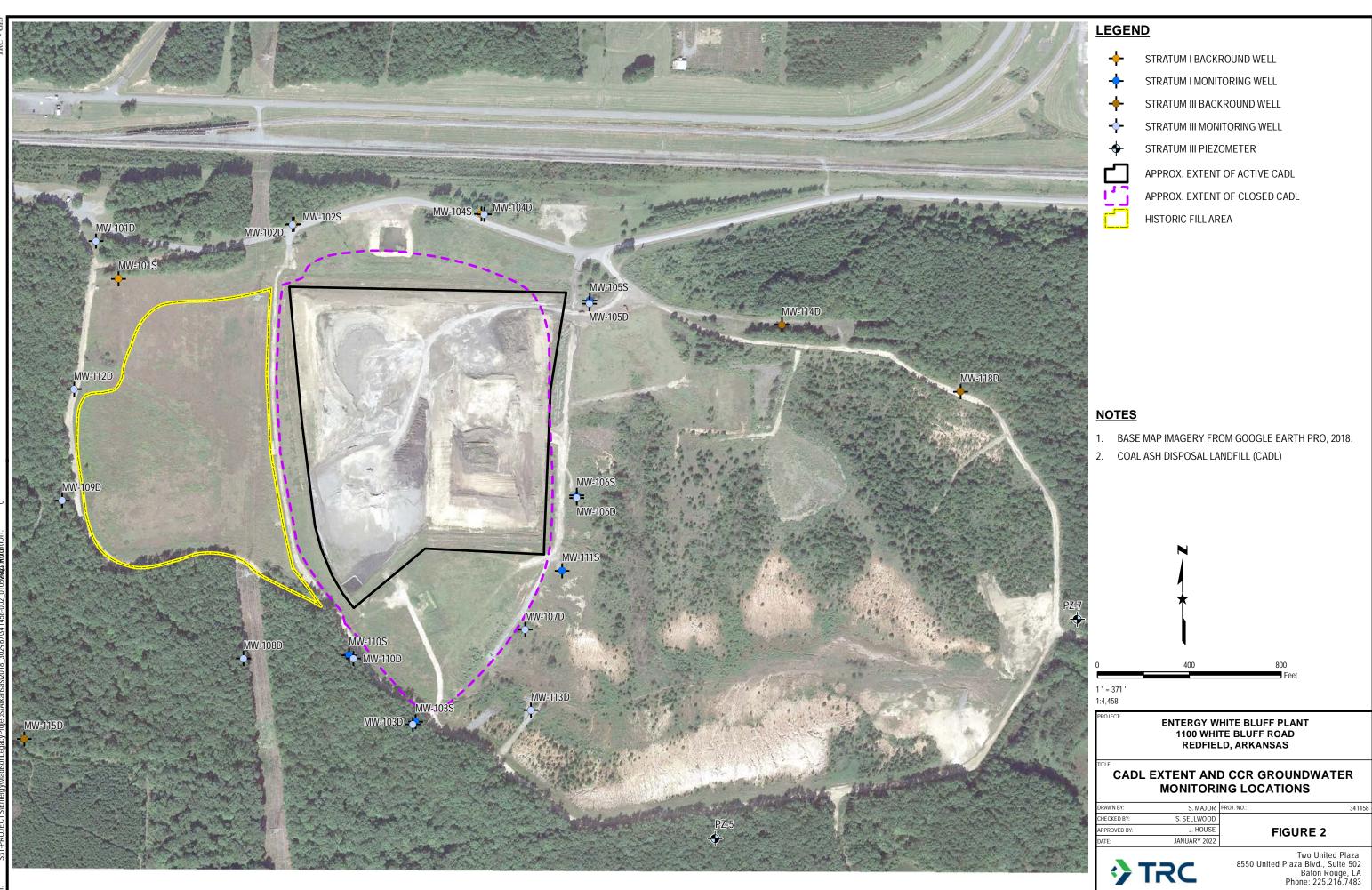
The information provided in this report serves as the ASD prepared in accordance with 40 CFR 257.94(e)(2) of the CCR Rule. Statistical evaluation identified 26 potential SSIs in three monitoring wells in Stratums I and eight monitoring wells in Stratums III. This ASD has demonstrated the following lines of reasoning that support alternative sources for the identified SSIs:

- Low pH detected in Stratums I indicated the acidic groundwater geochemistry conditions in MW-106S, MW-110S and MW111-S. The 11 SSIs identified in Stratums I are related to the naurtal groundwater geochemistry conditions, such as low pH, high electrical conductivity, potential presence of sulfide minerals in soils and relatively high oxidation-reduction potential.
- The SSIs identified in Stratums III are mostly within the natural variation in groundwater quality compared to MW-118D, which likely represents background natural groundwater quality for Stratum III due to its location to CCR Unit and groundwater flow velocities.
- Releases from historic fill or portions of the CADL closed before the effective date of the CCR Rule (October 19, 2015); and/or
- Surface water that has come into contact with on-site CCR and has migrated into the subsurface.

Therefore, the SSIs determined based on statistical analysis of the 1st Half 2022 semiannual detection monitoring event performed in June of 2022 are not due to a release from the CCR Unit to Stratums I and III of the Jackson Group.Based on the information provided in this ASD report, Entergy will continue to conduct semiannual detection monitoring in accordance with 40 CFR 257.94 at the Certified Monitoring Well Network for the CCR Unit.


- Atekwana, E. A., Atekwana, E. A., Rowe, R. S., Werkema, D. D., & Legall, F. D. (2004). The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. Journal of Applied Geophysics, 56(4), 281–294.
- Banadkooki, F. B., Ehteram, M., Panahi, F., Sh. Sammen, S., Othman, F. B., & EL-Shafie, A. (2020). Estimation of total dissolved solids (TDS) using new hybrid machine learning models. Journal of Hydrology, 587(February), 124989.
- Brindha, K., & Elango, L. (2011). Fluoride in groundwater: Causes, implications and mitigation measures. Fluoride: Properties, Applications and Environmental Management, 113–136.
- Chen, Q., Jia, C., Wei, J., Dong, F., Yang, W., Hao, D., Jia, Z., & Ji, Y. (2020). Geochemical process of groundwater fluoride evolution along global coastal plains: Evidence from the comparison in seawater intrusion area and soil salinization area. Chemical Geology, 552(July), 119779.
- Einsiedl, F., & Mayer, B. (2005). Sources and Processes Affecting Sulfate in a Karstic Groundwater System of the Franconian Alb, Southern Germany. Environmental Science & Technology, 39(18), 7118–7125.
- FTN. 2014. Supplemental Geotechnical and Hydrogeological Investigation Report, Entergy White Bluff Plant Class 3N Landfill. Prepared for Entergy Arkansas, Inc. Little Rock, AR: FTN Associates, Ltd. October 1, 2014.
- FTN. 2017a. Statistical Analysis Plan, Entergy White Bluff Plant. Little Rock, AR: FTN Associates, Ltd.
- FTN. 2017b. Groundwater Sampling and Analysis Plan, Entergy White Bluff Landfill. Little Rock, AR: FTN Associates, LTD.
- Guo, H., Zhang, Y., Xing, L., & Jia, Y. (2012). Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Applied Geochemistry, 27(11), 2187–2196.
- Hájek, M., Jiménez-Alfaro, B., Hájek, O., Brancaleoni, L., Cantonati, M., Carbognani, M., Dedić, A., Díte, D., Gerdol, R., Hájková, P., Horsáková, V., Jansen, F., Kamberović, J., Kapfer, J., Kolari, T. H. M., Lamentowicz, M., Lazarević, P., Mašić, E., Moeslund, J. E., ...

Horsák, M. (2021). A European map of groundwater pH and calcium. Earth System Science Data, 13(3), 1089–1105.


- Hollis, J. F., Keren, R., & Gal, M. (1988). Boron Release and Sorption by Fly Ash as Affected by pH and Particle Size. Journal of Environmental Quality, 17(2), 181–184.
- Jiang, Y., Wu, Y., Groves, C., Yuan, D., & Kambesis, P. (2009). Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1–4), 49–61.
- Keren, R., & Communar, G. (2009). Boron Sorption on Wastewater Dissolved Organic Matter: pH Effect. Soil Science Society of America Journal, 73(6), 2021–2025.
- Kimambo, V., Bhattacharya, P., Mtalo, F., Mtamba, J., & Ahmad, A. (2019). Fluoride occurrence in groundwater systems at global scale and status of defluoridation State of the art. Groundwater for Sustainable Development, 9(August 2018), 100223.
- Kresse, T.M., P.D. Hays, K.R. Merriman, J.A. Gillip, D.T. Fugitt, J.L. Spellman, A.M. Nottmeier, D.A. Westerman, J.M. Blackstock, and J.L. Battreal. 2014. Aquifers of Arkansas—Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas [USGS Scientific Investigations Report 2014– 5149]. Prepared in Cooperation with the Arkansas Natural Resources Commission. Reston, VA: US Geological Survey. 334 pp.
- Luo, W., Gao, X., & Zhang, X. (2018). Geochemical processes controlling the groundwater chemistry and fluoride contamination in the yuncheng basin, China—an area with complex hydrogeochemical conditions. PLoS ONE, 13(7).
- MDH. (2008). Sulfate in well water. In Minnesota Department of Health, Well Management Section, Environmental Health Division.
- Miao, Z., Brusseau, M. L., Carroll, K. C., Carreón-Diazconti, C., & Johnson, B. (2012). Sulfate reduction in groundwater: Characterization and applications for remediation. Environmental Geochemistry and Health, 34(4), 539–550.
- Mondal, D., Gupta, S., Reddy, D. V., & Nagabhushanam, P. (2014). Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. Journal of Geochemical Exploration, 145, 190–206.
- Olumuyiwa I. Ojo,. (2012). Groundwater: Characteristics, qualities, pollutions and treatments: An overview. International Journal of Water Resources and Environmental Engineering, 4(6), 162–170.

- Palmucci, W., & Rusi, S. (2014). Boron-rich groundwater in Central Eastern Italy: a hydrogeochemical and statistical approach to define origin and distribution. Environmental Earth Sciences, 72(12), 5139–5157.
- Poursaeid, M., Mastouri, R., Shabanlou, S., & Najarchi, M. (2020). Estimation of total dissolved solids, electrical conductivity, salinity and groundwater levels using novel learning machines. Environmental Earth Sciences, 79(19), 1–25.
- Pu, J., Yuan, D., Zhang, C., & Zhao, H. (2012). Hydrogeochemistry and possible sulfate sources in karst groundwater in Chongqing, China. Environmental Earth Sciences 2012 68:1, 68(1), 159–168.
- Ravenscroft, P., & McArthur, J. M. (2004). Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. Applied Geochemistry, 19(9), 1413–1430.
- Razowska-jaworek, L. (2014). Calcium and Magnesium in Groundwater. In Calcium and Magnesium in Groundwater.
- Saxena, V., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: a water-rock interaction study. Environmental Geology, 40(9), 1084–1087.
- Schot, P. P., & Wassen, M. J. (1993). Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. Journal of Hydrology, 141(1–4), 197–217.
- Shi, X., Wang, Y., Jiao, J. J., Zhong, J., Wen, H., & Dong, R. (2018). Assessing major factors affecting shallow groundwater geochemical evolution in a highly urbanized coastal area of Shenzhen City, China. Journal of Geochemical Exploration, 184, 17–27.
- Tabelin, C. B., Hashimoto, A., Igarashi, T., & Yoneda, T. (2014). Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. Science of The Total Environment, 473–474, 244–253.
- TRC. 2017. Statistical Methods Certification, White Bluff Steam Electric Generating Station, Redfield, Arkansas. Prepared for Entergy Arkansas Inc. Baton Rouge: TRC Environmental Corporation.
- TRC. 2018a. Site Conceptual Model: Entergy White Bluff Plant Coal Ash Disposal Landfill, Redfield, Jefferson County, Arkansas. January 2018.

- TRC. 2018b. Groundwater Monitoring System Certification, White Bluff Steam Electric Generating Station, Redfield, Arkansas. Prepared for Entergy Arkansas Inc. Baton Rouge: TRC Environmental Corporation.
- Upadhyaya, D., Survaiya, M. D., Basha, S., Mandal, S. K., Thorat, R. B., Haldar, S., Goel, S., Dave, H., Baxi, K., Trivedi, R. H., & Mody, K. H. (2014). Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. Environmental Science and Pollution Research, 21(5), 3880–3890.
- USEPA. (2008). Drinking Water Health Advisory For Boron. Office of Water U.S. Environmental Protection Agency Washington, DC, 822-R-08–0.
- United States Environmental Protection Agency. 2017. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals, March 8, 2017.
- WHO. (2008). Guidelines for Drinking Water Quality, third ed. World Health Organization, Geneva.

S:\1-PROJECTS\Entergy\MadisonLegacyProjects\Arkansas\2018_302967\341458-001s\m_20220105.mxd -- Saved By: DSTITCHER on 1/5/2022, 15:53:10 PM

341458-002_01052022.mxd